
ITCS:CCT09 : Computational Complexity Theory Apr 22, 2009

Lecture 13

Lecturer: Jayalal Sarma M.N. Scribe: Xiaohui Bei

In the previous lecture, we proved the depth lower bounds for parity function using the
technique of random restrictions. In this lecture, we are going to give an alternate proof of
parity /∈ AC0 using a different technique called the polynomial method developed by Ronen
Smolensky. This technique, in fact, yields a stronger result as follows.

Theorem 1 (Razborov-Smolensky theorem) If a boolean circuit (which use ∧,∨,¬

and MOD3 gates) of size S and depth d computes parity, then S ≥ 2Ω(n1/2d).

Clearly the theorem implies parity is not in AC0. In order to prove this theorem, again we
want to come up with a property that is satisfied for all circuits of small size and constant
depth, which parity function does not have. Before giving this property, we first introduce
the concept of polynomial representation for circuits.

Informally speaking, we say a circuit function f : {0, 1}n → {0, 1} is computed by a poly-
nomial g : {0, 1}n → R if f(x) = g(x) for all x ∈ {0, 1}n. For example, consider polynomials
over F2, then the parity function can be represented as PARITY(x) = x1 +x2 + . . . xn, and
the degree of this polynomial is 1.

Now we consider the polynomials over field GF(3) = {−1, 0, 1}. Here first notice that
for every boolean function f : {0, 1}n → {0, 1} and for any input x = {0, 1}n, if we let
yi = 1 − 2xi for all 1 ≤ i ≤ n, and let function f̂ = 1 − 2f , then f̂(y) will be a function
mapping {−1, 1}n to {−1, 1}. It has the same functionality with function f if we map 0 to 1
and map 1 to -1. Also we have deg(f) = deg(f̂), where deg(f) is the degree of a polynomial
that represent f . Thus if we only care about the degree of a polynomial, we can always
assume the variables are in {−1, 1} instead of {0, 1}.

Then it’s easy to see that parity function is computed by f(x) =
∏n

x=1 xi. The degree of
f(x) is n. But for MOD3 gate, we know that MOD3(x) =

∑n
i=1 xi which has degree 1. The

difference here suggest us that there might be a seperation between parity function and
polynomials with low degrees.

However, there isn’t a obvious degree upperbound that you can prove directly for the circuits
which uses AND and OR gates. In order to tackle this general case, we will consider the
following “relaxed” representation of a function:

Definition 2 Let f(x) be a boolean function and w1, . . . , wm are m random bits. We say

13-1

that f is computed by a random polynomial p(x, w1, . . . , wm) if f(x) = p(x) with probability
no less than 1 − 1

nω(1) when w1, . . . , wm are chosen independently uniform from {0, 1}.

Definition 3 Let f(x) be a boolean function. We say that f is approximated by a poly-
nomial p(x) if there exist a subset S ⊆ {0, 1}n, such that |S| ≥ (1 − 1

nω(1)) · 2n and
∀x ∈ S, p(x) = f(x).

Having these concepts, the proof of parity /∈ AC0 will preceed in the following flow:

First assume by contradiction that parity ∈ AC0. We prove the following:

(1) Parity can be computed by a random polynomial of degree o(n).

(2) Parity can be approximated by a polynomial of degree o(n).

(3) Every boolean function can be approximated by a polynomial of degree o(n) + n
2 .

Then we will use a counting argument to show that (3) cannot happen. Thus we will reach
a contradiction.

Proof of (1): Let C be the AC0 circuit that computes parity. We will construct the
polynomial by induction on the height h of the circuit. When h = 0, each “gate” is just an
input variable xi, and we use degree 1 polynomial xi to represent it. Now suppose that for
all gates up to height h − 1, we have construct a polynomial to approximate it. And let g
be a gate at height h.

• If g is a NOT gate, and the input of this gate is approximated by a polynomial f , we
use f̂ = 1− f as the approximate polynomial for g. The degree of f̂ is the same as f
and we produce no new error here.

• If g is a MOD3 gate, and the inputs of this gate are approximated by f1, . . . , fk. We
use f̂ =

∑k
i=1 fi as the new polynomial for g. It’s easy to see that the degree remains

the same and we produce no new error.

• If g is an OR gate. We need to be more careful here. Suppose f1, . . . , fk are the
inputs. A very naive approach would be let f̂ = 1 −

∏k
i=1 (1 − fi). But the degree is

too high. So we need to introduce some randomness to make the degree lower, at the
expense of paying a small error ǫ.

