ITCS:CCTO09 : Computational Complexity Theory Apr 27, 2009

Lecture 14
Lecturer: Jayalal Sarma M.N. Scribe: Jing He

In previous lectures we saw different approaches for proving PARITY ¢ ACC®. Today
we will introduce another type of circuit lower bounds, namely, lower bound for monotone
circuits. In 1985, Razborov proved that the CLIQUE problem does not have polynomial-
sized monotone circuits. Before this, we familiarize ourselves with some ideas related to
montonicity itself. We need some definitions and notations first.

1 Monotone Circuits

Definition 1 (Monotone circuits) A Boolean circuit (over {A,V,—}) is called mono-
tone if it does not contain any NOT gates.

Definition 2 (Monotone Functions) A function f : {0,1}" — {0, 1} is monotone if and
only if Yz <y)f(x) < f(y), where the "<” is performed bitwisely.

Proposition 3 A function f: {0,1}" — {0,1} is monotone if and only if it can be com-
puted by a monotone circuit.

Proof Monotone functions are closed under composition. That is if for f and g are
monotone, then f(g(ui),g(u2),...g(ug) is montone too. Since A and V are montone it
follows that monotone circuits can compute only monotone functions.

To see the other direction : first we define a (partially) monotone circuit for the comparator
function. That is given, z,« € {0,1}", the circuit checks if z > «. If we fix a, this function
is monotone in z. It is easy to construct a monotone circuit for it too.

Now let f be a montone function. Consider the Boolean Lattice with 1" as the maximum
element and 0™ as the minimum. Any path from 0™ to 1" has a point where the function f
turns from 0 to 1. There are only p = 2" vertex disjoint paths, and this defines a boundary
a1 ...y between 1-region and 0-region. To decide the function, the circuit has to essentially
check if the given input x is greater than any of these «;’s. Now the montone circuit will
have an V gate on top with exponential fan-in, followed by comparator circuits. This gives
the proof. A point to note is that the size of the circuit that we described is not polynomial
in the input. W

14-1

Now we formalize the problem we will address in this lecture. Remember that an undirected
graph G with n vertices can be encoded with a binary string of length (g), each bit of which
indicates whether the corresponding edge exists. We use this encoding to define the problem
CLIQUEy . Let G(V, E) be a graph on n vertices. Clearly, G can be represented by a bit
string x1, xa,. .. T () where x; is 1 if the i*" (of the (72‘) possible edges).

Definition 4

CLIQUEy,, = {:L‘ = (z1,29,... T)) | 3 a clique of size k in the graph defined by x}

n
2

A first observation is that this function is monotone. Indeed, if we add an additional edge
to a graph which already has a clique of size k, that clique does not disappear !. Now, by
the above argument about monotone circuits for monotone functions, there is monotone

circuit of size 2(3) computing this function. Indeed, a very similar arguement gives slightly
better upper bound.

Proposition 5 CLIQUEy ,, can be computed by a monotone circuit of size O(nk).

Proof Trivial, for all subsets of size k (there are (}) = O(n*) of them), and for each
subset cheque whether the edge is present or not. This can be done by a monotone circuit.
The size of the entire circuit is still O(n¥). Notice that when k = O(n) this gives an n”
bound which is not polynomial sized. B

Now we will consider lower bounds for the problem CLIQUEy,. We will see that the
above bound is tight upto a vk factor in the exponent.

2 Lower Bounds for CLIQUE

We will show the following theorem due to Razborov (1985).

Theorem 6 Any monotone circuit computing CLIQUEy ,, must have size nQVk),

Before proving the above theorem we first give an outline. First, we want to transform
any circuit C' computing CLIQUEY ,, into C” which makes a lot of errors when computing
the same problem. Then we prove that the error made by any single gate of C’ is kind of
”small”. So by a union bound, we can get a lower bound for the size of C’, which also gives
a lower bound for the size of C if they differ not too much.

To put our idea explicitly we need some notations.

14-2

Definition 7 An encoded graph is called a positive input of CLIQUEy y, if it is a minimal
graph containing a clique of size k. Let Pl y denote the collection of all such graphs.

Definition 8 An encoded graph is called a negative input of CLIQUEy j, if it is a mazimal
graph which does not contain a clique of size k. Let N1y i denote the collection of all such
graphs.

It is clear that [PI, x| = (}) and NIy k| = (k — 1)™

Definition 9 A clique indicator Ix is a boolean function on graphs of n wvertices which
outputs 1 if and only if the induced subgraph of the input graph on vertex set X is a clique.
A (m,1)-approximator is a boolean function of form \/i_, I, where |X;| <1 and r < m.

Suppose we have a monotone circuit C' computing CLIQUEy ,,. We want to transform it
into a (m, l)-approximator C’ for some fixed m and [. We do the transformation inductively.
For a single variable z; j, we change it into a clique indicator Iy; ;3. For a formula Fy V Fy,
suppose A = \/_, Ix, and B = \/;:1 I, are the corresponding (m, l)-approximators of I
and Fh, respectively. We know that T'= AV B = (\/i_; Ix,) V (Vi_; Iy;), but this is a
(2m, [)-approximator. To compress it we need the following lemma from Erdos and Rado:

First, some terminology. A sunflower is a collection of p sets {Z,...,Zy} such that V1 <
it < j<pZiNZj = Z, where Z is called the center of the sunflower. We also call it a
p-petal sunflower. The choice of these names are more-or-less self explanatory.

