Last class

CS6848 - Principles of Programming Languages

Principles of Programming Languages

A Big step semantic
B Calling convention
V. Krishna Nandivada :

C Small step semantics
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@ Operational semantics talks about how an expression is
evaluated.
@ Denotational semantics

o Describes what a program text means in mathematical terms -
constructs mathematical objects.

@ is compositional - denotation of a command is based on the
denotation of its immediate sub-commands.

o Also called: fixed-point semantics, mathematical semantics,
Scott-Strachey semantics.

Operational semantics: good as specification for a compiler /
interpreter.

Denotational semantics: proving equivalence of programs: equivalent
programs have equal denotational models.
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Denotational semantios: dea

@ [e;] - “means” or “denotes”.

@ Assigns meanings to programs. @ X set of states. o € X denotes a state.
@ L is used to mean non-termination. @ The meaning of an arithmetic expression e in state o is a number.
@ Instance of mathematical objects: ALl Aexp = (X = Z)
e Anumbere Z @ The meaning of an boolean expression ¢ in state o is a truth
e Aboolean € {true, false}. value. A[.] : Aexp — (X — {true,false})
o A state transformer: & — (X U{L}) @ Denotational functions are total - defined for all (well typed)
@ Think ahead: Semantics of a loop. syntactic elements.

@ Finds mathematical objects (called domains) that represent what
programs do.
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Denotational semantics of arithmetic expressions Denotational semantics for commands

@ Running a command c starting from a state o yields a state ¢’

@ Inductively define A[.] : Aexp — (X — Z) @ Define C[c]:
Afn]o = [n] C[.]: Com— (X — %)
Alx]o = o(n) @ Q: What about non termination?
Aler+e]o = Alei]o+Ale2]o @ Recall L denotes the state of non-termination.
Alle; —ex]Joc = Afei]o—Alex]o

@ Notation: X; =XU{L}.

@ Convention: whenever f € X — X |, we extend f with f(L) = L so
that f € X, — X, . — called strictness

Assignment: Write denotational semantics for boolean expressions.
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Denotational semantics for commands (cont.) Associativity of Addition

@ C[.]: Com— (X —X)) @ Theorem: For all E|, E; and Es: [E| + (Ex + E3)] = [(E1 + E2) + E3]

C[skip]o = 0 @ Proof
Clx=elo = ofr:=A[e]o] [Ev+ (B2 +E3)] = [Ei]+ (B2 +E3)]
Cler;co]o = Cle2](Cler]o) = [E1] + ([E2] + [E5])
C[if b then ¢; else ¢;]o = = ([E:] + [E2]) + [E5]

if B[b] then C[ci]o else Clc:]o = [(E\ +E2)] + [E5]

= [(E\ +E2) + E;5]
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Handle a loop while k-steps semantics

@ Similar to operational semantics?

@ C[whilebdo c]o =7

@ Notation: W = C[[while b do c] @ Define Wy : ¥ — ¥, (for k € N) such that:
o’ if "while b do ¢” in state o

terminates in fewer than k

iterations in state o’

otherwise.

@ while b do c = if b then ¢; while b do ¢ else skip
@ W(o) = if B[b])o then W(C[c]o) else o Wi(o) =
@ Recursive definition - or no definition? 1
o Not compositional
@ Say C[while true do skip]
W(o) = W(o) — does not help. ® Wi(o)= {
@ Say C[while x# 0 do x =x—2]
o[x:=0] ifo(x)evenand o(x)>0

W(e) = { o' otherwise.

(] W()(G) =1
Wi—1(C[c]o) if B[b]o fork>1
c otherwise.

for any o’.
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while semantics defined Properties of while-loop

@ How do we get W from W, ?
W(c) = o’ smallest k such that Wy(c)=0"# L
| L otherwise (that is, Vk, Wi(c) = L).
® ltis compositional. o Prove that ‘if C[while b do o — o’ then B[B]o’ = £alse.