Let Pj = (
∑k

i=1 αj
ifi)

2, here αj
1, α

j
2, . . . , α

j
k are all random bits. Using some calcula-

tions, one can get that

Pr[OR(f1, . . . , fk) 6= Pj(f1, . . . , fk)] ≤
1

3

13-2

Then let polynomial P = (1 −
∏t

j=1 (1 − Pj), and we can get Pr[OR 6= P] ≤ (1
3)t. If

we choose t to be (log s)c for some constant c. The error probability will be bounded
by (1/3)(log s)c

and the degree of this polynomial will be at most (log s)c times the
maximum degree of f1, . . . , fk.

• If g is an AND gate. We can use De Morgan’s law to convert it to the OR gate case.

Applying the above approach for each gate will give us an polynomial for the output gate
with degree no more than (log n)cd, where d is the depth of the entire circuit. Thus the
degree is o(n) and the probability that this polynomial produce the right answer will be no
less than 1 − S · (1/3)(log n)c

≥ 1 − 1
nω(1) .

Proof of (1) → (2): In order to prove this, it is sufficient to show that for any 0 ≤ p ≤ 1,
given a randomized polynomial f that represent the circuit with correct probability no less
than p, one can construct a deterministic polynomial g that agree with this circuit with no
less than p · 2n inputs.

Suppose that there are m random variables w1, . . . , wm in f . So there are totally 2m possible
assignments for these random variables. And there are 2n assignments for the input variables
x1, . . . , xn. Consider the following table in which each row represents one assignment for
random variables and each column represents one assignment fot the input variables.

Assignment for xi

σ1 σ2 σ3 · · · σ2n

a1

a2

a3
...

a2m

For an assignment for random variables aj ∈ {0, 1}m and an assignment for input variables
σi ∈ {0, 1}n, we place a 1 in the cell (aj , σi) if f(σi, aj) is equals to the result of the circuit
with input σi. By assumption we know that each column has no less than p fraction of 1’s.
Thus the total fraction of 1’s within the entire table is no less than p. It follows that there
must be some row that has a 1 in at least p fraction of its cells. Let this row be r and
g = f(x1, . . . , xk, r) be the polynomial corresponding to this row. Then g must agree with
the circuit with no less than p · 2n inputs.

Proof of (2) → (3): Here we will prove the following lemma:

Lemma 4 If parity(x1, . . . , xn) can be computed by a polynomial p(x1, . . . , xn) of degree d,
then every boolean function f : {−1, 1}n → {−1, 1} can be represented by a polynomial of
degree n

2 + d.

13-3

Proof We write a DNF for function f by looking at its truth table. And we replace each
variable xi by (1−xi). This will give us a polynomial p of degree at most n that represents
f . We can write this polynomial in form of a sum of monomials p =

∑

I⊆[n] CI(
∏

i∈I xi).

Notice that xi ∈ {−1, 1}, thus x2
i = 1. Now consider any of its monomial terms

∏

i∈I xi

with degree |I| > n/2. We can rewrite it as

∏

i∈I

xi =
∏

i∈I

xi

∏

i∈I

x2
i =

n
∏

i=1

xi

∏

i∈I

xi

which will have the same value as parity(x1, . . . , xn)
∏

i∈I xi. Thus every monomial in this
polynomial has degree at most n

2 + d.

Having this lemma, it’s easy to see that if parity(x1, . . . , xn) can be approximated by a
polynomial of degree d, then every boolean function f can be approximated by a polynomial
of degree n

2 + d, thus (3) holds. �

Now we will use a counting argument to show that (3) cannot happen. First consider the
number of polynomials of degree at most n/2 + o(n), we know that

#polynomials ≤ 3
P

n
2 +o(n)

d=1 (n
d) = 3o(2n)

And these polynomials can differ from the desired function p on at most k = 2n

nω(1) inputs.
Thus for one polynomial, it can approximate at most

k
∑

i=1

(

2n

i

)

· 2i ≤
k

∑

i=1

(2n)i

i!
· 2i ≤ k · 2(n+1)k = 2o(2n)

So the total number of functions that these polynomials can approximate is no more than
3o(2n) · 2o(2n) = 2o(2n). But the total number of boolean functions is 22n

. Which gives us a
contradiction. Thus the theorem is proved.

13-4

