
CS6013 - Modern Compilers: Theory and Practise
SSA and optimizations

V. Krishna Nandivada

IIT Madras

*

SSA and optimizations

Copyright c© 2012 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 2 / 1

*

Static Single Assignment (SSA) Form

A sparse program representation for data-flow.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph, ACM TOPLAS 13(4):451–490, Oct 1991

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 3 / 1

*

What is SSA?

Each assignment to a temporary is given a unique name
All of the uses reached by that assignment are renamed
Easy for straight-line code

v ← 4 v0 ← 4
← v+5 ← v0 +5

v ← 6 v1 ← 6
← v+7 ← v1 +7

What about control flow?
⇒ φ -nodes

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 4 / 1

*

What is SSA?

HH
HHH

HHH
HHHj

��
���

���
����

�
���

���
�����

H
HHH

HHH
HHHHj

if (. . .)B1

x← 5B2 x← 3B3

y← xB4

HH
HHH

HHH
HHHj

��
���

���
����

�
���

���
�����

H
HHH

HHH
HHHHj

if (. . .)B1

x0← 5B2 x1← 3B3

x2← φ(x0,x1)

y← x2

B4

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 5 / 1

*

What is SSA?

t← 1B1

t← t+1B2

?

?

?

t0← 1B1

t1← φ(t2, t0)

t2← t1 +1
B2

?

?

?

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 6 / 1

*

Advantages of SSA over use-def chains

More compact representation
Easier to update?
Each use has only one definition
Definitions explicitly merge values
May still reach multiple φ -nodes

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 7 / 1

*

“Flavors” of SSA

Where do we place φ -nodes?
[Condition:]

If two non-null paths x→+ z and y→+ z converge at node z, and
nodes x and y contain assignments to t (in the original program),
then a φ -node for t must be inserted at z (in the new program)
[minimal]

As few as possible subject to condition
[pruned]

As few as possible subject to condition, and no dead φ -nodes

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 8 / 1

*

Dominators revisited

Recall
d dominates v, d DOM v, in a CFG iff all paths from Entry to v
include d

d strictly dominates v

d DOM! v ⇐⇒ d DOM v and d 6= v

DOM(v) = Dominator of v

DOM−1(v) = Dominated by v

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 9 / 1

*

Dominator Tree

Dominator tree: a tree where each node’s children are those nodes it
immediately dominates.

The start node is the root of the tree.
Why is it a tree?

G − exit

 B

C D

E

F

A − entry

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 10 / 1

*

Dominance Frontiers

The dominance frontier of v is the set of nodes DF(v) such that:
v dominates a predecessor of w ∈ DF(v), but
v does not strictly dominate w ∈ DF(v)

DF(v) = {w |
(
∃u ∈ PRED(w)

)
[v DOM u]∧ v DOM! w}

Computing DF:

Let
SUCC(S) =

⋃
s∈S

SUCC(s)

DOM!−1(v) = DOM−1(v)−{v}

Then
DF(v) = SUCC(DOM−1(v))−DOM!−1(v)

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 11 / 1

*

Dominance Frontier: Example

G − exit

 B

C D

E

F

A − entry

DF(v) = SUCC(DOM−1(v))−DOM!−1(v)
where DOM!−1(v) = DOM−1(v)−{v}

v DOM−1(v) SUCC(DOM−1(v))
A {A,B,C,D,E,F,G}
B {B,C,D,E,F,G}
C {C}
D {D}
E {E,F,G}
F {F}
G {G}

v DOM−1(v)−{v} DF(v)
A
B
C
D
E
F
G

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 12 / 1

*

Dominance Frontier: Example

1

2

3 4

5

6

7

8 9

10

A =

A = A =

DF(9)

DF({8,9}) =

DF(10) =

 =

DF(8) =

 =DF(2)

DF({2,8,9,10}) =

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 13 / 1

*

Iterated Dominance Frontier

Extend the dominance frontier mapping from nodes to sets of nodes:

DF(S) =
⋃
n∈S

DF(n)

The iterated dominance frontier DF+(S) is the limit of the sequence:

DF1(S) =DF(S)
DFi+1(S)=DF(S∪DFi(S))

Theorem:
The set of nodes that need φ -nodes for any temporary t is
the iterated dominance frontier DF+(S), where S is the set
of nodes that define t

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 14 / 1

*

Iterated Dominance Frontier Algorithm: DF+(S)
Input: Set of blocks S
Output: DF+(S)
begin

workList← {};
DF+(S)← {};
foreach n ∈ S do

DF+(S)← DF+(S)∪{n};
workList← workList∪{n};

end
while workList 6= {} do

take n from workList;
foreach c ∈ DF(n) do

if c 6∈ DF+(S) then
DF+(S)← DF+(S)∪{c};
workList← workList∪{c};

end
end

end
end

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 15 / 1

*

Inserting φ -nodes (minimal SSA)

foreach t ∈ Temporaries do
S←{n | t ∈ Def(n)}∪Entry;
Compute DF+(S);
foreach n ∈ DF+(S) do

Insert a φ -node for t at n;
end

end

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 16 / 1

*

Inserting fewest φ -nodes (pruned SSA)

Compute global liveness: nodes where each temporary is live-in
foreach t ∈ Temporaries do

if t ∈ Globals then
S←{n | t ∈ Defs(n)}∪Entry;
Compute DF+(S);
foreach n ∈ DF+(S) do

if t live-in at n then
Insert a φ -node for t at n;

end
end

end
end

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 17 / 1

*

Renaming the temporaries

After φ -node insertion, uses of t are either:
original: dominated by the definition that computes t.

