CS6848 - Principles of Programming Languages Principles of Programming Languages

V. Krishna Nandivada

IIT Madras

Polymorphism - motivation

- AppTwiceInt = λf : Int \rightarrow Int $.\lambda x$: Int .f (f x)AppTwiceRcd = $\lambda f: (l: Int) \rightarrow (l: Int).\lambda x: (l: Int).f(fx)$ AppTwiceOther = $\lambda f: (\operatorname{Int} \to \operatorname{Int}) \to (\operatorname{Int} \to \operatorname{Int}) . \lambda x: (\operatorname{Int} \to \operatorname{Int}) . f(fx)$
- Breaks the idea of abstraction: Each significant piece of functionality in a program should be implemented in just one place in the source code.

Recap

- Extensions to simply typed lambda calculus.
- Pairs, Tuples and records

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Polymorphism - variations

- Type systems allow single piece of code to be used with multiple types are collectively known as polymorphic systems.
- Variations:

polymorphism.

- Parametric polymorphism: Single piece of code to be typed generically (also known as, let polymorphism, first-class polymorphism, or ML-style polymorphic).
 - Restricts polymorphism to top-level let bindings.
 - Disallows functions from taking polymorphic values as arguments.
 - Uses variables in places of actual types and may instantiate with actual types if needed.
 - Example: ML, Java Generics

```
(let ((apply lambda f. lambda a (f a)))
 (let ((a (apply succ 3)))
   (let ((b (apply zero? 3))) ...
```

- Ad-hoc polymorphism allows a polymorphic value to exhibit different behaviors when viewed using different types.
 - Example: function Overloading, Java instanceof operator.
- subtype polymorphism: A single term may get many types using subsumption.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras)

Parametric Polymorphism - System F

- System F discovered by Jean-Yves Girard (1972)
- Polymorphic lambda-calculus by John Reynolds (1974)
- Also called second-order lambda-calculus allows quantification over types, along with terms.

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

5 / 18

Type abstraction and application

•

$$(\lambda X.e)[t_1] \rightarrow [X \rightarrow t_1]e$$

Examples

.

$$id = \lambda X.\lambda x : X.x$$

Type of $id: \forall X.X \rightarrow X$

$$applyTwice = \lambda X.\lambda f : X \rightarrow X.\lambda a : X f (f a)$$

Type of *applyTwice*: $\forall X.(X \rightarrow X) \rightarrow X \rightarrow X$

System F

 Definition of System F - an extension of simply typed lambda calculus.

Lambda calculus recall

- Lambda abstraction is used to abstract terms out of terms.
- Application is used to supply values for the abstract types.

System F

- A mechanism for abstracting types of out terms and fill them later.
- A new form of abstraction:
 - $\lambda X.e$ parameter is a type.
 - Application -e[t]
 - called type abstractions and type applications (or instantiation).

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

6/1

Extension

Expressions:

$$e ::= \cdots |\lambda X.e| e[t]$$

Values

$$v ::= \cdots | \lambda X.e$$

Types

$$t ::= \cdots | \forall X.t$$

typing context:

$$A ::= \phi | A, x : t | A, X$$

Evaluation

•

type application 1 —
$$\dfrac{e_1 o e_1'}{e_1[t_1] o e_1'[t_1]}$$

type appliation 2 —
$$(\lambda X.e_1)[t_1] \rightarrow [X \rightarrow t_1]e_1$$

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Typing rules

type abstraction
$$A, X \vdash e_1 : t_1$$

 $A \vdash \lambda X.e_1 : \forall X.t_1$

type application
$$\cfrac{A \vdash e_1 : \forall X.t_1}{A \vdash e_1[t_2] : [X \to t_2]t_1}$$

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Examples

• $id = \lambda X.\lambda x : X x$

 $id: \forall X.X \rightarrow X$

type application: id [Int]: Int \rightarrow Int

value application: id[Int] 0 = 0: Int

• $applyTwice = \lambda X.\lambda f: X \to X.\lambda a: Xf (f a)$

ApplyTwiceInts = *applyTwice* [Int]

 $applyTwice[Int](\lambda x : Int .succ(succx)) 3 = 7$

Polymorphic lists

List of uniform members

- nil: $\forall X.List X$
- cons: $\forall X.X \rightarrow List X \rightarrow List X$
- isnil: $\forall X.List X \rightarrow bool$
- head: $\forall X.List X \rightarrow X$
- tail: $\forall X.List\ X \rightarrow List\ X$

Example

• Recall: Simply typed lambda calculus - we cannot type $\lambda x.x.x.$

• How about in System F?

• selfApp : $(\forall X.X \rightarrow X) \rightarrow (\forall X.X \rightarrow X)$

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Church literals

Booleans

- tru = $\lambda t \cdot \lambda f \cdot t$
- fls = $\lambda t.\lambda f.f$
- Idea: A predicate will return tru or fls.
- We can write if pred s1 else s2 as (pred s1 s2)

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Building on booleans

- and = $\lambda b.\lambda c.b.c.$ fls
- or = ? $\lambda b.\lambda c.b$ tru c
- not = ?

Building pairs

- pair = $\lambda f.\lambda s.\lambda b.bfs$
- To build a pair: pair v w
- fst = $\lambda p.p$ tru
- snd = $\lambda p.p$ fls

Church numerals

- $c_0 = \lambda s. \lambda z. z$
- $c_1 = \lambda s. \lambda z. s z$
- $c_2 = \lambda s. \lambda z. s s z$
- $c_3 = \lambda s. \lambda z. s s s z$

Intuition

- Each number n is represented by a combinator c_n .
- c_n takes an argument s (for successor) and z (for zero) and apply s,
 n times, to z.
- \bullet c_0 and fls are exactly the same!
- This representation is similar to the unary representation we studies before.
- $scc = \lambda n. \lambda s. \lambda z. s (n s z)$

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

17 / 18

Examples - derive the types

- $a = \lambda x. \lambda y. x$
- $b = \lambda f$. (*f* 3)
- $c = \lambda x. (+(head x) 3)$
- $d = \lambda f. ((f 3), (f \lambda y. y))$
- appTwice = λf . λx . f f x

(Recall) Type inference algorithm (Hindley-Milner)

Input: G: set of type equations (derived from a given program).

- **Output**: Unification σ
- failure = false; $\sigma = \{\}$.
 while $G \neq \phi$ and \neg failure do
 - Choose and remove an equation e from G. Say $e\sigma$ is (s = t).
 - 2 If s and t are variables, or s and t are both Int then continue.
 - **3** If $s = s_1 \rightarrow s_2$ and $t = t_1 \rightarrow t_2$, then $G = G \cup \{s_1 = t_1, s_2 = t_2\}$.
 - 4 If (s = Int and t is an arrow type) or vice versa then failure = true.
 - **3** If *s* is a variable that does not occur in *t*, then $\sigma = \sigma o$ [s := t].
 - **6** If *t* is a variable that does not occur in *s*, then $\sigma = \sigma \ o \ [t := s]$.
 - If $s \neq t$ and either s is a variable that occurs in t or vice versa then failure = true.
- end-while.
- if (failure = true) then output "Does not type check". Else o/p σ .

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

10/1

"Occurs" check

- Ensures that we get finite types.
- If we allow recursive types the occurs check can be omitted.
 - Say in (s = t), s = A and $t = A \rightarrow B$. Resulting type?
- What if we are interested in System F what happens to the type inference? (undecidable in general)

Self study.

