
ITCS:CCT09 : Computational Complexity Theory Mar 2, 2009

Lecture 1

Lecturer: Jayalal Sarma M.N. Scribe: Jayalal Sarma M.N.

1 Introduction to the course

This course aims to provide a (slightly advanced) exposure to the theory of computational
complexity. Computational complexity theory is the study of efficient computation and its
fundamental limitations. The theory helps us to state questions about this in a precise
way and provide qualified answers to them. To state some examples, how much resources
is required to solve concrete computational problems? Does the use of randomness or
parallelism make computations significantly faster? If not, can we prove the same with
respect to some explicit examples of problems.

However, it turns out that the hardest thing to prove about the models is that they cannot
solve a given problem within particular resource constraints. Such “lower bounds” are
currently obtainable only when the model is very specialized or the constraints are very
severe. Inherent limitations of the currently known techniques is also something that is
currently explored on the research frontier of complexity theory.

The course will give a quick introduction to the classical results and techniques in complexity
theory and thereafter cover (selected) newer results, techniques and areas. The choice of
topics is based on the view that the course should provide a platform for the current topics of
research in the area of complexity theory. We might possibly be skipping some of the basic
material in a standard complexity theory course. But we will mention and give pointers to
extra reading whenever necessary. In general, we hope to touch upon most of the topics
below roughly divided into 30 lectures in total. We may choose to deviate from this plan
as the course progresses.

• Classical structural complexity theory : Notion of a resource. Time and space. Hier-
archy theorems. Oracle Turing Machines, relativisation. Reductions and Complete-
ness. Alternation. Ladner’s Theorem. Polynomial Time Hierarchy. Karp-Lipton type
Collapse results. Counting Complexity. Permanent problem. Toda’s Theorem (5
lectures).

• Nonuniform models of computation. Boolean circuits. Uniformity. Circuit value
problem, connection to standard Turing model. The world inside P. Branching Pro-
grams, Word problems. Algebraic Characterisation of circuit classes NC

1 and ACC
0

(Barrington and Barrington-Therein). (4 lectures).

1-1



• Bounds in circuits : Asymptotic circuit size bounds. Shannon, Lypanov Theorems.
Elimination Method and the Polynomial method. The Switching Lemma. Parity
lower bound for constant-depth circuits. Proof that AC

0 with mod p gates can’t
compute mod q. The “fusion method” for proving circuit lower bounds. Application
of the “fusion method” to prove a lower bound on monotone circuit size required to
compute 3-clique. (4 lectures).

• Randomized Complexity theory : Use of randomness. Classes BPP and RP. Deranod-
mization goals. Error reduction using expanders. Explicit constructions of expanders.
Extractors, Hitting set generators, PRGs. Nisan-Wigderson generator. Conditional
derandomization results. Average case complexity: Levin’s theory. Hardness amplifi-
cation. (7 Lectures)

• Interactive Proofs (outline): IP = PSPACE, the PCP-Theorem(statement). Graph
Products and Reingold’s USTCON algorithm. Dinur’s proof of the PCP Theorem. (3
Lectures).

• Recap of counting. Arithmetic circuits. Straight line programs. Polynomial iden-
tity testing. Permanent vs Determinant Problem. Impagliazzo-Kabanets theorem.
Algebraic Complexity Theory (basics and directions). (4 lectures)

• Limitations of current techniques : relativization (recap), Natural proofs, Algebriza-
tion. Geometric Complexity Theory (intro, if we get to it). (3 lectures).

2 Basic Models of Computation

The first lecture is rather introductory and the notes are being written for the sake of
completeness. The material below are (better) explained in most of the standard textbooks.
In addition, we will fix up some notation and concepts which we will use throughout the
course.

Turing machines are simple, yet powerful model of computation and almost all reasonable,
general-purpose models are known to be equivalent to the Turing machines; in the sense that
they define the same set of computational functions. We will first talk about deterministic
Turing machines. Perhaps the best way is to view it as a generalisation of finite automata
which you have seen in the previous courses.

A deterministic Turing machine consists of three basic units: a finite control, a working
tape, a read-only input tape, a write-only output tape. The finite control is can be in finite
number of states. All the tapes extend to infinity on both ends, are divided into cells and
contained one taperead-head each. Each tape cell can store one of the finite tape-symbols
or alphabets. The control unit determines the next state of the Turing machine by looking
at the current state, and the symbol read on each of the tapes.

More formally, a Turing machine M is defined by the following information.

1-2



• A finite set Q of states.

• An initial state q0 ∈ Q.

• A subset F ⊂ Q of accepting states.

• A finite set Σ of input symbols.

• A finite set Γ containing Σ of tape symbols, including a special blank symbol B.

• A partial transition function δ : (Q − F ) × Γ → Q × Γ × {L, R}.

