Typed Assembly Language

CS6848 - Principles of Programming Languages What is TAL?

Principles of Programming Languages @ A type system for assembly language(s)

e Has built-in abstractions (tuple, code)
e operators to build new abstraction (V,3,4).

V. Krishna Nandivada e annotations on assembly code.
e an abstraction checker (= type checker)
IT Madras e We will present a quick intro to TAL - details self study.

@ Theorem: Well annotated code cannot violate abstractions.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 2/1

Why Typed Assembly

@ Control flow safety (TAL-0):
e Cannot jump to arbitrary points.
e Has to be well defined.
e Ifitis a call - the arguments must have the ‘right’ properties.

@ Theory
e Simplifies proofs of compiler correctness
e Helps in deeper understanding of compilation

@ Practice o Otherwise?
e Helps in compiler debugging. . @ Memory Safety (TAL-1):
o Software based protection (code over the wire). e No memory access should read or write data object at a given
@ Difference between JVM and TAL? location, unless the program has been granted access to that
location.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 3/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 4/1

TAL description

v = |l (values)
tu= Intfl (types)

e = MOV ry,rselsetry,vielinc rielimp r (code)

R == [r—v,--] (registerfile)

r o= [r:e,-] (regfiletype)

H == [I—(Te),] (codeheap)

A = [1:T,] (heaptype)

s == (H,R,e) (programState)

¢ ranges over constants, / ranges over labels (or addresses).

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 5/1

Soundness

@ A program is stuck if there is no program state s’ such that s —y s'.
@ A program state s goes wrong if 35’ : s =7, s’ and s’ is stuck.

@ We want to provide type rules so that we can claim that
o Well typed programs cannot go wrong.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 7/1

Semantics

A small step operational semantics is given by the reflexive, transitive
closure of the relation — .

—yC programState x programState
(1) (H,R,moV ry,rs;e) —v (H,R[rg — R(rs)],e)
(2) (H,R,set rg,v;e) —v (H,R[rqg — v],e)
(3) (H,R,inc r;e) —v (H,R[r— [R(r)+1]],e)
(4) (H,R,jmpr;e) =y (H,R,e), provided R(r) =1and H(I) = (T,e)

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 6/1

Type rules

Type rules for Values:

(5) Al c:Int
(6) AFL:TA()=T)
Types rules for register files:

AFvit - T(r)=t,---
ATE[r—=v,-]

(7)

Ordering of register file types:

) [ty rn by Pt < [r1 ity] Wwhere m >0

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 8/1

Type rules(cont.)

Type rules for Code:

A T[rg:T(ry)] e

©) A,TEmov ry,rg e
Abv:t AT[rg:tlH

(10) v Mlra:ft-e
AT setryv;e

Fr)=Int AT Fe

11

(1) ATHincr;e

rr=r r<r

(12) (=" _T=<
AT Hjmpr

Type rules for code heaps:

ATke A()=T

(13) AF[l—(T,e)]

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 9/1

Acknowledgements

@ Lecture notes from Jens Palsberg
@ Slides from David Walker

@ Advanced Topics in Types in Programming Languages - Benjamin
Pierce.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 11/1

Type rules(cont.)

Type rules for the program states:

AFH ATFR ATFe

(14) F(H,R,e)

A program state s is well typed if and only if I~ s.
Reading exercise: well-typed program state cannot go wrong.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 10/1

