CS6848 - Principles of Programming Languages

Principles of Programming Languages

@ Extensions to simply typed lambda calculus.
V. Krishna Nandivada @ Pairs, Tuples and records

IIT Madras

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 2/18

Polymorphism - motivation Polymorphism - variations

@ Type systems allow single piece of code to be used with multiple types
are collectively known as polymorphic systems.

. @ Variations:
© AppTwicelnt = Af:Int = Int Ax:Int .f (f x) e Parametric polymorphism: Single piece of code to be typed
AppTwiceRed = Af : (I:Int) — (I:Int).Ax: (1: Int).f (f x) generically (also known as, let polymorphism, first-class
AppTwiceOther = polymorphism, or ML-style polymorphic).
Af:(Int = Int) — (Int — Int).Ax: (Int — Int).f (f x) @ Restricts polymorphism to top-level 1et bindings.

@ Disallows functions from taking polymorphic values as arguments.

@ Uses variables in places of actual types and may instantiate with
actual types if needed.

@ Example: ML, Java Generics

@ Breaks the idea of abstraction: Each significant piece of (let ((apply lambda f. lambda a (f a)))
functionality in a program should be implemented in just one place (let ((a (apply succ 3)))
in the source code. (let ((b (apply zero? 3))) ..

@ Ad-hoc polymorphism - allows a polymorphic value to exhibit
different behaviors when viewed using different types.
@ Example: function Overloading, Java instanceof operator.
@ subtype polymorphism: A single term may get many types using
subsumption.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 3/18 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 4/18
polymorphism.

Parametric Polymorphism - System F

System F

@ Definition of System F - an extension of simply typed lambda
calculus.

Lambda calculus recall
@ Lambda abstraction is used to abstract terms out of terms.
@ Application is used to supply values for the abstract types.

@ System F discovered by Jean-Yves Girard (1972)
@ Polymorphic lambda-calculus by John Reynolds (1974)

@ Also called second-order lambda-calculus - allows quantification
over types, along with terms.

| \

System F

@ A mechanism for abstracting types of out terms and fill them later.
@ A new form of abstraction:

@ AX.e—parameter is a type.
e Application — ¢[f]
e called type abstractions and type applications (or instantiation).

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 5/18 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 6/18

Extension

‘ ‘@

Type abstraction and application

(AX.e)[n] = [X — n1]e @ Expressions:

e =---|AX.elelt]
vi=--|AX.e
o °
id=2AXAx:Xx @ Types
to=---|VX.t

Type of id : VX.X — X @ typing context:

applyTwice = AXAf : X = X.Aa: X f (f a) Az=9|Ax:1|AX

Type of applyTwice : VX.(X - X) > X = X

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 7/18 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 8/18

Typing rules

° °
t lication 1 e type abstraction AXFe
e application 1 —
ype app e][t]]—>e'1[t1] Al—lXel :VX.tl
o o
. L AF el VX.II
type appliation 2 — (AX.e;)[r1] — [X — t1]e type application

Al e [tz] : [X — tz]l‘]

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 9/18 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 10/18

Polymorpfic sts

@ id=AXAx:Xx

id VXX —X List of uniform members

@ nil :VX.List X
@ cons: VX.X — List X — List X
@ isnil: VX.List X — bool

type application: id [Int]: Int — Int

value application: id[Int] 0=0: Int

@ applyTwice = AX.Af : X — X.Aa : Xf (f a) @ head: VX.List X — X
@ tail:VX.List X — List X

ApplyTwicelnts = applyTwice [Int |

applyTwice([Int |(Ax : Int .succ(succx)) 3 =7

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 11/18 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 12/18

Church lterals

Booleans
@ Recall: Simply typed lambda calculus - we cannot type Ax.x x. @ tru=ArAfi
@ How about in System F? @ fls=AtAff
© selfApp : (VX.X — X) = (VX.X — X) @ Idea: A predicate will return tru or f1s.

@ Wecanwrite if pred sl else s2as(pred sl s2)

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 13/18 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 14/18

Building on booleans Building pairs

@ pair =Af.As.Ab.bf s
@ To build a pair: pair v w
@ fst=Apptru

@ and=Ab.Acbhbc fls
@ or=?AbAchtruc

@ not =7
@ snd=Ap.p fls

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 15/18 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 16/18

Church numerals (Recall) Type inference algorithm (Hindley-Milner)

Input: G: set of type equations (derived from a given program).

@ ¢p=As.Az.
Co=AS.AZ. 2 Output: Unification o

@ ci=AsAz 52
Q failure = false; o= {}.

@ while G # ¢ and — failure do

Choose and remove an equation ¢ from G. Say ec is (s =1¢).

If s and r are variables, or s and ¢ are both Int then continue.
lfs=s; —>s,andt=1 — n,then G=GU{s1 =11,50 =1}

If (s=Int and ¢ is an arrow type) or vice versa then failure = t rue.
If s is a variable that does not occur in ¢, then 6 = o o [s :=1].

If 7 is a variable that does not occur in s, then 6 = o o [t :=35s].

If s # ¢ and either s is a variable that occurs in ¢ or vice versa then
failure = true.

@ cy=AsAz. 552
@ c3=AsAz.5s552

Intuition
@ Each number n is represented by a combinator ¢,,.

@ ¢, takes an argument s (for successor) and z (for zero) and apply s,
n times, to z.

@ ¢o and £1s are exactly the same!

000000

@ This representation is similarto the unary representation we _
studies before. © end-while.

@ scc=AnAsAzs (nsz) Q if (failure = true) then output “Does not type check”. Else o/p o.,

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 17/18 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 18/18

Examples - derive the types

@ a=AxAyx @ Ensures that we get finite types.
o b=Af. (f3) @ If we allow recursive types - the occurs check can be omitted.
o ¢ = Ax. (+(head x) 3) e Sayin (s=1), s=Aandr=A — B. Resulting type?
B ' @ What if we are interested in System F - what happens to the type
@ d=Af. ((f3),(f Ay.y)) inference? (undecidable in general)
@ appTwice = Af. Ax.ffx

Self study.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 19/18 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 20/18

