
ITCS:CCT09 : Computational Complexity Theory Mar 2, 2009

Lecture 2

Lecturer: Jayalal Sarma M.N. Scribe: Jayalal Sarma M.N.

In the previous lecture we saw that constant factors don’t matter when define class of
functions accepted by a Turing machine in time t or space s. Hence the classes defined as
invariant under O notation. We can define the following complexity classes based on this.

Definition 1
P =

⋃

k≥0

DTIME(nk)

PSPACE =
⋃

k≥0

DSPACE(nk)

L = DSPACE(log n)

From the simulations we already saw it is clear that L ⊆ P ⊆ PSPACE.

1 Diagonalisation to prove Heirarachy Theorems

In this lecture we want to introduce one of the important technique to prove lower bounds
that has been used in the classical complexity theory. The method is diagonalisation and
is a simple adaptation of the method you have seen in previous courses. We will do a warm
up proof to review diagonalisation.

A standard example is the claim : the set of functions from {0, 1}∗ → {0, 1} is not countable.
Diagonalisation is used to prove this by contradiction. Suppose they are countable via an
enumeration of the functions f1, f2, It is easy to construct a function f which on input
i is the exact negation of fi. This function is clearly from {0, 1}∗ → {0, 1} and is different
from each function in the enumeration. Hence the contradiction. The proof we want present
uses exactly the same idea, but over an enumeration of Turing machines.

We need to fix a technical notion before we state the theorem. This is called constructibility
and is a sort of “niceness” for the resource function that we consider. A function f : N → N is
called a fully space-constructible function if there exists a DTM that on any input x of length
n halts visiting exactly s(n) squares of the work-tape. For any fully space constructable
function s we can construct a 2-tape machine that on input x marks #-symbols on exactly
s(n) squares on the work-tape. We will call this the space-marking machine. Most of the
common functions, like ⌈log n⌉, cn, nc are all space constructible functions.

2-1

Theorem 2 (Space Hierarchy Theorem) Let s2(n) be a fully constructible function.

Suppose s1(n) = o(s2(n)) then,

DSPACE(s1(n)) (DSPACE(s2(n))

Proof We are going to demonstrate a language L that is accepted by a Turing machine M

which runs in space s2(n) and differs from every language in DSPACE(s1(n)). We are going
to define L by giving the description for the machine M . We use the standard enumeration
of one-tape Turing machines M1, M2, This is sufficient because Tape reduction (we
proved this in last lecture) does not increase space beyond a constant factor. In fact the
machine M is going to be a 2-tape machine.

Given input x the machine M is set to do the following:

1. Initialisation: M marks off s2(n) cells on the firs tape. This is possible by the as-
sumption that s2(n) is space constructable. M also writes the integer t2(n) = 2s2(n).
This is just writing off s2(n) zeros and a 1 on the left. Again, space constructability of
s2(n) is being used. This could be thought of as a counter for the simulation process.

2. Now M processes input x as follows : It simulates Mx in the enumeration on input x

with its first tape as Mx’s work-tape. If at any point of the simulation, a cell which is
not marked is touched, Mx aborts the simulation and rejects. Otherwise it decrements
the counter and proceeds to the next step of Mx on x. If the counter reaches down
to zero, Mx halts and rejects.

3. If Mx on input x halts before counter being zero, and without touching any unmarked
cells of tape 1, then this means M was able to correctly simulate M , and it needs to
differ on this input. M accepts on x if and only if Mx rejects on x.

Space bound for the simulation is clearly O(s2(n)). Hence the language L accepted by M

is inside DSPACE(s2(n)).

Suppose language accepted by M is in DSPACE(s1(n)). Since s1(n) = o(s2(n)), there is an
input x, L(Mx) = L(M). Let us see how M simulates Mx on input x. Let n = |x| and t1(n)
be the number of possible configuration of Mx. We can also assume that t1(n) ≤ t2(n) by
choice of x (we skip this calculation).

If Mx halts in time t2(n), then there is a contradiction in step 3, because M does just
opposite of what Mx does on input x. If Mx does not halt in time t2(n). But by choice of x

there can’t be more than t2(n) configurations. Hence Mx must be running into an infinite
loop where as M never does. Thus a contradiction.

This proves the theorem.

2-2

Note that the above proof diagonalised against an enumeration of only one-tape Turing
machines. In addition M was a 2-tape Turing machine. But in the case of space as the
resource, this did not make a difference (up to constant factors). However, we saw that we
will have to lose a quadratic factor in terms of time as the resource. Essentially the same
proof works to prove a weaker form heirarchy theorem for time as well. We will skip the
details.

