
ITCS:CCT09 : Computational Complexity Theory Apr 29, 2009

Lecture 15

Lecturer: Jayalal Sarma M.N. Scribe: Yu Wu

In the previous lecture we studied monotone boolean functions and monotone circuit. In
this course we will discuss circuits with negation gates. We restrict circuits to have size
of poly(n), and restrict the number of negation gates to be M . Remember the following
theorem:

Theorem 1 (Razborov) If M=0, then circuit of polynomial size cannot compute
CLIQUEk,n

Generally, we want to ask the following three questions:

1. What is the minimum number of negations needed to compute a function f? (We
denote this as M(f))

2. If circuit C computes f using k negations, can we reduce k to (k-1) without increasing
the size much?

3. Suppose that f is a monotone function (that means, there exist a monotone circuit
which computing f), what is the value R(f), such that any circuit with at most R(f)
negations requires super poly-size?

The answer of the first question is from Markov. We present two important theorems
following:

Theorem 2 (Markov, 1957) Any function f : {0, 1}n → {0, 1} can be computed by a
circuit that uses at most M = O(log n) negations.

Theorem 3 (Fiser, 1974) Any function f, f ∈ P/poly can be computed by a polynomial
size circuit that uses at most M = O(log n) negations.

Proof Take a circuit C, we would be able to push down the negations of the inputs. Thus
we could suppose C has size of 2|C| and n negations.We use the following notations:

Definition 4 (chain) A chain in the binary n-cube is an increasing sequence y1 < y2 <
... < yk of vectors in {0, 1}n.

15-1

Definition 5 (decrease) Given a chain Y = y1 < y2 < ... < yk, we define the decrease
of y on Y to be dY (f) = the number of i, s.t f(yi) > f(yi+1), and the decrease d(f) to be
d(f) = maxY dY (f).

Actually we can prove that M(f) = ⌈log d(f) + 1⌉. We first prove the lower bound:

M ≥ ⌈log d(f) + 1⌉

Choose a chain Y = y1 < y2 < ... < yk such that dY (f) = d(f), let I(f) = {i|f(yi) >
f(yi+1)}(hence |I(f)| = d(f)). Suppose C computes f using r negation gates. We need to
prove r ≥ [log |I(f)| + 1]. The idea is to prove by (kind of a) contradiction. Let’s look at
the first negation of C. Let h be the function computed at the input to this negation gate,
and g = ¬h. By definition, h is monotone, and dY (g) ≤ 1.

1. dY (g) = 0. This implies that g = 0 or g = 1. In either case, we can eliminate the not
gate without changing the decrease.

2. dY (g) = 1. Let us devise I into two sets based on g:

I0 = {g(yi) = 0|i ∈ I}

I1 = {g(yi) = 1|i ∈ I}

One of I0, I1 must has size ≥ |I|
2 . if |I1| ≥

|I|
2 then we replace the negation gate

by constant 1, otherwise by constant 0. Computing f1 using the new circuit (with
negation gates one less than C). Note f1 has the property that

d(f1) ≥ dY (f1) ≥
d(f)

2
(1)

Now we repeat the process, and get a sequence of functions: f, f1, ..., f r. f r is a function
with 0 negation gate. Thus it is a monotone function. Suppose r < ⌈log d(f)+1⌉, following
from (), we have d(f r) ≥ 1, which contradicts that f r is a monotone function. Thus
r ≥ ⌈log |I(f)| + 1⌉.

Now let’s prove the upper bound:

M(f) ≤ ⌈log d(f) + 1⌉ (2)

We prove this by introduction on l(f) = ⌈log d(f) + 1⌉.
Basis: If l = 0, d(f) = 0, f is monotone. The statement holds.
Suppose that the statement holds for l(f) ≤ k, k > 0. We define a set S, S = {x ∈ {0, 1}n|
any chain starting in x, has dY (f) ≤ 2l(f)−1}.

15-2

From this we could conclude that ∀y 6∈ S, any chain that ends in y doesn’t has decrease
dY (f) ≤ 2l(f)−1. (Otherwise there exists a chain that has decrease greater that d(f), which
contradicts the definition of d(f).)

Now we introduce two functions f0, f1 as following:

f0(x) =

{

f(x) x ∈ S

0 x 6∈ S

f1(x) =

{

1 x ∈ S

f(x) x 6∈ S

By definition, we could easily conclude the following:

d(f0) ≤ 2l(f)−1 (3)

d(f1) ≤ 2l(f)−1 (4)

and
l(fi) ≤ log 2l(f)−1 < k, i = 0, 1 (5)

By the introduction hypothesis, neg(fi) ≤ M(fi)l(f) − 1 for both i = 0, 1. It is therefore
remains to show that

neg(f) ≤ max{neg(f0), neg(f1)} + 1 (6)

We introduce a connective function µ(a, b) : {0, 1}n → {0, 1}, which satisfies:

µ(0, 1, x) = f1(x)

µ(1, 0, x) = f0(x)

µ(a,¬a, x) = fa(x)

Claim 6 There exists a connector µ for f0, f1, neg(µ) ≤ max{neg(f0), neg(f1)}.

We prove this by introduction on r = max{neg(f0), neg(f1)}:
Basis: r = 0. f0, f1 are monotone functions. µ(a, b, x) = (a ∧ f1) ∨ (b ∧ f0).
Introduction step: suppose circuit Ci(x) compute fi using r negation gates. Let’s look at
the first negation gate of each Ci. Replace the gate by a new variable z we obtain a circuit
C ′

i(z, x) on (n+1) variables with one negation gate fewer. Let f ′
i(z, x) be the function

computed by this circuit, and let hi(x) be the monotone function computed just before the
first negation gate in Ci. We have: fi(x) = f ′

i(¬hi(x), x).

