
CS6840: Advanced Complexity Theory Mar 6, 2012

Lecture 35 : Size and Depth complexity of Boolean Circuits

Lecturer: Jayalal Sarma M.N. Scribe: Dinesh K.

Theme: Circuit Complexity
Lecture Plan: Notion of size and depth of circuits. Shannon’s and Lupanov’s bound on
size of circuits computing any boolean function.

In the previous lecture, we saw what boolean functions, family of boolean functions are,
defined function computation and argued that boolean circuits are natural notions for com-
puting boolean functions. We also saw the notion of complete basis and characterisation of
complete basis due Emil Post.

In this lecture, we shall see two important parameters of a circuit called size complexity
and depth complexity and shall look into Lupanov’s (upper) bound and Shannon’s (lower)
bound on the size of a circuit computing a function.

Before delving deep, let’s have a look at the following definitions.

1 Definitions

Definition 1. (Family of circuits) Let {Cn}n≥0 be an infinite collection where each ci is a
boolean circuit (computing a boolean function) on the i input lines.

This definition is similar to our notion of family of functions defined in the previous lecture.

Definition 2. Let L ⊆ Σ∗, x ∈ Σ∗. Let the characteristic function of L on inputs of length
n be defined as ,

χ
(n)
L (x) =

{
1 if x ∈ L ∩ {0, 1}n,
0 otherwise

Definition 3. L ⊆ Σ∗ is computed 1 by a family of circuits if ∃{Cn}n≥0 such that

x ∈ L ⇐⇒ C|x|(x) = 1

Essentially Cn computes the function χ
(n)
L (x)

1When we say L is computed by a circuit family, we do not worry about how to get the circuit family.
The issue of whether the family exists or not shall be addressed in the subsequent lectures.

35-1

Observe that the circuit computing a function on n input can be drastically different from
a circuit computing the same function on n + 1 inputs. This leads to the notion of non-
uniform computation which can be stated informally as the case where there is no single
circuit that decides the language, yet for strings of the same length there is a single device
(circuit) that decides them.

2 Parameters of Interest

To understand what parameters of circuit are we interested in, let us try to gain some
motivation from the parallel computation world. In parallel computation, the aim is to
decompose the jobs and then each job is processed by one processor.

computation

Sequential

Input

depth

Processors

Parallel job computation

Figure 1: Parallel and Sequential computation

But there can be parallelism in the outcomes of these processors. So we again have a
processors that receives the processed input and carry on the processing (figure 1) thereby
leading levels of computation. In case of sequential computation, no such decomposition is
possible : each processor in the same level will be executed one after the other and will be
repeated for all the levels.

What would be the “parallel” time taken to finish the job ? This is nothing but the time
required to get the output. Since input to each level is dependent on the output of the
previous level, the delay caused will be proportional to the length of the longest path.

Circuits essentially tries to abstract this idea.

Definition 4. (Depth) Depth of any circuit C is a function D that takes in circuit and
gives the length of the longest path from root (output) to any leaf (input).

35-2

Definition 5. (Size) Size of a circuit C is a function S that takes a circuit and gives the
number of gates (or devices) in the circuit.

Note that the size of a circuit can also be thought as the time taken by a sequential machine
to compute the same function.

Example 6. Consider the parity function f : {0, 1}n → {0, 1} where f(x1, x2, . . . , xn) =
x1 ⊕ x2 ⊕ . . .⊕ xn. The circuit corresponding to this function is as shown in figure 2.

xn−1 xnx2x1 x3 x4

+

+

+++

+

+

Figure 2: The parity function

Note that we have exploited the associativity property of ⊕. This circuit has a size = n− 1
and depth = dlog2 ne.

The next natural question to ask is

Will the parameters S and D depend on the complete basis chosen ?

The answer is yes and we now give a more accurate definition of size and depth in terms of
languages.

Definition 7. Size SΩ(L) of a language L is the minimum sized2 function of a circuit family
that computes L for the complete basis Ω.

