
ITCS:CCT09 : Computational Complexity Theory May 11, 2009

Lecture 17

Lecturer: Jayalal Sarma M.N. Scribe: Hao Song

In this lecture, we will continue our discussion on randomization.

1 BPP and the Polynomial Hierarchy

In this section, we will prove that the complexity class BPP is actually contained in PH,
more specifically, we will prove that BPP is contained in ΣP

2 ∩ ΠP
2 .

The following sketch illustrates some of the containment relationships about randomized
complexity classes we’ve learnt so far

Theorem 1 BPP ⊆ ΣP
2 ∩ ΠP

2

Proof From the definition of BPP, it’s trivial to show that BPP = coBPP. Thus we only
have to show that BPP ⊆ ΣP

2 and get BPP = coBPP ⊆ ΠP
2 as an immediate corollary.

From the definition of BPP, we know that if a language L is in BPP, then there’s a PTM
M which uses up to m random bits such that

x ∈ L ⇒ Pry∈{0,1}m [M(x, y) = 1] ≥ 1 −
1

2m

x /∈ L ⇒ Pry∈{0,1}m [M(x, y) = 1] ≤
1

2m

Let’s define
Sx

def

= {y : M(x, y) = 1}

then the above definition translates to

x ∈ L ⇒ |Sx| ≥ 2m(1 −
1

2m
)

x /∈ L ⇒ |Sx| ≤ 2m 1

2m

If we consider a bitstring u ∈ {0, 1}m, we can define the co-set of Sx induced by u to be

u ⊕ Sx
def

= {u ⊕ v : v ∈ Sx}. Then, intuitively, |Sx| is large if and only if we can cover the

17-1

whole space {0, 1}m with only a “small” number of co-sets of Sx. To make that statement
concrete, we claim that

x ∈ L ⇔ ∃u1, u2, . . . um ∈ {0, 1}m s.t.
m
⋃

i=1

(ui ⊕ Sx) = {0, 1}m (1)

The “backward” direction of this claim can be trivially proved using a counting argument.
Thus we will only prove the “forward” direction here. We will choose u1, . . . , um indepen-
dently and uniformly at random from {0, 1}m, and say that

Pru1,...,um
[∃r ∈ {0, 1}m s.t. r 6∈

m
⋃

i=1

(ui ⊕ Sx)] < 1 (2)

To prove this, consider any r ∈ {0, 1}m, let’s compute the probability that r is not covered
by all those m co-sets of Sx.

Pru1,...,um
[r is not covered] = Pru1,...,um

[∀i r 6∈ ui ⊕ Sx]

= Pru1,...,um
[∀i ui 6∈ r ⊕ Sx]

= (
1

2m
)m

<
1

2m

Because there’re 2m different r’s, by the union bound, we can say that the probability that
any of them is not covered is (strictly) less than 1, hence equation (2). This means that
there is at least one choice of u1, . . . , um such that the m co-sets of Sx induced by u1, . . . , um

cover the whole space of {0, 1}m.

Further note that the fact that a bitstring r ∈ {0, 1}m is covered by a co-set ui ⊕Sx can be
equivalently stated as r ⊕ ui ∈ Sx, or M(x, r ⊕ ui) = 1. Thus we can rephrase equation (1)
as

x ∈ L ⇔ ∃u1, . . . , um ∈ {0, 1}m

s.t. ∀r ∈ {0, 1}m

m
∨

i=1

M(x, r ⊕ ui) = 1

This matches the alternating quatifiers formulation of ΣP
2 exactly, which means BPP ⊆ ΣP

2 .
This concludes the prove.

This corollary follows immediately from the above theorem

Corollary 2 NP = P ⇒ BPP = P

We don’t believe that NP is equal to P, but a lot of people do believe that BPP = P.

17-2

2 Problems about BPP

2.1 Is There a Complete Problem for BPP?

A natural question to ask about the BPP class is if there’s a problem that is BPP-complete.
Unfortunately, we don’t know any thus far. One reason for this difficulty is that the defining
property of BPTIME machines is semantic, namely, that for every string they either accept
with probability at least 2/3 or reject with probability at least 1/3. Given the description
of a PTM, even testing whether it has property is undecidable. By contrast, the defining
property of an NTM is syntactic: given a string it is easy to determine if it is a valid
encoding of an NTM. Completeness seems easier to define for syntactically defined classes
than for semantically defined ones.

