
ITCS:CCT09 : Computational Complexity Theory Mar 9, 2009

Lecture 3

Lecturer: Jayalal Sarma M.N. Scribe: Xiaohui Bei

Last time we introduced the Hierarchy Theorem which discuss the relationship among
deterministic complexity classes, in both time and space aspects. We also introduced non-
determinism, and proved Savitch’s Theorem which relates space-bounded nondeterminism
to space-bound determinism.

In today’s lecture, first we continue our discussion about the space-bounded nondetermin-
ism. We show that most of such classes are closed under complements. Then we give a
short description of oracle turing machines and notion of relativisation, and talk about the
limitation of such property, which gives us a sense that why the Pvs NPquestion is so hard
to settle.

1 Space-bounded Nondeterminism

For any complexity class C, we let coC be the class of complements of sets in C, i.e.
coC = {L|L ∈ C}. Deterministic complexity classes are closed under complementation,
while this is not always true for undeterministic cases. For example, the relation between
NPand coNP is still a open question left to us. However, if we consider the nondeterministic
space-bounded classes C, the following theorem shows that C and coC are actually same.

Theorem 1 (Immerman-Szlepcsenyi theorem) NSPACE(s(n)) = co-NSPACE(s(n))
for all s(n) ≥ log n.

Proof We need to show that for any L ∈ NSPACE(s(n)), there exist a NTM that
computes L. Recall that to compute L is to check if all computation paths start from α0

(the initial configuration) lead to rejection.

We define a predicate reach(α, β, k), here α and β are both configurations and k is an
integer. reach(α, β, k) means that β is reachable from α in at most k steps, that is, that
there exist a sequence α = α0, α1, . . . , αk−1, αk = β, where αi−1 → αi or αi−1 = αi for each
i = 1, 2, . . . , k. First we show that there exist a NTM which can computes reach(α, β, k) in
space O(s(n) + log k).

Claim 2 reach(α, β, k) can be tested in NSPACE(s(n) + log k).

3-1



Proof The NTM M does the following: Let γ0 = α. For each i = 1, 2, . . . , k − 1. M
guesses a configuration γi and verifies that γi−1 → γi or γi−1 = γi. If the test fails at some
step, M refect. Finally M verifies that γk−1 = β and accepts if it holds.

It’s easy to see that M accepts (α, β, k) if and only if reach(α, β, k). Storing the current
configuration γi costs O(s(n)) space, and the counter of i costs O(log k) space. So M uses
space O(s(n) + log k).

Having this problem solved, we can now use it as a subroutine to solve other problems.
The next task would be constructing another NTM M1 which computes Nk, the number of
configurations reachable from a given configuration α in no more than k steps, using space
O(s(n) + log k).

We let M1 computes N1, N2, . . . , Nk one by one. First we know N0 = 1 (α is the only
reachable configuration). Now assume we have Nk−1 (induction) and want to compute Nk.
In order to do this, let M1 runs the following procedure:

Nk ← 0
for all configuration β do

τβ ← false
for i = 1 to Nk−1 do

Guess a configuration δi.
Verify reach(α, δi, k − 1).
Verify δi → β or δi = β.
If both of these conditions hold, set τβ to true.

end for
if τβ = true then

Nk ← Nk + 1
end if

end for

It’s easy to see that M1 uses space O(s(n) + log k) and it indeed computes the number of
reachable configurations from a given configuration in no more than k steps. And using this
as a subroutine, we can actually compute the number N of all reachable configurations from
a given configuration. The idea is simple, just find the smallest k such that Nk = Nk+1,
which means no new configurations can be reached after k steps. And N = Nk is just the
answer we wanted. Let m be the maximum length of an accepting path on some input
x. Then, m = 2O(s(n)). So we know k ≤ 2O(s(n)). Which means this NTM uses space
O(s(n) + log k) = O(s(n)).

Finally, we will use M and M1 to construct our final NTM M2 for L as follows:

First M2 calls M1 to compute the number N of all reachable configurations from the initial
configuration α0. Then we guess N configurations γ1, γ2, . . . , γN one by one, checks that
each of them is reachable from α0 (using NTM M) and none of them is an accepting path.

3-2



If all of the above conditions are checked, M2 accepts, otherwise M2 rejects the computation
path.

Following is the pseudocode of NTM M2:

N ← number of reachable configurations from the initial configuration.
k ← maximum length of an accepting path.
{The above two values can be computed by simulating M1}
flag ← false
for i = 1 to N do

Guess δi.
Check reach(α0, γi, k) (by NTM M). If it’s not true, M2 rejects.
if γi is an accepting configuration then

flag ← true
end if

end for
if flag = false then

M2 accepts
else

M2 rejects.
end if

We claim that M2 computes L. First it’s easy to see that if x /∈ L, which means all reachable
configurations from α0 are rejecting. So M2 will guess all the reachable configurations γi and
at least accept x. If x ∈ L, then there exist one reachable configuration which is accepted.
So either M2 will guess all the reachable configurations which contain this one, or it will
guess at least one nonreachable configuration. In either cases the computation will lead to
rejection.

Finally, it’s not hard to show that M2 also uses O(s(n)) spaces, and by the tape compression
theorem, we know the theorem holds.

This result together with the ones proved in the last two lectures, give us a relationship
picture about time/space-bouneded complexity classes, which is the best we know so far.

2 Relativization

Roughly speaking, relativization of a statement with respect to (a language) A means giving
each machine involved in that statement the ability to access an A-oracle. If the statement
still holds, we say that it holds relative to A. And we say that a statement relativizes if it
holds relative to any language.

A very revealing fact is that many results we have in complexity relativize. The reason be-

3-3



Figure 1: Relation among the complexity classes

hind this is that most of the techniques we used so far all relativize, such as diagonalization,
etc.

However, the relativization property also gives limitation to these techniques on proving
some results. Let’s take the most famous Pvs NPproblem as an example. One can prove
the following result:

Theorem 3 There exist oracles A and B, such that P
A = NP

A and P
B 6= NP

B.

In other words, neither of the statements P = NP and P 6= NP relativize. Which means
that none of the techniques that relativize have enough power to solve the Pvs NPquestion.
In order to settle this ultimate problem, we need new ideas.

3-4