® Has abit of opefratl.onal f.Iavour a _ @ For any natural number n and any state o if W, (o) = ¢’ # L, then
@ How to generalize it to higher order functions? B[b] = £alse.

Old loops revisited:
@ while true do skip; — Wi(o) =L, for all k. Thus W(o) = L.
@ whilex#0dox=x-2;,—

ofx:=0] ifo(x)=2xmAND o(x)>0
W(o) = .
€ otherwise.
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Axiomatic semantics

Last class and some minor changes

@ Operational semantics talks about how an expression is

evaluated.
@ Denotational semantics - describes what a program text means in
@ Denotational semantics. mathematical terms - constructs mathematical objects.
@ Health card - replaced by full review. @ Axiomatic semantics - describes the meaning of programs in

terms of properties (axioms) about them.
@ Usually consists of

e A language for making assertions about programs.
o Rules for establishing when assertions hold for different
programming constructs.
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Language for Assertions

@ A specification language
o Must be easy to use and expressive

e Must have syntax and semantics.

@ Requirements:

o Assertions that characterize the state of execution.

o Refer to variables, memory

@ Examples of non state based assertions:

e Variable x is live,

o Lock L will be released.

o No dependence between the values of x and y.
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Hoare Triples

@ Meaning of a statement S can be described in terms of triples:

{Pys{o}

where

CS6848 (IIT Madras)

@ P and Q are formulas or assertions.

e P is a pre-condition on S
e Qis a post-condition on S.

@ The triple is valid if

e execution of S begins in a state satisfying P.

e Sterminates.

e resulting state satisfies Q.
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Assertion Language

@ Specification language in first-order predicate logic

e Terms (variables, constants, arithmetic operations)
e Formulas:

true and false

If 1 and 1, are terms then, t; =1, t; < t, are formulas.

If ¢ is a formula, so is —¢.

IF ¢, and ¢, are two formulas then so are ¢; A ¢, ¢; V ¢, and ¢, = ¢».
If ¢(x) is a formula (with a free variable x) then, Vx.¢(x) and 3x.¢(x)
are formulas.
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Satisfiability

@ A formula in first-order logic can be used to characterize states.
e The formula x = 3 characterizes all program states in which the
value of the location associated with x is 3.
e Formulas can be thought as assertions about states.
@ Define {o € X|o = ¢}, where = is a satisfiability relation.
o Let the value of a term ¢ in state o be °

If z is a variable x then ° = o(x).

If #is an integer n then ¢° = n.

cEh=nift°=1°

cEnAnpifoEnandoEn

o EVx.¢(x) if o[x— n] = ¢(n) for all integer constants n.
o = 3x.¢(x) if o[x — n] = ¢(n) for some integer constant n.
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@ {2=2}x:=2{x=2}
An assignment operation of x to 2 results in a state in which x is 2,
assuming equality of integers!

@ {true}ifBthenx:=2elsex:=1{x=1Vvx=2}
A conditional expression that either assigns x to 1 or 2, if executed
will lead to a state in which x is either 1 or 2.

@ {2=2}x:=2{y=1}

@ {true}if Bthenx:=2elsex:=1{x=1Vvx=2}
Why are these invalid?
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Soundness

@ Hoare rules can be seen as a proof system.
e Derivations are proofs.
e conclusions are theorems.
o We write - {P} c {Q}, if {P} ¢ {Q} is a theorem.
o If-{P} c {Q}, then = {P} c {Q}.
e Any derivable assertion is sound with respect to the underlying
semantics.
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Partial Correctness

@ The validity of a Hoare triple depends upon the termination of the
statement §
@ {0<an0<b}S{z=axb}
o If executed in a state in which 0 <« and 0 < b, and

e S terminates,
o thenz=axb.
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Proof rules

@ Skip:
{P}skip{P}
@ Assignment:
{P[t/x]}x:=t{P}
Example: Suppose t =x+1
then, {x+1=2}x:=x+1{x=2}