We do know a language L that is BPP-hard

L
def

= {〈M, x〉 : Pr[M(x) = 1] ≥ 2/3}

But it is not known to be in BPP.

2.2 Does BPTIME Have a Hierarchy Theorem?

Unlike the DTIME and NTIME class families, we don’t know about a hierarchy theorem
for the BPTIME family, at least for now. The problem is that our proves for the hierarchy
theorems we’ve known so far are all based on the diagonalization technique, which, in turn,
relies on the existence of an enumeration of the corresponding class of machines. But
because of the same reason we explained above, it is unlikely that such an enumeration
exists.

3 Randomized Reductions

Definition 3 We say that there is a randomized reduction from language A to language B

if there is a PTM M such that

Pry[x ∈ A ⇔ M(x, y) ∈ B] ≥
2

3

And if the PTM runs in polynomial time, we say that A ≤P
r B.

This definition of randomized reduction is modelled after the complexity class BPP. We can
similarly define randomized reductions modelled after RP, coRP. Also note that this kind

17-3

of randomized reduction is analogous to the many-one reductions introduced in previous
lectures.

People often define complexity classes based on randomized reductions. For example, the
complexity class BP · NP is defined as

BP · NP
def

= {L : L ≤P

r 3SAT}

we claim that

Proposition 4 coNP ⊆ BP · NP

4 Randomized Circuits

We can also introduce randomized inputs into other computation models, e.g. circuits. The
randomzied analogue of the classical NC circuit class, RNC, can be defined as follows

Definition 5 A language L is said to be in RNC, if there are three positive constants c, d,
r such that L can be decided by a family of circuits {Cn} where Cn has size O(nc) and depth
O(logd n), and takes, in addition to a length n instance x of L, a random string of length
nr as input. And the output of the circuit should be correct with probability at least 2

3 (with
respect to a uniform distribution of the random strings) for every instance of L.

We know that

Proposition 6 RNC ⊆ non-uniform NC

As an example of a problem in the RNC class, let’s consider the Perfect Matching problem,
abbreviated as PM. This problem is to determine if there is a perfect matching in a given
bipartite n by n graph G. It’s easy to see that this graph can be represented by a n by n
adjacency matrix M = (ai,j) (i, j ∈ [n]).

ai,j =

{

1 if the ith vertex on one side is adjacent to the jth vertex on the other side
0 otherwise

We can construct a new matrix M ′ = (a′i,j) on a set of n2 variables xi,j (i, j ∈ [n]) as
a′i,j = ai,jxi,j . We claim that

Claim 7 G has a perfect matching if and only if the determinant of M ′ is a non-zero
polynomial.

17-4

Note that

Lemma 8 The determinant of a matrix can be computed in NC
2.

Also note that the problem of testing if a given polynomial is identically zero can be solved
efficiently with random sampling, based on the following result

Lemma 9 Given a field F , a non-zero polynomial p of n variables and degree d, and a
finite subset of the field S ⊆ F , we have

Pra1,...,an∈S [p(a1, a2, . . . , an) = 0] ≤
d

|S|

Thus we conclude that PM can be solved in RNC.

Regarding the relationships between RNC and the previously discussed complexity classes,
we don’t yet know if RNC is in P, but we do know that RNC is in BPP.

5 Space Bounded Randomization

In the previous sections, we mainly talk about time-bounded randomization. In this section,
we will start to talk about space bounded randomization. For a function s(·), we say that
a PTM uses space s(·) if in the computational tree of this machine on an input string of
length n

• in every computational path, the machine touches no more than s(n) cells on the
working tape.

• every computational path is of length O(2s(n)).

Now we can define the complexity classes RL and BPL as the logspace counterparts of the
classes BPP and RP we defined in previous lectures.

The following sketch summarizes the state of our knowledge about the relationships between
related complexity classes

We will prove in the following lectures that BPL is actually contained in P.

17-5