Definition 8. Depth DΩ(L) of a language L is the minimum depth function of a circuit
family that computes L for the complete basis Ω.

Definition 9. Circuit Complexity of a language L for a complete basis Ω is defined as the
tuple (SΩ(L),DΩ(L)) which corresponds to the size and depth complexities respectively.

Claim 10. Let Ω, Ω′ be two finite complete basis of boolean functions of fixed arity. Then
for any L ∈ Σ∗,

SΩ(L) = Θ(SΩ′(L)),DΩ(L) = Θ(DΩ′(L))

2By minimum sized, we mean asymptotic size i.e. constant factors are ignored

35-3

Proof Idea Let {Cn}n≥0 be the minimum sized circuit computing L for the complete
basis Ω. When the basis is changed, one need to express boolean functions in Ω in terms of
boolean functions in Ω′. This is always possible since Ω′ is complete. Now a circuit in the
basis Ω′ can be obtained by replacing the gates in Ω by their equivalent circuits in Ω′.

Note that the basis is finite and is independent of n. So the blow up or shrinkage of each
gate Cn will only be by a constant. Hence in the worst case all the gates in {Cn} gets scaled
by a constant factor and the size of the resultant circuit can be at most k× size of original
circuit. In case of depth, the length of the longest path gets scaled up (or down) by a factor
independent of n.

Now we define the complexity class corresponding to the circuits computing a function.

Definition 11. For functions f, g : N→ N

SIZE(f(n)) = {L|L is computed by a family of circuits of size f(n)}
DEPTH(g(n)) = {L|L is computed by a family of circuits of depth g(n)}

3 Size of Circuits computing Boolean functions

Consider a boolean function f : {0, 1}n → {0, 1} defined on the variables (x1, x2, . . . , xn) ∈
{0, 1}n and the complete basis Ω = {∧,∨,¬} where each function is having an arity 2. By
claim 10, we have already seen that fixing the basis to be finite gives us the guarantee that
the same result holds in other bases asymptotically. From now on we shall be working on
this complete basis.

We would like to know what would be the size of the circuit computing f . How large
or small can it be ? Before answering them let us see what would be the trivial circuit
computing f .

An easy way to look at f is to express it as sum-of-product terms (which can be figured
out from the truth table of f). Hence

f(x1, x2, . . . , xn) =
∨

f(a1,a2,...,an)=1

(xa11 ∧ x
a2
2 ∧ . . . ∧ x

an
n)

where,

xaii =

{
xi if ai = 0,

xi if ai = 1

35-4

A circuit representation of f (shown in figure 3) has a root ∨ gate with 2n inputs. But our

x1 x2 xn

2n

∧

∧ ∧

∧

∨

. . .

. . .

Figure 3: Circuit representation of f

basis has ∨ gates of arity 2. Reduction to arity 2 can be achieved by composing ∨ as shown.
in figure 4 and replacing the root ∨ gate in figure 3 by this circuit. Again the ∧ gates are

depth n

∨

∨

∨

∨

∨

2n inputs

∨ ∨

Figure 4: Arity reduction of root ∨ gate

taking n inputs: hence we replace the ∧ gate by composing ∧ s as shown in figure 5 and
plug it in place of ∧ in figure 3.

Now size of the circuit

=(2n+1 − 1) [due to ∨ gates]

+ 2n × (2n− 1) [due to 2n ∧ gates each of size (2n− 1)]

=O(n2n)

A takeaway from the whole exercise is that any function f on n input can be represented

35-5

∧

∧

∧ ∧

∧

∧

∧

n inputs

depth dlogne

Figure 5: Arity reduction of ∧ gate

using a circuit of size O(n2n). A natural question is : can there be circuits of even smaller
size ?

We shall now see a lower bound due to Shannon(1942) and an upper bound due to Lu-
panov(1952) on the size of a boolean circuit computing a function f .

