
ITCS:CCT09 : Computational Complexity Theory Apr 16, 2009

Problem Set #1

Topic: Lectures 1-8 Due on: Apr 26, 2009

Problem 1

(Padding Arguments)

This problem is to understand a simple technique of padding to prove translation results in com-
plexity theory. The idea is to consider for any language L,

Lpad =
{

x.#f(|x|)|x ∈ L
}

where choice of the function f(.) depends on the specific application in mind. We will do two
variants of this.

1. Show that EXP 6= NEXP ⇒ P 6= NP. Use a similar argument to show that P = L ⇒ EXP =
PSPACE.

2. Prove that P 6= DSPACE(n).

Problem 2

(Tape Reduction)

We saw tape reduction in the class, where we showed how a multi-tape Turing machine running in
time t(n) and space s(n) can be simulated by a 1-tape Turing machine in time O(t(n)2) and space
O(s(n)). We will show two improvements in this problem.

1. Prove that if we are simulating on a 2-tape Turing machine, this can be done in O(t(n) log t(n))
and space s(n).

2. If we allow Turing machine to be non-deterministic, then we can do tape reduction without
a time overhead. Show that a multi-tape non-deterministic Turing machine running in time
t(n) can be simulated by a 1-tape non-deterministic Turing machine in time O(t(n)).

Problem 3

(Sparse and Tally Sets)

1. A set A is called sparse if there is a polynomial p, such that |{x ∈ A : |x| = n}| ≤ p(n). A
set A is called tally set if A ⊆ {1}∗.
Prove that following are equivalent.

1-1

• Restricted to tally sets NP = P. That is all tally sets in NP are in P.

• Restricted to sparse sets NP = P. That is all sparse sets in NP are in P.

• EXP = NEXP.

Hence conclude that EXP 6= NEXP ⇒ P 6= NP (part(a) of the previous problem).

2. A set A is P-computably sparse if it is sparse but in addition, |{x ∈ A : |x| = n}| is polynomial
time computable. Show that A /∈ NP \ coNP.

Problem 4

(Alternation)

Given an ǫ-free context-free language L (as its grammer in Chomsky Normal form) the problem of
determining membership of a string in L can be done in P. Prove this by giving an ALOG parsing
algorithm.

Problem 5

(Skew Circuits)

A circuit (with all gates of fan-in 2) is said to be a skew circuit if all negation gates appear at
the input every ∧ gate has at least one input which is a variable or a negation gate. Circuit
Value Problem(CVP) asks; given a Boolean circuit and an input to the circuit, check if the circuit
evaluates to 1.

1. Show that CVP restricted to the case when the input is skew circuits (call this Skew-CVP)
is in NL.

2. Show that Reachability problem reduces to Skew-CVP via many-one logspace reductions,
to Skew-CVP. Hence conclude that Skew-CVP is complete for NL.

Problem 6

(Need not be turned in.)

This problem is aimed at testing your understanding of some of the definitions & ideas that we
discussed in the class. These need not necessarily be turned in. But you are welcome to write them
down too.

• In the proof of Immerman-Szlepsinyi Theorem, to compute Nk, the number of configurations
reachable in at most k steps from given configuration α (page 3-2, of notes for lecture 3) why
cant we use the following simple step instead of the inductive way of counting.

for each k, to compute Nk, we generate each configuration, β one by one, and for each one

non-deterministically verify whether β is reachable from α. If yes, increment the count.

1-2

• In lecture 4, we saw NP
P ⊆ NP. This was argued by saying that the non-deterministic oracle

machine can simulate the membership query to oracle language (which is in P) without
actually asking the query itself. But now, why wouldn’t the same strategy work for NP

NP ⊆
NP or PNP ⊆ NP?

• Suppose P = NP. That is as sets of subsets of Σ∗, P and NP are the same. Why does this
not imply that PC = NP

C for every C? Note that we do know that (as we stated in class)
there are oracles C for which PC 6= NP

C . If the above argument is correct, then we already
have P 6= NP !!.

1-3