If not, then ∃ path to the use that avoids any definition,
which means separate paths from definitions converge
between definition and use, thus inserting another
definition.

ie, each use dominated by an evaluation of t or a φ -node
for t

φ : has a corresponding predecessor p, dominated by the
definition of t (as before)

Thus, walk dominator tree, replacing each definition and its dominated
uses with a new temporary.
Use a stack to hold current name (subscript) for each set of dominated
nodes.
Propagate names from each block to corresponding φ -node operands
of its successors.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 18 / 1

*

Renaming the temporaries
begin

foreach t ∈ Temporaries do count[t]← 0; stack[t]← empty; stack[t].push(0);
Call Rename(Entry);

end
Rename(n) begin

foreach statement I ∈ n do
if stack 6≡ φ then

foreach t ∈ Uses(I) do i← stack[t].top; replace use of t with ti in I;

foreach t ∈ Defs(I) do
i← ++count[t];stack[t].push(i);
replace def of t with ti in I;

foreach s ∈ SUCC(n) do
given n is the jth predecessor of s;
foreach φ ∈ s do

given t is the jth operand of φ ;
i← stack[t].top;
replace jth operand of φ with ti;

foreach c ∈ Children(n) do Rename(c);
foreach statement I ∈ n, t ∈ Defs(I) do stack[t].pop();

end
V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 19 / 1

*

Translating Out of SSA Form

Replace φ -nodes with copy statements in predecessors

HH
HHH

HHH
HHHj

��
���

���
����

�
���

���
�����

H
HHH

HHH
HHHHj

if (. . .)B1

x0← 5B2 x1← 3B3

x2← φ(x0,x1)

y← x2

B4

HHH
HHH

HHH
HHj

���
���

���
���

��
����

���
���

HH
HHH

HHH
HHHj

if (. . .)B1

x0← 5

x2← x0
B2

x1← 3

x2← x1
B3

y← x2B4

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 20 / 1

*

Issues in translation - critical edge split

Translating out φ nodes.
The compiler inserts copy statements in the predecessors.
Is it always safe?
What if the predecessor has more than one successor?

i = 1;
loop

y = i
i = i + 1

endloop
z = i

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 21 / 1

*

Translation - the swap problem

The definition of φ function:
When a block executes all of its φ functions execute concurrently
before any other statement in the block.
All the φ -functions simultaneously read their appropriate input
parameters and simultaneously redefine their targets.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 22 / 1

*

(Swap problem) Normal Form, Optimized SSA,
Incorrect Translation

a ← . . .
b ← . . .

c ← a
a ← b
b ← c

. . . ← a

?

?

?

a0 ← . . .
b0 ← . . .

a1 ← φ(b0,b1)
b1 ← φ(a0,a1)

. . . ← a1

?

?

?

a0 ← . . .
b0 ← . . .
a1 ← b0
b1 ← a0

a1 ← b1
b1 ← a1

. . . ← a1

?

?

?

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 23 / 1

*

Normal Form, Edge-Split Opt SSA, Correct Translation

a ← . . .
b ← . . .

c ← a
a ← b
b ← c

. . . ← a

?

?

?

a0 ← . . .
b0 ← . . .

a1 ← φ(b0,b1)
b1 ← φ(a0,a1)

. . . ← a1

?

?

6

?

a0 ← . . .
b0 ← . . .
a1 ← b0
b1 ← a0

c ← a1
a1 ← b1
b1 ← c

. . . ← a1

?

?

6

?

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 24 / 1

*

Translation

Simply splitting a critical edge does not help.
One simple way:

Step 1: Copy each of the φ function arguments to its own
temporary name.
Step 2: Copy the temps to the appropriate φ -function targets.

Disadvantage: Doubles the number of copy operations.
Way out - Introduce copy only when required.

Detect cases in which φ -functions reference the targets of other φ

functions in the same block.
For each cycle of references - introduce copy instructions.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 25 / 1

*

Self reading: Wegman & Zadeck, Constant Propagation with
Conditional Branches, TOPLAS 13(2):181–210, Apr 1991

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 26 / 1

*

Sparse Conditional Constants

SSA edge: Data flow (def-use) edges in a program in SSA form.
Basic idea: Instead of passing all the constants from all the control
flow edges, pass constants from SSA edges.
Resulting analysis - faster.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 27 / 1

*

Sparse Conditional constants

Works on two worklists:
FlowWorkList (contains program flow edges) and
SSAWorkList (contains SSA edges).

Each flow edge has an executable flag – tells if the φ function at
the destination is to be evaluated because of this flow edge –
initialized to false.

Initialization and termination
Initialize the FlowWorkList to contain the edges exiting the start
node of the program.
The SSAWorkList is initially empty.
Halt execution when both worklists become empty.
Execution may proceed by processing items from either worklist.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 28 / 1

*

Processing flow edges

if e is a flow edge from FlowWorkList then
if ExecutableFlag(e)=false then

ExecutableFlag(e) = true
Perform Visit-φ for all φ -nodes at destination node.
on the destination node, if only one incoming flow-edges is
executable then this this is the first visit to the node
If first visit Perform VisitExpression at the destination node
if the dest node contains one outgoing CFGedge then add the edge
to FlowWorkList

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 29 / 1