4 Shannon’s Lower bound

Theorem 12. (Shannon, 1942) For “most” of the circuits on n inputs computing a function
f , the size of the circuit is larger than 2n

n (asymptotically)

Proof. Proof is by a counting argument on the number of boolean circuits on n inputs and
of size s computing f . We argue that if we restrict the size of the circuit s < 2n

n , then the
fraction of functions that can be computed using such circuits is very small.

Let H(n, s) be the number of distinct circuits possible on n inputs and of size s. Observe
that s ≥ n. Since the circuit is characterised by a (unique) root, s− 1 gates and n inputs,
we count how many ways can the s gates be selected. The count can be split as,

• No. of ways of fixing the root → s ways.

• Each of the internal gates (gates other than the root)

– can compute 222 functions3

– there are (n + s) possible inputs for each function and hence (n + s)2 possible
choices.

• Hence total ways is s[16(n+ s)2]s−1.

3¬ can be assumed to be of two input where it negates one input and ignores the other.

35-6

But each permutation of the gates is going to give us the same circuit. Hence total number
of distinct circuits is bounded by

H(n, s) ≤ s[16(n+ s)2]s−1

s!

(Note that we are only looking locally at what is the requirement of each gate. Circuits are
DAGs but since the choices made at each gate is local, we can have cycles. Hence we are
counting the non-DAG circuits also. But still this count remains an upper bound)

Now,
logH(n, s) ≤ log s+ (s− 1) log[16(n+ s)2]− log s!

By Stirling approximation, s! ≥
(
s
e

)s
, we have log s! ≥ s log s− s log e

logH(n, s) ≤ log s+ (s− 1) log[16(n+ s)2]− (s log s− s log e)

= log s+ 2(s− 1) log(n+ s) + (s− 1) log 16− (s log s− s log s)

Now, since n ≤ s we have n+ s ≤ 2s.

logH(n, s) ≤ log s+ 2(s− 1) log 2s+ (s− 1) log 16− (s log s− s log e)

< log s+ 2s log(2s) + s log 16 + s log e

= (1 + s) log s+ 6s+ s log e

Substituting s = 2n

n , we get,

logH(n, s) <

(
2n

n
+ 1

)
(n− log n) + (6 + log e)

2n

n

= 2n − 2n

n
[log n− (6 + log e)] + n− log n

= 2n − 2n

n

[
log n− (6 + log e)− n

2n
(n− log n)

]
= 2n − 2n

n
log n

[
1− (6 + log e)

log n
− n(n− log n)

2n log n

]
= 2n − 2n

n
log n[1− o(1)]

Hence asymptotically,

H

(
n,

2n

n

)
≤ 22n

2
2n

n
logn(1−o(1))

Since 22n is the total number of functions on n inputs, we have,

H

(
n,

2n

n

)
= 2−

2n

n
logn(1−o(1))(Total no. of functions on input n)

Hence the fraction of functions that can be computed with small size is very less since the
number of distinct circuits is an exponentially small fraction of total functions on n inputs.
Hence we conclude that large fraction of functions require size > 2n

n .

35-7

5 Lupanov’s Upper bound

Shannon’s lower bound says that there is (asymptotically) large fraction of functions that
remains uncomputable with circuits of size < 2n

n . What Lupanov’s bound says is, if we
allow circuit size to be larger by a small fraction of 2n

n , then we can compute all functions
in n inputs.

