
ITCS:CCT09 : Computational Complexity Theory Apr 27, 2009

Lecture 14

Lecturer: Jayalal Sarma M.N. Scribe: Jing He

In previous lectures we saw different approaches for proving PARITY 6∈ AC0. Today
we will introduce another type of circuit lower bounds, namely, lower bound for monotone
circuits. In 1985, Razborov proved that the CLIQUE problem does not have polynomial-
sized monotone circuits. Before this, we familiarize ourselves with some ideas related to
montonicity itself. We need some definitions and notations first.

1 Monotone Circuits

Definition 1 (Monotone circuits) A Boolean circuit (over {∧,∨,¬}) is called mono-
tone if it does not contain any NOT gates.

Definition 2 (Monotone Functions) A function f : {0, 1}n → {0, 1} is monotone if and
only if (∀x ≤ y)f(x) ≤ f(y), where the ”≤” is performed bitwisely.

Proposition 3 A function f : {0, 1}n → {0, 1} is monotone if and only if it can be com-
puted by a monotone circuit.

Proof Monotone functions are closed under composition. That is if for f and g are
monotone, then f(g(u1), g(u2), . . . g(uk) is montone too. Since ∧ and ∨ are montone it
follows that monotone circuits can compute only monotone functions.

To see the other direction : first we define a (partially) monotone circuit for the comparator
function. That is given, x, α ∈ {0, 1}n, the circuit checks if x ≥ α. If we fix α, this function
is monotone in x. It is easy to construct a monotone circuit for it too.

Now let f be a montone function. Consider the Boolean Lattice with 1n as the maximum
element and 0n as the minimum. Any path from 0n to 1n has a point where the function f
turns from 0 to 1. There are only p = 2n vertex disjoint paths, and this defines a boundary
α1 . . . αp between 1-region and 0-region. To decide the function, the circuit has to essentially
check if the given input x is greater than any of these αi’s. Now the montone circuit will
have an ∨ gate on top with exponential fan-in, followed by comparator circuits. This gives
the proof. A point to note is that the size of the circuit that we described is not polynomial
in the input.

14-1

Now we formalize the problem we will address in this lecture. Remember that an undirected
graph G with n vertices can be encoded with a binary string of length

(

n
2

)

, each bit of which
indicates whether the corresponding edge exists. We use this encoding to define the problem
CLIQUEk,n. Let G(V, E) be a graph on n vertices. Clearly, G can be represented by a bit
string x1, x2, . . . , x(n

2
) where xi is 1 if the ith (of the

(

n
2

)

possible edges).

Definition 4

CLIQUEk,n =
{

x = (x1, x2, . . . , x(n

2
)) | ∃ a clique of size k in the graph defined by x

}

A first observation is that this function is monotone. Indeed, if we add an additional edge
to a graph which already has a clique of size k, that clique does not disappear !. Now, by
the above argument about monotone circuits for monotone functions, there is monotone

circuit of size 2(n

2
) computing this function. Indeed, a very similar arguement gives slightly

better upper bound.

Proposition 5 CLIQUEk,n can be computed by a monotone circuit of size O(nk).

Proof Trivial, for all subsets of size k (there are
(

n
k

)

= O(nk) of them), and for each
subset cheque whether the edge is present or not. This can be done by a monotone circuit.
The size of the entire circuit is still O(nk). Notice that when k = O(n) this gives an nn

bound which is not polynomial sized.

Now we will consider lower bounds for the problem CLIQUEk,n. We will see that the
above bound is tight upto a

√
k factor in the exponent.

2 Lower Bounds for CLIQUE

We will show the following theorem due to Razborov (1985).

Theorem 6 Any monotone circuit computing CLIQUEk,n must have size nΩ(
√

k).

Before proving the above theorem we first give an outline. First, we want to transform
any circuit C computing CLIQUEk,n into C ′ which makes a lot of errors when computing
the same problem. Then we prove that the error made by any single gate of C ′ is kind of
”small”. So by a union bound, we can get a lower bound for the size of C ′, which also gives
a lower bound for the size of C if they differ not too much.