]
_ APi}eo{P2} {P2}ei{Ps}
Sequencing
{Pi1}co;ci{P3}
o
" {P1Ab}co{P2} {P1 A —b}ci{P2}
Conditionals -
{P1}if b then ¢y else c{P2}
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 24 /1



P00t rules (cort)

° {P Ab}c{P} @ {x>0}y=x—1{y>0} implies
{P}while b c{PA—b} {x>10}y=x-1{y>-5}
@ {x>0}y=x—1{y>0}and
{y>0} x=y {x >0} implies
E(P=P){P}{0}F(Q=0) {x>0}y=x—Lx=y{x>0}
{P}c{0O} Apply rules of consequence to arrive at universal pre-condition and
post-condition

Loop

Consequence

strengthening of P’ to P, and weakening of Q' to Q.

26/1
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Use of Axiomatic semantics to properties Step | - choosing the invariants

Prove that the following program: : L .

ove that the following progra @ Want to show the following Hoare triple is valid:
z :=0; n :=vy; {y > 0} above-program {z = x » y}
whilen > 0 do z := z + %x; n :=n - 1; @ Invariant for the while loop:

) . . P = {z = x+x(y-n) A n > 0}
computes the product of x and y (assuming y is non-negative).

28/1
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Step Il - constructing the proof in reverse order

{z = x » (y-n) A n > 0}
while n > 0 do z := z+x; n :=

{z

z
(

X * Yy}

X * (y-n) A n >0 A —
definition of while)

(apply the consequence rule)

{z x * (y-n) A n > 0}
while n > 0 do z := z+x; n :=
{z x *» (yvn) An>0A- (n>0)}
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(pre—loop code)

{z

{z

{0
{z -

{y

{z
{v

v

VAl

=Y

x* (y-y) Ay > 0}
x*(y-n) A n > 0}
x* (y-y) Ay > 0}
0

x* (y-y) Ay > 0}

0}

0; n :=vy

x*x (y-n) A n > O}
0} above-program
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Step Il - constructing the proof in reverse order

{z = x v}
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(n > 0)

Step Il - constructing the proof in reverse order

(any iteration)
{(z+x) = x x (y—-(n-1)) A (n-1) > 0}

z = z+X;
{z=x+(y-(n-1)) A (n-1) > 0}
n := n-1

{z=x*(y-n) A n > 0}

z = xx(y-n) An>0An >0 =
{(z+x) = X *

(consequence)

{z = xx(y-n) A'n >0 A n > 0}

z = z+x; n := n-1

{z=x*(y-n) A n > 0}
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Useless assignment

while (x != y) do
if (x <= vy)

then

y 1= y—Xx

else

X 1= Xy

Derive that

F {x = m Ay = n} above-program {x = gcd(m, n)}

Hint: Start with the loop invariant to be {gcd (x, y) = gcd(m, n)}
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Last Class

@ Axiomatic Semantics
@ Proof rules
@ Proving the semantics of the multiplication routine.
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Equivalence proof - if (I)

IF: If we have a derivation o> ¢+ (v,0’) then C[c]o = o’.

proof
(By induction on the structure of the derivation (let us call it D).)

Say, the last rule in the derivation D is a while-loop.
(other cases are easier and left for self study).

We will reuse the old notation
@ (C[while bdo c]=W.

!

To prove that W(o) = o'.
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Equivalence of Denotational and Operational

semantics

oc>etn iff AleJo=n
o Statement: or>etr iff BleJo=t

o>cko iff ClcJo=0"#1
@ Arithmetic and boolean expressions - straight forward.
@ We will study commands.
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Equivalence proof -if (lI)

Case: Given- we have a derivation o> cF ¢’ and the last rule is a
while-false.

D) o> bl (false,o)
o>while bdo cko

@ o' must be o

@ From D, and using the equivalence for booleans we have that
B[b] = false.

Wi(oc)=0

Therefor W(o) =o.
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Equivalence proof - if (Ill)
Case: Given- we have a derivation o> cF ¢’ and the last rule is a

while-true.

