CS6848 - Principles of Programming Languages

@ Modeling the store.
@ Versioning Exceptions.

Partial Evaluation

V. Krishna Nandivada Announc.ement.'e,
@ Last instructional day.
IT Madras @ Final exam on 28th May 11AM.

@ Portion - Post mid-term.

V.Krishna Nandivada (IIT Madras) CS6848 2/1

int pow(n, x) {

int result=1; int pow(n, x) {
@ Partial evaluation can be seen as “program specialization” in the while (n > 0){ if (n > 0)
presence of partial input. result *=x; return x * pow(n-1, x);
@ Can be used for program optimization, compilation, interpretation, n -=1; else
and so on. } return 1;

@ Input: (Program, partial-input) return result; }

@ Output: (Modified-program)
@ (Modified-program, rest-of-the-input) — value.

@ Knowing how the ‘interpreter’, you can compute pow (3, 6).

@ What if you know the value of one of the inputs (say n)’? Can you
do anything?

@ Can you generate code that specializes the code for specific value
of n. ST

V.Krishna Nandivada (IIT Madras) CS6848 3/1 V.Krishna Nandivada (lIT Madras) CS6848 4/1



Example continued Partial evaluation

int pow(n, x) {

int result=1; int pow(n, x){
while (n > 0){ if (n > 0)
result *=x; return x * pow(n-1, x);
n -=1; else @ The process of evaluating a program with partial inputs is called
} return 1; partial evaluation.
return result; } . . .
} @ The result of partial evaluation is a new program.
@ The new program contains all parts of the original program that
cannot be executed, due to missing inputs.
@ The new program is thus the residual code.
@ We used more than just partial evaluation - loop unrolling, and
repeated function specialization/partial evaluation.
V.Krishna Nandivada (IIT Madras) CS6848 5/1 V.Krishna Nandivada (IIT Madras) CS6848 6/1

Example 2 - Post-fix calculator with two named Idea of specialization

registers

int calc(object[] prog, a, b) {

@ Say, each program element (expression, function name,

. ) parameters keywords etc) may be annotated with an underline (=
int[] stack = new int[100]; cannot be reduced)
int top = -1; . int calc-pl(a, b) o Idea: ’
for each (cmd in prog) { int[] stack = new int[100]; . . .
if (cmd instanceof Integer) stack[0] = 6; @ Evaluate all the non-underlined expressions.
stack [++top] = cmd; stack[1] = a; @ unfold all non-underlined function calls = Replace with new code.
if. (cmd == +) { int x1 = stack[1]; @ generate res!dual codelfor all underlined—expressions..
int x = stack[top--1]; int y1 = stackl[0]; © generate residual function calls for all underlined function calls.
int y = stackl[top]; stack[0] = x1 * y1;
St’jjk[toffﬂ =X +/Y" } stack[1l] = b; a(m,n) = if m = O then n+l else
-, %, : — . . Ve
- Zar_nf or int x2 stack([1]; i?qut.) b= if n = 0 then a(n-1,1) else
it (omd == 2) int y2 = stack[0]; program a(m-1,a(m,n-1))
stack[++top] = aj stack[0] = x2 + y2; =
if (cmd == B) . B o
stack [++top] = b; } return stack[0]; Program p, specialized to static input m = 2:
ieZZEZ stackloli ] ® N(:')te.: optimizations: top has been a2(n) = if n=0 chengly(l) else al(a2(n-1))
(6, YA’ , k! MBI, \\+11,5,2):3§|Imlnated- P2 = al(n) = if n=0 then a0(1) else aO(ai(n-1))
0(n) = n+1
@ Say dont know the values of a and b. [20(@) = n+1

V.Krishna Nandivada (IIT Madras) CS6848 A V.Krishna Nandivada (lIT Madras) CS6848 8/1



Sketch of an partial evaluator Algorithm for Reduce

@ Input: Program and annotations.
@ An annotation can be: eliminable or residual.

o , . @ We will use RE to denote Reduce(E).
@ Output: A specialized program, that will have the same form as the original. . .
Different: © If E is a constant or a dynamic parameter then RE = E.

o definitions of specialized functions (g, Staticvalues). © If E is a static parameter of g then RE = value of the parameter as

e g is part of the original program, givenin s.

@ StaticValues — a set of (parameter, value) tuples. Q SayE=primitiveOp (E1, ...En),then

° Thg rest of the parameters of g are d.ynamllc. ) ) e if (v1 = ReduceE1, ...vn = Reduce En) all are reducible, then RE =
@ Say the input program: £1 (s, d) = el.// s is static, d is dynamic. value of primitiveOp(v1, .. .vn).
@ Read Program P and s o Else the annotation is wrong.
@ Pending = {(f1, s)}; AlreadySeen = {}; Q@ ifEisprimitiveOp (E1, ...En)then
@ while Pending 7 {} @ compute E1’ = Reduce(El), ...En’ = Reduce(En).

@ Choose and remove a pair (g, s) from Pending. RE = primitiveOp (E1’, ...En’)

e Add (g, s) to AlreadySeen. - .

o Say gis defined as g (s, d) { el } © Similarly if (EO) then E1 else E2 (two cases).

o Replace the target definition as g,(d) { Reduce(g)}

@ E = substituting the static values of parameters in s in el.

V.Krishna Nandivada (IIT Madras) CS6848 9/1 V.Krishna Nandivada (IIT Madras) CS6848 10/1
Algorithm contd.
@ Saye = f(E1, ...En),andsay f is defined as f (x1,

.xn) {func-body} then

RE = Reduce (E’),where E’ is obtained by substituting static

parameters in the arguments and reducing func-body.
Q IfE = £(E1, ...En) then

@ For each static parameter of £, compute the

(static-parameter, value)tuple anditto
static-parameter-tuple list.
If value is not a constant then the annotation is incorrect.
For each dynamic parameter of £, invoke Reduce to compute a list
of expressions.
f’ = a new function with parameters given by the list
new—-dynamic-expressions
RE = (f’, static-parameter-tuple
if this RE is not AlreadySeen, then add it to Pending.

0 © 00

V.Krishna Nandivada (IIT Madras) CS6848 11/1