To put our idea explicitly we need some notations.

14-2

Definition 7 An encoded graph is called a positive input of CLIQUEk,n if it is a minimal
graph containing a clique of size k. Let PIn,k denote the collection of all such graphs.

Definition 8 An encoded graph is called a negative input of CLIQUEk,n if it is a maximal
graph which does not contain a clique of size k. Let NIn,k denote the collection of all such
graphs.

It is clear that |PIn,k| =
(

n
k

)

and |NIn,k| = (k − 1)n.

Definition 9 A clique indicator IX is a boolean function on graphs of n vertices which
outputs 1 if and only if the induced subgraph of the input graph on vertex set X is a clique.
A (m, l)-approximator is a boolean function of form

∨r
i=1 Ixi

where |Xi| ≤ l and r ≤ m.

Suppose we have a monotone circuit C computing CLIQUEk,n. We want to transform it
into a (m, l)-approximator C ′ for some fixed m and l. We do the transformation inductively.
For a single variable xi,j , we change it into a clique indicator I{i,j}. For a formula F1 ∨ F2,
suppose A =

∨r
i=1 IXi

and B =
∨s

j=1 Iyj
are the corresponding (m, l)-approximators of F1

and F2, respectively. We know that T = A ∨ B = (
∨r

i=1 IXi
) ∨ (

∨s
j=1 Iyj

), but this is a
(2m, l)-approximator. To compress it we need the following lemma from Erdos and Rado:

First, some terminology. A sunflower is a collection of p sets {Z1, . . . , Zp} such that ∀1 ≤
i ≤ j ≤ p, Zi ∩ Zj = Z, where Z is called the center of the sunflower. We also call it a
p-petal sunflower. The choice of these names are more-or-less self explanatory.

Lemma 10 (Sunflower Lemma) Suppose S = {S1, . . . , Sk} is a collection of sets for
which (∀1 ≤ i ≤ k)|Si| ≤ l and k ≥ (p − 1)l · l!, then there exists a p-petal sunflower in S.

We will include a proof of the Lemma later in this draft. First we see the application. Now
we choose m = (p − 1)l · l!, where the values of p and l will be decided later. If r + s < m,
T is already a (m, l)-approximator. If r + s ≥ m, from the sunflower lemma we know that
among S = {X1, . . . , Xr} ∪ {Y1, . . . , Ys} there exists a p-petal sunflower {Z1, . . . , Zp} with
center Z. We use IZ to replace

∨p
i=1 IZp

, and repeat the above process until T becomes
a (m, l)-approximator T ′. Notice that T ′ may disagree with T = A ∨ B on some negative
inputs since we ”reduce” the size of some clique indicators. But on all positive inputs they
agree with each other.

14-3

We are left with the case where T = A ∧ B. We have

A ∧ B = (
r
∨

i=1

IXi
) ∧ (

s
∨

j=1

IYj
)

=
r
∨

i=1

s
∨

j=1

(IXi
∧ IYj

)

≈
r
∨

i=1

s
∨

j=1

IXi∪Yj

≈
∨

1≤i≤r,1≤j≤s,|Xi∪Yj |≤l

IXi∪Yj

= T ′

Due to the two ”≈”, T ′ may disagree with T on some negative inputs. Now T ′ is a (m2, l)-
approximator and we can apply the sunflower lemma again to transform it into a (m, l)-
approximator, while losing some positive inputs.

By induction, we can finally get a (m, l)-approximator C ′ from the original circuit C. We
use size(C) to denote the size of a circuit C.

Claim 11 For the C ′ described above, either C ′ outputs 0 on all positive inputs, or C ′

outputs 1 on (1 −
(

l
2

)

/(k − 1))(k − 1)n negative inputs.

Claim 12 C ′ disagree with C on at most size(C) · m2
(

n−l−1
k−l−1

)

positive inputs.

Claim 13 C ′ disagree with C on at most size(C) · m2
(

(

l
2

)

/(k − 1)
)p

(k − 1)n negative

inputs.

