CS6848 - Principles of Programming Languages

@ Exceptions

Exceptions
Announcements
@ Assignment 6 is out - Due 30th (Not a Saturday!)
V. Krishna Nandivada @ Two more classes to go (Last instructional day for CS6848 - 18th
April)

IIT Madras
@ Final exam on 28th May 11AM.

@ Portion - Post mid-term.

V.Krishna Nandivada (IIT Madras) CS6848 2/14

Versioning Exceptions Versioning Exceptions

@ Each code is protected by an exception handler (installed by try.
@ A versioned exception ensures that the content of the store, when

@ Traditional exceptions provide only transfer of control. the exception is raised reflects the program state when the
@ Used typically for handling cases when unexpected conditions corresponding handler was installed.
arise. @ The data generated in the code protected by such exceptions are
@ The store (maps memory locations to values) is left untouched. implicitly versioned.
o ltis left to the programmer to manually undo any changes. @ Each version is assocated with a particular generative exception
e Q: Is handling the environment (maps variables to values) easy? value.
@ Q: Can we provide transaction semantics to the non-local control @ When an exception is raised, the version corresponding to the
flow of control-exceptions? associated exception value is is restored.
@ Goal: Revert computation to a well-defined state in response to @ Ahandler is provided, which lets the programmer to re-executed
unexpected or undesirable conditions. the protected code or print error message and so on.

Background needed
@ When do you need store?
@ Modeling store.

V.Krishna Nandivada (IIT Madras) CS6848 3/14 V.Krishna Nandivada (IIT Madras) CS6848 4/14

Extending the language with references Type rules

Extending the syntax
°

e=---|e;e|ref e|le|e) := ey |unit @ Reference creation.

AFe:t
Alref e:Ref t

o Creating a reference - creates a cell in memory.
e The value stored in the cell is the value the expression e evaluates
to. . @ Dereference
e Say, ris areference, then 1et s=r e makes s an alias to r. Al e:Ref t
@ Setting r := 32, will change the value of s and vice versa. T AFler

Extending types @ Assignment.

°) AFe :Reft; Aler:t
t:=---|Ref 1|Unit At ey :=ey: Unit
@ Extending values
v = |l|unit o Note: The left hand side is not necessarily a variable.

@ Think of Unir as the void type of C.
@ The result of evaluating an expression of type Unit is the consta

%
V.Krishna Nandivada (IIT Madras) CS6848 5/14 V.Krishna Nandivada (IIT Madras) CS6848 6/14

Modelling the store Evaluation rules

Defined over the reflexive, transitive closure of —y:

@ Store can be seen as array of values. —vy: (Expression,Store) —vy (Expression, Store)

@ Store can be seen as a map L — Values, where L is the set of
locations, and Values is the set of values.

@ We use o to represent the store.

@ Rules of operational semantics now will use o. (e1,0) —v (€}, 0)
<€1€2,G> —v <€/1€2,G,>

@ Step - Application

Syntax for store

° @ Step - Arguments

GZZ:¢|G,l:V <ez,6>—>v<€/2,0/>
Typing store elements (viez,0) —v (vieho’)
Y=Lt

@ Apply
((Ax.e)v,0) =y (e[x/v],0)

V.Krishna Nandivada (IIT Madras) CS6848 7/14 V.Krishna Nandivada (lIT Madras) CS6848 8/14

Evaluation rules Evaluation rules

@ Create reference

(ref v,0) —v (l,0[l— v), where [is fresh @ Assignment.
(I:=v,0) =y (unit,c[l — v])
@ Step - reference
P @ Step - Assignment (lhs)

(e,0) =y (¢,0)

<ref e,0'> -V (ref 6/,0/>

(e1,0) v (¢1,0")

(e1 :=e3,0) —y (€] :=e2,0")
@ Dereference a location
@ Step - Assignment (rhs)
<Ila O-> e’ <G(l)7 G)
(e2,0) v (€5,0")
(I:=e,0) =y (l:=¢},0")

@ Step - Dereference

(e,0) =y (¢/,0)

(le,0) —vy (I, 0")

V.Krishna Nandivada (IIT Madras) CS6848 9/14 V.Krishna Nandivada (IIT Madras) CS6848 10/14

Versioning exceptions Versioning exceptions

Extension to types

Extensions to syntax °
® t:::--'|Exn(t1 —>l2)
e =---| vExn(x) | try (y,e) | restore (p,q) Extension to type rules

@ Exception construction.

e vExn(x) — constructs a new exception. x is bound to a procedure

that defines the handler for this exception. Abx:in—n

e ry (y,e) — evaluates y to an exception E, and then evaluates e. A+ vExn(x) : Exn(ty — 1)

e restore (p,q) — p evaluates to an exception (say E).
@ Raises exception E. @ Try block
@ Control is transferred to the closest enclosing rry expression for E. Abx:Exn(ti > 1) Ale:n
o the handler of E is evaluated with ¢ as the argument. Ak try(x, e) ‘b
@ Restores the state.

QH . . . " @ Restore
:‘How to construct try-expression with multiple catches” Aby:t; Abx:Exn(ty = 1)

At restore(x,y) : tp

V.Krishna Nandivada (IIT Madras) CS6848 11/14 V.Krishna Nandivada (/IT Madras) CS6848 12/14

Operational Semantics Operational semantics for versioning exceptions

@ In the style of CE2SK: Control, Environment, Exception-stack,
Store, Continuation Pointer: Each evaluation is defined as a
reflexive and transitive closure over — vy

—y: State —y State

@ Standard rules apply for non-exception expressions. For example: See the hand out.

°
(letx=ce,p,x,0,k) =y (e,plx— c],X,k,0)

(x,p,2,0,k) =y (k,p(x),0,X)

({ret(x,e,p)} &k, v,0,%) —v (e,p[x = V] .k, 0, %)

V.Krishna Nandivada (IIT Madras) CS6848 13/14 V.Krishna Nandivada (IIT Madras) CS6848 14/14

