Problem Set #1

Topic: Lectures 1-8

Due on: Apr 26, 2009

Problem 1

(PADDING ARGUMENTS)

This problem is to understand a simple technique of *padding* to prove translation results in complexity theory. The idea is to consider for any language L,

$$L_{\mathsf{pad}} = \left\{ x. \#^{f(|x|)} | x \in L \right\}$$

where choice of the function f(.) depends on the specific application in mind. We will do two variants of this.

- 1. Show that $EXP \neq NEXP \Rightarrow P \neq NP$. Use a similar argument to show that $P = L \Rightarrow EXP = PSPACE$.
- 2. Prove that $\mathsf{P} \neq \mathsf{DSPACE}(n)$.

Problem 2

(TAPE REDUCTION)

We saw tape reduction in the class, where we showed how a multi-tape Turing machine running in time t(n) and space s(n) can be simulated by a 1-tape Turing machine in time $O(t(n)^2)$ and space O(s(n)). We will show two improvements in this problem.

- 1. Prove that if we are simulating on a 2-tape Turing machine, this can be done in $O(t(n) \log t(n))$ and space s(n).
- 2. If we allow Turing machine to be non-deterministic, then we can do tape reduction without a time overhead. Show that a multi-tape non-deterministic Turing machine running in time t(n) can be simulated by a 1-tape non-deterministic Turing machine in time O(t(n)).

Problem 3

(SPARSE AND TALLY SETS)

1. A set A is called *sparse* if there is a polynomial p, such that $|\{x \in A : |x| = n\}| \le p(n)$. A set A is called *tally set* if $A \subseteq \{1\}^*$. Prove that following are equivalent.

- Restricted to tally sets NP = P. That is all tally sets in NP are in P.
- Restricted to sparse sets NP = P. That is all sparse sets in NP are in P.
- EXP = NEXP.

Hence conclude that $\mathsf{EXP} \neq \mathsf{NEXP} \Rightarrow \mathsf{P} \neq \mathsf{NP}$ (part(a) of the previous problem).

2. A set A is P-computably sparse if it is sparse but in addition, $|\{x \in A : |x| = n\}|$ is polynomial time computable. Show that $A \notin NP \setminus coNP$.

Problem 4

(ALTERNATION)

Given an ϵ -free context-free language L (as its grammer in Chomsky Normal form) the problem of determining membership of a string in L can be done in P. Prove this by giving an ALOG parsing algorithm.

Problem 5

(Skew Circuits)

A circuit (with all gates of fan-in 2) is said to be a *skew circuit* if all negation gates appear at the input every \land gate has at least one input which is a variable or a negation gate. Circuit Value Problem(CVP) asks; given a Boolean circuit and an input to the circuit, check if the circuit evaluates to 1.

- 1. Show that CVP restricted to the case when the input is skew circuits (call this SKEW-CVP) is in NL.
- 2. Show that Reachability problem reduces to SKEW-CVP via many-one logspace reductions, to SKEW-CVP. Hence conclude that SKEW-CVP is complete for NL.

Problem 6

(NEED NOT BE TURNED IN.)

This problem is aimed at testing your understanding of some of the definitions & ideas that we discussed in the class. These need not necessarily be turned in. But you are welcome to write them down too.

• In the proof of Immerman-Szlepsinyi Theorem, to compute N_k , the number of configurations reachable in at most k steps from given configuration α (page 3-2, of notes for lecture 3) why cant we use the following simple step instead of the inductive way of counting.

for each k, to compute N_k , we generate each configuration, β one by one, and for each one non-deterministically verify whether β is reachable from α . If yes, increment the count.

- In lecture 4, we saw $NP^{P} \subseteq NP$. This was argued by saying that the non-deterministic oracle machine can simulate the membership query to oracle language (which is in P) without actually asking the query itself. But now, why wouldn't the same strategy work for $NP^{NP} \subseteq NP$ or $P^{NP} \subseteq NP$?
- Suppose P = NP. That is as sets of subsets of Σ^* , P and NP are the same. Why does this not imply that $P^C = NP^C$ for every C? Note that we do know that (as we stated in class) there are oracles C for which $P^C \neq NP^C$. If the above argument is correct, then we already have $P \neq NP$!!.