Lemma 10 (Sunflower Lemma) Suppose S = {Si,...,Sk} is a collection of sets for
which (V1 <i < k)|S;| <1 and k > (p—1)' -1\, then there exists a p-petal sunflower in S.

We will include a proof of the Lemma later in this draft. First we see the application. Now
we choose m = (p — 1)! - 1!, where the values of p and [will be decided later. If r + s < m,
T is already a (m,[)-approximator. If r + s > m, from the sunflower lemma we know that
among S = {Xy,..., X, } U{Y1,..., Y} there exists a p-petal sunflower {Z;, ..., Z,} with
center Z. We use Iz to replace \/?_ T 7,, and repeat the above process until 7" becomes
a (m,l)-approximator T”. Notice that 7" may disagree with T'= A V B on some negative
inputs since we "reduce” the size of some clique indicators. But on all positive inputs they
agree with each other.

14-3

We are left with the case where T'= A A B. We have

T S

anB =N\ 1x) A\ Iy,)
i=1 j=1

Il
<=
<=
5

>

s
I
—
<.
Il
_

Q
<=
<=
=
C
=

@
Il
—
<.
Il
—

%

\/ Ix,uy;

1<i<r,1<5<s,| X;UY;| <l
_ T/

Due to the two ”~”, 7" may disagree with T’ on some negative inputs. Now 7" is a (m?,)-
approximator and we can apply the sunflower lemma again to transform it into a (m,1)-
approximator, while losing some positive inputs.

By induction, we can finally get a (m,!)-approximator C’ from the original circuit C'. We
use size(C') to denote the size of a circuit C.

Claim 11 For the C' described above, either C' outputs 0 on all positive inputs, or C’
outputs 1 on (1 — (é)/(k‘ —1))(k — 1)™ negative inputs.

Claim 12 (' disagree with C on at most size(C) - m? (Z:fj) positive inputs.

Claim 13 ' disagree with C on at most size(C) - m? ((é)/(k‘ - 1))p (k — 1)"™ negative

mputs.

If they are all correct, we have

or

Choose | = |Vk], p= [Vklogn] and m = (p — 1) - 1!, then after some calculations we get
size(C) > nVk),

14-4

Now we prove the three claims.

Proof of Claim 10 If (' is identical to 0 then it outputs 0 on all positive inputs. If not,
C’ must contain at least one clique indicator, say, Iy,. Then we have

ProbxeNIn,k [Cl(m) = 1]
> ProbxeNln’k Ux, (x) = 1]
= 1 — PI‘ObeNIn’k [IXl (‘r) = 0]
()
2

k—1

v

1-—

So the claim follows. l

Proof of Claim 11 Remember that C’ disagrees with C' on negative inputs only because

of the transformation for the form A A B, where Ix; A Iy, is replaced with Ix,yy;. In one

transformation there are at most m? such terms, each of which makes at most (”_l_l)

k—1—1
errors on negative inputs. So the total error is upper-bounded by size(C) - m? (Z:fj) |

Proof of Claim 12 When we deal with the form AV B, we replace \/%_; I, by their
center Z. So the probability of one such replacement making errors on negative inputs is

Probyent, [[z(z) = 1A (V1 <i < p)lz (v) = 0]

p
< Probeent,, [\ Iz (z) =0 | Iz(z) = 1]
=1
p
= HPrOb:pENIn’k [IZz (:E) =0 | IZ(J:) = 1]
=1
p
< [][Probaent,, Iz (z) = 0]
=1

()

1 p
and at most m? such replacements suffices. So at each V-gate at most m? (k(i)l> (k—1)"

errors are made by C’.
When dealing with the form A A B, we can apply a similar argument which also yields an

1 p
upper-bound of m? <k(i)1> (k — 1)™ for errors on negative inputs. So the total errors on

14-5

i p
negative inputs made by C’ is at most size(C) - m? <(2)> (k—1)™ 1

Proof of Sunflower Lemma

For completeness we include the proof of Sunflower Lemma which is crucial in the above
construction. We restate the lemma first.

Lemma 14 (Sunflower Lemma) Suppose S = {S1,..., Sk} is a collection of subsets of
[n] such that (V1 <i < k)|S;| <€ and k > (p—1)"- !, then there exists a p-petal sunflower
in S. That is there exists Z1,...2Z, C S such that Z; N Z; = Z for all i and j.

Proof The proof is by induction on ¢. The base case ¢ = 1 is trivial since we can
define Z = ¢, and have disjoint p-petals. As for the induction, pick the maximum number
of disjoint subsets from S, say Zi,Zs,...Z,.. If r > p then we are done, since in this
case Z could just be chosen to be the empty set. If r < p, define, U = (J;_, Z;. By
maximality, every set that was not chosen from S must intersect Z and the size of Z is at
most ¢ < (p — 1)¢. Hence, by an averaging argument, there exists a x € Z such that it is
contained in at least (p — 1)%.(¢ — 1)! sets of S. Consider this collection of sets and remove
x from them. The size of each set is now at most (¢ — 1). By induction, there is a p-petal
sunflower in this set system. Adding the element = back to each of these sets (that is to
their intersection Z) gives you a p-petal sunflower for the original system S. This completes
the proof. B

14-6