Dy::or>bt (true,6) Dy::01>ct 0y D3::0y>while bdo ck o’
o>while bdo ck o’

@ From D, and using the equivalence for booleans we have that
B[b] = false.
@ From induction hypothesis on D;: C[c]oc = 01 # L
@ From induction hypothesis on D3: W(o;) =0’ # L
e There is k smallest such that Wy (o) = o’.
@ Using if-then-while-skip definition: W;1(c) = Wi(01) =0’
@ k+1 is the smallest.
@ Thus W(o)=o0'
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Equivalence proof - only-if (ll)

@ Induction base: k = 0 - Vacuously true.
@ Inductive base: k = 1.

Pick o, Wi(o)=0"# L

Thus B[b]o = false, and o = ¢’.

Thus D, :: o> bt (false, o)

Dy ::o>bt (false,o)
o>while bdo cko
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Equivalence proof - only-if (I)

Only IF.

@ if C[cJo =0’ # L then
there exists a derivation D o> ct o'.
proof
@ By induction on the structure of c.
(will limit to the case of while-loop only)
@ We are given that there exists a smallest k, such that W, (o) = o’,
we need to prove that:
Vo there exists a derivation D such that o>ct o'.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 38/1

Equivalence proof - only-if (lll)

@ Inductive step: Say for some k > 1, Wy(o) = o’ # L.

@ Since W;_;(o) = L, we have B[b] = true.

@ Thus there exists a derivation Dy :: 6> b+ true.

@ Since o’ # 1,01 =C[cJo#L

@ By structural induction on ¢ there exists a derivation
D, ::o>ct oy.

@ Since Vj, we know that W;(c) = W;_;(o1).

@ Thus k— 1 is the smallest such that W;_(oy) # L.

@ By mathematical induction there exists a derivation
D3 ::oj>while bdo cko’

0. Dy::or>bt (true,6) Dy::01>ct 0y D3::0y>while bdo ck o’

o>while bdo ck o’
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Equivalence among commands Equivalence of axiomatic and operational semantics

@ Two commands ¢; and ¢, are operationally equivalent if
Cler] = Cler]

@ Two commands are axiomatically equivalent,
if VP,Q o
= (Pai{Q} & F {P}e{0) © Validity

@ Soundness

Axiomatic and Operational semantics are equivalent in terms of

expressiveness

Useless assignment: Show that the following two statements are

axiomatically equivalent. © Completeness
while b do cand

if b then {c; while b do c} else skip

Hint: Use the axiomatic proof rules.
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Validity Validity

Validity via Partial correctness

@ {P}c{Q}: Whenever we start the execution of command c in a Validity via total correctness

state that satisfies P, the program either does not terminate or it @ [P]c[Q]: Whenever we start the execution of command c in a state
terminates in a state that satisfies Q. that satisfies P, the program terminates in a state that satisfies Q.
® Vo,P,Q,c ={P}c{0} @ Vo,P,Q,c = [P]c[Q]
if if o> P (true,o)
Vo': then
o> Pt (true,c) A Jo’:
o>chko’ o>cko' A
then o' > QF (true,c’)

o' > QF (true,o’)
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Soundness Completeness

@ All derived triples are valid. @ All derived triples are derivable from empty set of assumptions.
e If+ {P} ¢ {Q}, then = {P} c {Q}. e If = {P} ¢ {Q}, then
e Any derivable assertion is sound with respect to the underlying do’
operational semantics. init-state > {P}c{Q} & (true,o’).
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Acknowledgements Things to Do

@ Meet the TA and get any doubts regarding the Assignment 2
cleared.

@ Prepare your snipers.
@ Assignment 2 due in another 10 days.

@ Suresh Jagannathan
@ George Necula
@ Internet.
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sfo
Questions? //

Answers are not guaranteed!

It's a shame the world is so full of conflict.
On the other hand, I'm a

Aavrpdt
Faculty of IITM!
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