Theorem 3 (Time Hierarchy Theorem) Let t2(n) be a fully constructible function.

Suppose (t1(n))2 = o(t2(n)) then,

DTIME(t1(n)) (DTIME(t2(n))

We did not prove this in complete detail in class. However, the details are similar to the
Space Hierarchy Theorem. A stronger form of this theorem can in fact be proved by the
stronger version of tape reduction that we stated in the last lecture. This version essentially
says that if t1(n) log t1(n) = o(t2(n)), then DTIME(t1(n)) (DTIME(t2(n)).

There are many corollaries to these two fundamental heirarchy theorems. However, most
of them follow from the definition itself.

Corollary 4 • L (PSPACE.

• If L ⊆ DTIME(nk) then L 6= P.

We did not state the second corollary above explicitly in class. But it may be interesting
to note that it says, if the number of configurations of any log-space bounded TM M is
bounded by 2c.s(n) for an absolute constant c(independent of M) then, L 6= P.

2 Nondeterminism

Nondeterministic Turing machines are deterministic Turing machines with an additional
guessing power. That is at each configuration of the computation, there are multiple values
for the successor function, and the Turing machine tries to simultaneously compute in each
of those choices, and accepts if atleast one of the choices accept. To make it a little more
formal, the non-deterministic Turing machine has an additional guess bit in each state
which gets associated with each configuration, and there are at most two (without loss of
generality) outgoing transitions from each state for a given input and worktape contents.
If the guess bit 1, the Turing machine takes one transition and if not the other. Finally,
if for any input x, there is atleast one choice of the guess bits such that the computation
accepts, then the machine is said to accept input x.

2-3

Similar to the deterministic complexity classes we can define their non-deterministic coun-
terparts too.

NP =
⋃

k≥0

NTIME(nk)

NPSPACE =
⋃

k≥0

NSPACE(nk)

NL = NSPACE(log n)

2.1 Simulating Non-determinism with Determinism

Now we will see some deterministic simulations of Non-deterministic Complexity classes.
The most important one of this is the Savitch’s theorem and we did this in class. However
we will list down other ones too. A simple simulation of the nondeterministic machine by
a deterministic Turing machine explores all possibilities of the guess bit one-by-one and
checks if the given non-deterministic Turing machine accepts with that guess bits. This
gives NTIME(t) ⊆ DSPACE(t) and NSPACE(t) ⊆ ∪c>0DSPACE(2ct). The second inclusion
also uses the elementary theorem about configurations that we proved in the first lecture.
This gives NL ⊆ P and NP ⊆ PSPACE.

Now we can prove the third main theorem of this lecture, which is the simulation due to
Savitch.

Theorem 5 (Savitch’s Theorem) If s(n) is space constractible, then,

NSPACE(s(n)) ⊆ DSPACE((s(n))2)

Proof To prove the theorem, let L ∈ NSPACE(s(n)) via a Turing machine M . Since the
space used is bounded by s(n) there can be atmost 2s(n) configurations in the configuration
graph of M . M accepts if and only if there is atleast one path from the start configu-
ration to the accepting configuration (we can ensure that there is at most one accepting
configuration).

Now we define the following predicate for each configuration α, β, reach(α, β, k) is 1 if and
only if there is a computation path starting from configuration α to configuration β of
length at most k.

Basically we will give a way to test if reach(α, β, 2O(s(n))). We will keep this 2O(s(n)) implicitly
so that we will not need to find the explicit constant. The basic idea is a simple search for
a middle node. That is,

reach(α, β, k) ⇐⇒ ∃γ

(

reach

(

α, γ,

⌈

k

2

⌉)

∧ reach

(

γ, β,

⌊

k

2

⌋))

2-4

This naturally gives rise to a deterministic recursive algorithm which runs over all possible γ

that could be the middle node. It is clear that the depth of the recursion is bounded by log k.
At each step of the recursion, the argument includes γ which is a log(2(O(s(n)))) = O(s(n))
sized number. Thus the above recursive algorithm can be simulated by a stack which uses
atmost log k.O(s(n)) space. This gives the O((s(n))2) space bound.

An easy corollary of Savitch’s theorem is that for PSPACE non-determinism does not really
help. That is PSPACE = NPSPACE.

There is a version of heirarchy theorem for non-deterministic Turing machines. We will
leave some of it to the excerices.

2-5