If they are all correct, we have

size(C) ≥
(

n
k

)

m2
(

n−l−1
k−l−1

)

or

size(C) ≥

(

1 − (l

2
)

k−1

)

(k − 1)n

m2

(

(l

2
)

k−1

)p

(k − 1)n

Choose l = ⌊
√

k⌋, p = ⌈
√

k log n⌉ and m = (p − 1)l · l!, then after some calculations we get

size(C) ≥ nΩ(
√

k).

14-4

Now we prove the three claims.

Proof of Claim 10 If C ′ is identical to 0 then it outputs 0 on all positive inputs. If not,
C ′ must contain at least one clique indicator, say, IX1

. Then we have

Probx∈NIn,k
[C ′(x) = 1]

≥ Probx∈NIn,k
[IX1

(x) = 1]

= 1 − Probx∈NIn,k
[IX1

(x) = 0]

≥ 1 −
(

l
2

)

k − 1

So the claim follows. �

Proof of Claim 11 Remember that C ′ disagrees with C on negative inputs only because
of the transformation for the form A ∧ B, where IXi

∧ IYj
is replaced with IXi∪Yj

. In one

transformation there are at most m2 such terms, each of which makes at most
(

n−l−1
k−l−1

)

errors on negative inputs. So the total error is upper-bounded by size(C) · m2
(

n−l−1
k−l−1

)

. �

Proof of Claim 12 When we deal with the form A ∨ B, we replace
∨p

i=1 IZi
by their

center Z. So the probability of one such replacement making errors on negative inputs is

Probx∈NIn,k
[IZ(x) = 1 ∧ (∀1 ≤ i ≤ p)IZi

(x) = 0]

≤ Probx∈NIn,k
[

p
∧

i=1

IZi
(x) = 0 | IZ(x) = 1]

=

p
∏

i=1

Probx∈NIn,k
[IZi

(x) = 0 | IZ(x) = 1]

≤
p
∏

i=1

Probx∈NIn,k
[IZi

(x) = 0]

≤
(

(

l
2

)

k − 1

)p

and at most m2 such replacements suffices. So at each ∨-gate at most m2

(

(l

2
)

k−1

)p

(k − 1)n

errors are made by C ′.

When dealing with the form A ∧ B, we can apply a similar argument which also yields an

upper-bound of m2

(

(l

2
)

k−1

)p

(k − 1)n for errors on negative inputs. So the total errors on

14-5

negative inputs made by C ′ is at most size(C) · m2

(

(l

2
)

k−1

)p

(k − 1)n. �

Proof of Sunflower Lemma

For completeness we include the proof of Sunflower Lemma which is crucial in the above
construction. We restate the lemma first.

Lemma 14 (Sunflower Lemma) Suppose S = {S1, . . . , Sk} is a collection of subsets of
[n] such that (∀1 ≤ i ≤ k)|Si| ≤ ℓ and k ≥ (p− 1)ℓ · ℓ!, then there exists a p-petal sunflower
in S. That is there exists Z1, . . . Zp ⊆ S such that Zi ∩ Zj = Z for all i and j.

Proof The proof is by induction on ℓ. The base case ℓ = 1 is trivial since we can
define Z = φ, and have disjoint p-petals. As for the induction, pick the maximum number
of disjoint subsets from S, say Z1, Z2, . . . Zr. If r ≥ p then we are done, since in this
case Z could just be chosen to be the empty set. If r < p, define, U =

⋃r
i=1 Zi. By

maximality, every set that was not chosen from S must intersect Z and the size of Z is at
most rℓ ≤ (p − 1)ℓ. Hence, by an averaging argument, there exists a x ∈ Z such that it is
contained in at least (p − 1)ℓ.(ℓ − 1)! sets of S. Consider this collection of sets and remove
x from them. The size of each set is now at most (ℓ − 1). By induction, there is a p-petal
sunflower in this set system. Adding the element x back to each of these sets (that is to
their intersection Z) gives you a p-petal sunflower for the original system S. This completes
the proof.

14-6