By the introduction hypotheses, there is a boolean function µ′(a, b, z, x) such that ¬(µ′) ≤
max{neg(f ′

0), neg(f ′
1)} ≤ r − 1 and for i=0,1,

µ′(i,¬i, z, x) = f ′
i(z, x) (7)

15-3

By replacing the variable z by the following function

Z(a, b, x) = ¬((a ∧ h0(x)) ∨ (b ∧ h1(x))) (8)

in (7), we can get a connector µ(a, b, x) of f0 and f1. Since h0 and h1 are monotone
functions, we have ¬(µ) ≤ 1 + neg(µ′) ≤ r, as desired.

Let s(x) be the characteristic function of S. Note that s(x) is monotone. Let µ be a
connector of f0, f1. Then f(x) = µ(s(x),¬s(x), x), and by Claim, neg(f) ≤ neg(µ) + 1 ≤
max{neg(f0), neg(f1)} + 1.

Now let’s back to Fisher’s theorem. The idea of proving this theorem is designing a black
box called ’NEGATOR’ which takes x1, ..., xn as its input and outputs ¬x1, ...,¬xn. We
will use threshold function and Fact() to complete the proof.

Remember the threshold function:

Thn
k(x1, ..., xn) =

1 if

n
∑

i=1

xi ≥ h

0 otherwise

(9)

Fact 7 Thn
k has monotone circuit of O(n log n) size.

Proof We define NEG(x1, ..., xn) = (¬x1, ...,¬xn). We understand ¬xi as a function of
x: fi(x) = ¬xi.

¬xi(a) =

{

0 if ai = 1

1 if ai = 0
(10)

If we let Thn
k,i(x) = Thn−1

k (x1, ..., xi−1, xi+1, ..., xn), we have the following expression:

fi(x) = ∨n
k=0(¬Thn

k(x) ∧ Thn
k,i(x)) (11)

It remains to compute the function ¬T (x) := (¬Tn
1 (x), ...,¬Tn

n (x)). Observe that the bits
of any input y ∈ {0, 1}n are sorted in decreasing order y1 ≥ ... ≥ yn.

Definition 8 Asort = {y|y ∈ {0, 1}n, y1 ≥ ... ≥ yn}

Claim 9 There exist a circuit Ĉn of size O(n) which has at most r = ⌈log(n+1)⌉ negation
gates such that Ĉn = neg(y) for all inputs y ∈ Asort.

15-4

Again, we prove this by introduction on r.
Basis: r = 1, Ĉ1 contains one negation and can compute ¬y1.
Introduction step: suppose the claim is true for r ≤ ⌈log(n + 1)⌉ − 1. Take the middle bit
ym(m = n/2), if ym = 1, we only need to compute ˆCn/2(y1, ..., ym−1), and the next (n+1-m)

bits of Ĉn are 1. Otherwise the first m bits are 0, and the next bits are ˆCn/2(ym+1, ..., yn).

By the introduction hypnosis, we thus compute Ĉn with r negations.

Let C2(y) be a circuit of size O(n) with ⌈log(n + 1)⌉ negations which computes neg(y), y ∈
Asort. The resulting circuit C(x) = C2(C1(x)) computes ¬T (x).

From proofs above, we could give some answers to question 1 and 2. Now let’s considerate
the question 3. We give some result:

Claim 10 If for some f, R(f)geq log n, then f 6∈ P/poly.

Proof This is implied by Fisher’s theorem.

Theorem 11 (A,M) If M = O(log log n), then CLIQUEk,n cannot be computed by poly-
nomial size circuit.

We will not present the proof of this theorem here, but will prove another theorem:

Theorem 12 R(f) ≥ log n − O(log log n):

Proof f : {0, 1}n → {0, 1}
C(X, Y) = {0, 1}2, f0(X), f1(Y), X

⋂

Y = Ø

Claim 13 If C has one negation gate, then at least one of f0 or f1 can be computed by a
monotone circuit of same or smaller size.

We use the notion of minterm of a monotone function to prove this claim.

Definition 14 (minterm) A minterm is a minimal set of variables which, if all assigned
the value 1, forces the function to take the value 1 regardless of other valuables.

Let g be the monotone function computed at the input to the first negation gate. We have
two possibilities: either some minterm of g lies entirely in Y, or not. In the first case, we

15-5

assign constant 1 to all the variables in Y. As a result, g turns into a constant 1. Thus we
can replace the negation gate by constant 0. Since X

⋂

Y = Ø, this change does not affect
the function f0. In the second case, we assign constant 0 to all the variables in X, and by a
similar argument, we can conclude that f1 is not affected. In either case we obtain a circuit
which computes f0 or f1 and contains no negation gate.

Let f = f(X) be a boolean function in m variables X = {x1, ..., xm}, and n = km. A
function fn : {0, 1}n → {0, 1}k is a k − fold extension of f if it computes k copies of f on
disjoint copies X1, ..., Xk of X. That is, given an input (a1, ..., ak) with ai ∈ {0, 1}Xi , the
function outputs the sequence (f(a1), ..., f(ak)). Note:

1. The i − th output bit f(ai) is independent of inputs aj for j 6= i.

2. If f is a monotone function, then fn is also a monotone function.

Iterating the argument used in the proof of Claim () yields the following:

Claim 15 If a monotone function f cannot be computed by a monotone circuit of size t,
then its k-fold extension cannot be computed by a circuit of size t using ⌈log(k+1)⌉ negation
gates.

15-6