A configuration of a Turing machine is a record of all the information of the computation of
M at a specific moment, which includes the current state, the current symbols on the tapes.
Formally it is an element (q, x, y) of Q × Γ∗ × Γ∗ such that the leftmost symbol of x and
the rightmost symbol y are not B. This denotes that the current state is q and the current
nonblank symbols on the tape are the string xy and the tape head is scanning the leftmost
symbol of y. If the TM has more than one tape the same encoding could be repeated to
include each of them.

Fixing a way to index into the tape to represent the read-head for each tape, defines a
set of configurations of the TM. Now the notion of transition in the finite control can be
generalised to the set of configurations to define a next configuration function. We will not
do this formally. Computation of the TM M is the sequence of configurations α0, α1, . . . , αn

such that α0 is the initial configuration, and αi →1 αi+1 for 1 ≤ i ≤ n − 1. TM on input x
accepts if M halts on x and the halting state is in F .

It is also important to note that there set of all turing machines are countable because of
the standard encoding one can assign to each Turing machine. We call this enumeration as
the standard enumeration of the Turing machines. We will end this section of the review
from the previous courses by the the well known Church-Turing thesis states: A function
computable in any reasonable computational model is also computable by a Turing machine.

2.1 Notion of a Complexity Measure

To do complexity theory, which as we said is the study of the resources required to perform
various computations, we need the notion of a resourse more formalised. To start with
examples, the classic notions of resources (or the measure of complexity) arising in the
study of algorithms are time and space. However, it is clear that one needs to ask a more
fundamental question. What is resource, and when is a quantity associated with the TM
computation considered to be a resource.

For now, the resource is a function which depends on the size of the representation of the
input rather than the input itself.

It is clear that the measure should be a function of the input itself and the Turing machine
that we are looking at. Fixing a the standard enumeration of the Turing machine, measure

1-3



should be a 2-place function from N
2 → N. Intuitively, the function must have some basic

properties too : (1) something that a machine can test. Under the Church-Turing hypothesis
this would mean that there is a Turing machine which given the description of the Turing
machine can test whether the resource considered is indeed the give value. In addition the
resource function should be allowed to be a partial function which needs to take a value
whenever the machine halts on the particular input.

Manuel Blum, back in 1967, formalised the above intuition into two axioms known as the
Blum axioms to define a resource formally.

Definition 1 (Blum Axioms) Let φ(i, x) be a function N
2 → N. We say that φ is a

complexity measure if it satisfies the following two axioms.

• φ(i, x) is defined if and only the ith Turing machine Φi halts on input x.

• Given i, x and y, the relation φ(i, x) ≤ y should be computable where φ(i, x) ≤ y is
defined to be false if φ(i, x) is undefined.

Another thought process will lead us to the question of what should be the measure a
function of : should it be the input itself or should it just depend on the size of the
representation of the input. The former choice is driven by the fact that that given two
inputs of the same length the Turing machine might be able to solve one better(in terms
of the use of the resources) than the other. However, the latter choice is simpler since it
makes the function significantly easier to analyse and could be thought of as the worst case
resource bound for each input length. One could look at the average complexity for each
input length and we shall return to this issue later in the course. For now we will fix the
latter choice for the resource measure.

Definition 2 (Time & Space) Let n denote the size of the (representation of) the input
x denoted by |x|. Time measure t is defined to be

t(i, n) = max
x:|x|=n

{ the least ℓ such that Φi(x) halts in at most ℓ transitions.}

Similarly, we define space measure s to be:

s(i, n) = max
x:|x|=n

{ the least ℓ such that Φi(x) uses at most ℓ worktape cells.}

For simplicity, we will be considering functions that does not depend on i and hence we will
denote call the resources t(n) and s(n) respectively.

It is an exercise to verify that the above resources indeed satisfies the Blum axioms stated
above. As an example of a measure which is not a complexity measure:

v(i, x) = the least ℓ such that Φi(x) visits its accepting configuration at most ℓ times.

We claim that v(i, x) does not satisfy Blum axioms.

1-4



Definition 3 DTIME(t) is the class of all languages L that are accepted by determinstic
Turing machines M running in time t(n). For a class of functions F :

DTIME(F) =
⋃

t∈F

DTIME(t)

DSPACE(s) and DSPACE(F) are defined analgously.

3 Elementary Theorems about TMs

3.1 Tape reduction

Theorem 4 For any k-tape Turing machine M which runs in time t(s) and space s(n),
there is a 1-tape Turing machine computing the same function as M in time O(t(n)2) and
space O(s(n)). In fact, there is a 2-tape Turing machine computing the same function as
M in time O(t(n) log(t(n))) and space O(s(n))

Proof Let M be the k-tape Turing machine and let the tape alphabet be Γ. We will
describe a new machine M ′ which simulates M using only one tape in time (t(n)2). Fix
some arbitrary reference for numbering the cells in the two way infinite tapes of M . The
idea is to view the one tape cell as k “sub-cells” and each subcell having two parts. That
is, ith subcell (of the jth cell of the tape of M ′) has two parts; one storing the content of
the jth cell of the ith tape, and the other storing a bit (say the head-bit) indicating whether
the tape head of the ith tape is currently positioned at jth cell.