Let f : {0, 1}n → {0, 1} be a boolean function. We can express f(x1, x2, . . . , xn) as

(x1 ∧ f(1, x2, . . . , xn)) ∨ (x1 ∧ f(0, x2, . . . , xn))

f(1, x2, . . . , xn) x1x1
f(0, x2, . . . , xn)

∨

∨∨

Figure 6: Circuit computing f

Hence f(x1, x2, . . . , xn) can be expressed in the form of a recursive structure as, where each

n

x2 x2

x3x3x3

x1 Computes f(x1, x2, . . . , xn)

Computes f(1, x2, . . . , xn)

x1 = 1x1 = 0

x3 Computes f(1, 1, . . . , xn)Computes f(0, 0, x3 . . . , xn)

Computes f(0, x2, . . . , xn)

Figure 7: Complete circuit computing f

box represents the two ∧ and one ∨ of figure 6. Now, we can find the size of the circuit
follows the recurrence

S(n) = 2S(n− 1) + 6

S(2) = 1

where 6 = (1 − ∧, 2 − ∨, one ¬ of x1, and 0, 1 inputs). Hence S(n) = 7
42n − 6 = O(2n).

Note that this is a better bound than the bound from the trivial circuit. So the question is
how much more can we improve ? How to make the circuit more compact ?

35-8

Theorem 13. (Lupanov, 1952) An function on input defined on the complete basis Ω =
{¬,∨,∧} of two input gates can be computed by a circuit of size [1 + o(1)]2n

n .

Proof. Observe that at the kth level (see figure 8) for 0 < k ≤ n (where the bottom of the
circuit is level 0) there are k variables appearing below it (All the n− k variables above the
kth level would have got 0 or 1 assigned).

n− k

k

n− k

k
Dependent on k inputs

3.2n−k gates

A(k) gates

(All 22
k

functions)

Figure 8: Compacting of circuit

Also from our construction, it is clear that there are 3(2n−k) gates at the kth level. Since
circuits are DAGs the input to these gates can only come from the k variables. Also there
can be 22k distinct functions computable using k inputs. Now if A(k) is the number of gates

required to realise these 22k distinct functions then the 3(2n−k) gates can get input from
any of the A(k) gates and if we have the case where 3(2n−k) > A(k) (after appropriately
setting k), the result of computation can be reused and compaction can be achieved. So
unlike the earlier case where we might have needed at least 3(2n−k) gates below the kth

level, it now suffices to generate all 22k functions.

Now it remains to estimate A(k). This function can be recursively characterised as

(xk ∧ f1(x1, x2, . . . , xk−1) ∨ (xk ∧ f2(x1, x2, . . . , xk−1)

If we have the circuits computing all the k − 1 input functions, we can construct circuits
computing all of the k input function using the recursive formulation.

Note that the total number of gates required to realise 22k functions = A(k)

= (Gates required to realise k variate functions from circuit computing functions on k − 1
variables)

+

Number of gates required to realise all the 22k−1
functions.

35-9

The first term equals

=Total no. of ∧ gates + Total no. of ∨ gates

=(22k−1
)× 2 + (22k−1

)× (22k−1
) [Two ∧ gates per f]

[Ways of choosing f1, f2]

The second term is nothing but A(k − 1). Hence,

A(k) = A(k − 1) + 22k−1 × 2 + 22k

A(0) = 2 [i.e. True or False]

Note that this is nothing but the series summation

=

k∑
i=1

(22i + 2.22i−1
) +A(0)

=
k∑

i=1

22i +
k∑

i=1

2.22i−1
+A(0)

=
k−1∑
i=0

22i +
k−1∑
i=0

2.22i + 2 + 22k +A(0)

=3

k−1∑
i=0

22i + 4 + 22k

< 3

k−1∑
i=0

22k−1
+ 22k

=22k + 3k.22k−1
= 22k

(
1 +

3k

2(2k−2k−1)

)

Hence A(k) = 22k(1+o(1)). Therefore total number of gates = 3.2n−k +22k(1+o(1)). Now

to have 3.2n−k > 22k , we choose k = log(n − log n) (verification of k is left to the reader).
Total number of gates is now

=3.
2n

n− log n
+

2n

n
(1 + o(1))

=
2n

n

[
3

1− logn
n

+ 1 + o(1)

]

≤2n

n
(4 + o(1))

This proves a bound which is almost as tight as the Lupanov’s bound. Reducing the constant
from 4 to 1 requires more effort.

35-10

