Opening remarks Runtime management

So far

Basic blocks.

Control Flow Graphs.

Dominators, Loops

Liveness analysis

Register allocation (linear scan, Kempe, spilling)

Optimizations in the basic b|ock Copyright ©2001 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or
) classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that

@ Peephole optimizations TSk, roctires pio Spesiic prmisson andor oo RehUes! poveission 1o pUbIe Hom Foskina@es purdeoas
Announcements:

@ Assignment 6 is due in ten days.
Today

@ Runtime management - Procedure calling

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 1/1 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 2/1
Parameter passing Parameter passing - varargs
Call-by-value
@ store values, not addresses What about variable length argument lists?

@ if caller knows that callee expects a variable number

@ caller can pass number as 0" parameter
@ callee can find the number directly

@ if caller doesn’t know anything about it

@ callee must be able to determine number
@ pass address @ first parameter must be closest to FP

@ access to formal is indirect reference to actual

@ never restore on return
@ arrays, structures, strings are a problem

Call-by-reference

Call-by-value-result Consider printf :
@ store values, not addresses @ number of parameters determined by the format string
@ always restore on return @ it assumes the numbers match

@ arrays, structures, strings are a problem

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 3/1 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 4/1

MIPS procedure call convention MIPS procedure call convention

Registers:
| Number | Name | Usage | Philosophy:
0 zero | Constant0 . .
1 at | Reserved for assembler Use full, general calling sequence only when necessary; omit
2,3 | v0,v1 | Expression evaluation, scalar function results portions of it where possible (e.g., avoid using fp register
4-7 a0-a3 | first 4 scalar arguments whenever possible)
8-15 t0—t7 | Temporaries, caller-saved; caller must save to pre- . .
serve across calls Classify routines as:
16-23 | s0-s7 | Callee-saved; must be preserved across calls @ non-leaf routines: routines that call other routines
24,25 | 18,19 Iﬁ?@g";ﬁ{ﬁi’ C:;ailllsler-saved; caller must save to pre- @ leaf routines: routines that do not themselves call other routines
26.27 | k0. k1 | Reserved for OS kernel e leaf routines that require stack storage for locals
2’8 g’p Pointer to global area o leaf routines that do not require stack storage for locals
29 sp Stack pointer
30 s8 (fp) | Callee-saved; must be preserved across calls
31 ra Expression evaluation, pass return address in calls
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 5/1 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 6/1

MIPS procedure call convention MIPS procedure call convention

The stack frame

high memory
argument n Pre Ca”'
. . f argument 1 @ Pass arguments: use registers $a0 ... $a3; remaining arguments
virtual frame pointer ($1p) 3 static link are pushed on the stack along with save space for $a0 ... $a3
o
S locals @ Save caller-saved registers if necessary
£ . © Execute a jal instruction: jumps to target address (callee’s first
- saved $ra g instruction), saves return address in register $ra
temporaries o
N
other saved registers ®
argument build

stack pointer ($sp) low memory

The “locals” can be accessed by a callee.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 7/1 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 8/1

MIPS procedure call convention MIPS procedure call convention

Prologue: .
Epilogue:
@ Leaf procedures that use the stack and non-leaf procedures:)))
© Allocate all stack space needed by routine: @ Copy return values into result registers (if not already there)
@ local variables © Restore saved registers
@ saved registers lw reg, framesize+frameoffset-N($sp)

@ sufficient space for arguments to routines called by this routine

. Get return address
subu $sp, framesize

@ Save registers ($ra, etc.): 1w $31, framesize+frameoffset (Ssp)
sw $31, framesize+frameoffset ($sp) Clean up stack
sw $17,framesizet+frameoffset-4 ($sp) addu S$sp, framesize
sw $16, framesize+frameoffset-8($sp)
where framesize and frameoffset (usually negative) are _
compile-time constants J 531

@ Emit code for routine

©

©

Return

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 9/1 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 10/1

Closing remarks

What did we do today?
@ Runtime management
@ Parameter passing

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 11/1