Simulation of M is done in a straightforward way. M ′ has only one tape-head (because it
has only one tape!). To simulate one step of M it needs to get the information about all
the k-tapes of M which are stored in one tape of M ′ as per the above encoding. Once it
scans and has all the information it makes the transition of M and writes up the new tape
contents of M ′ according to that of M via the above encoding. It is easy to see that this
simulation is indeed correct.

To analyse the time overhead for M ′. The overhead comes from the fact that while simulat-
ing each step of M , to get the information about heads of M , M ′ will have to linearly scan
over all the tape cells to searching for the 1s stored in the “head-bits”. These bits could be
atmost t(n) away from each other. Thus in the worst case M ′ needs to spend atmost t(n)
time for each step of M . Thus the bound O(t(n)2).

It is easy to notice that the space used by M ′ is within a factor of 2k from that of M . The
above proof can be modified a little to prove the stronger claim. We will skip that to the
excercises.

1-5



3.2 Space Bounded TMs and Halting

Theorem 5 Let M be a Turing machine with k-tapes, working over an alphabet of size σ,
with c states in the control unit, then :
If M runs for more than cσkℓℓk time without touching more than ℓ tape cells, then M does
not halt on input x. In this case, we say s(|x|) ≤ ℓ.

Proof As we noticed, the configuration of the Turing machine is completely specified by:
(1) contents of used part of the tapes (2) state of the finite control (3) position of the tape
heads. The next-move of the TM is completely determined by these. Hence, if the TM
reaches the same configuration twice, it has to follow exactly the same computation path
which it followed when it visited the configuration the previous time.

We give the proof by contradiction. Let us imagine that M does halt on input x in time
t > cσkℓℓk steps but does not touch more than ℓ tape-cells. Since M has touched only ℓ tape
cells, the number of possible configurations that the machine can be in is at most cσkℓℓk.
Since t > cσkℓℓk many computational steps, it has to visit the same configuration c again.
But that is a contradiction since computation which took M from c to itself configuration
will just repeat itself, and hence M runs into an infinite loop.

4 Basic Theorems on Space & Time

We saw previously that a k-tape Turing machines can be simulated by a 1-tape Turing
machine with a loss of constant factor overhead in the space used by the TM. Now we will
see that this is not really an overhead and that set of functions computable in space s(n) is
indeed same as those computable in space O(s(n), thus showing a robustness of the model.

Theorem 6 (Tape Compression Theorem) For any constant c > 0, DSPACE(s(n)) =
DSPACE(c.s(n)).

Proof The idea is again encoding the tape contents. Intuitively, saving on worktape
space should be easier. This time we will again divide the cells of M into groups of size
α. Let M be the machine be having q states, k tapes, and runs in space at most s(n) with
tape alphabet to be Γ. The machine M ′ works over and alphabet Γα and has qαk. M ′

works over a bigger alphabet and hence interpret each cell into a block of the tape cell in
M ’s tape. Each state has information about state of M and for each tape, the position of
the tape heads of M within each block to which the head of M ′ currently points to.

M ′ simulates M in the obvious way, namely that to simulate a move of M all that M ′ needs
to know is the state and the contents of M ′ tape. But now since the alphabet size if bigger,
M ′ head is coarser and points only to blocks and it needs positions of the tapeheads of
M within the blocks that its coarser tapehead is poiting to). It is exactly this information

1-6



that is stored in the state. Thus it saves on the number of tape cells used by a facter of
c although at the expense of increasing the alphabet size and the number of states of the
finite control. This proves the theorem.

We will see a similar bound for the time as the resource using a technique which is similar,
but not the same. Of course, in the case of time, sublinear time bounded TMs cant even
look at the whole input, and hence we will restrict our attention to time bounds which is
at least linear.

Theorem 7 (Linear Speed-up Theorem) If t(n) ≥ n, then for any constant c > 0,
DTIME(t(n)) = DTIME(c.t(n)).

Proof Let us say c < 1. Thus trivially DTIME(c.t(n)) ⊆ DTIME(t(n)). In that case,
reverse inclusion is trivial. Let M be a TM running in time t(n) with Γ as the tape
alphabet. The idea is to come up with an M ′ which uses again encoding of tape contents
to save on time. Divide the contents of the tape into blocks of size α each (imagine α to be
large value to be chosen later). Each block could be thought of as the elements of a larger
alphabet Γα.

For a block b, its left neighbour bℓ and the right neighbour br, denote by History(bℓ, b, br)
as the history of the computation of M when it enters the block b and until it leaves bℓ or
br. Notice that the size of History depends only on α (in fact it is at least α). But it
represents a small part of computation of M . The idea then is intuitive. Encode History

into fewer(say β, independent of α) transitions of M ′ by encoding them into the states of
M ′. Now choosing, α > β/c will show that for large enough n the time taken to be bounded
by c.t(n). We will skip the formal details of this calculation.

1-7


