Acknowledgement

CS3310 - Language translator Lab

Introduction to Tools

Source taken from Jens Palsberg @UCLA
V. Krishna Nandivada

IIT Madras

V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 2/1

The Java Compier Compiler (JavaGO)

@ Can be thought of as “Lex and Yacc for Java.”
@ |tis based on LL(k) rather than LALR(1).
@ Grammars are written in EBNF.

@ The Java Compiler Compiler transforms an EBNF grammar into
an LL(k) parser.

@ ThedavaCC grammar can have embedded action code writtenin
Java, just like a Yacc grammar can have embedded action code
written in C.

@ The lookahead can be changed by writing LOOKAHEAD(...).
@ The whole input is given in just one file (not two).

V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 3/1 V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 4/1

JavaCC input

One file
@ header
@ token specification for lexical analysis
@ grammar

Example of a token specification:

TOKEN : {

< INTEGER_LITERAL: (["1"-="9"] (["O"-=-"9"])x
}

Example of a production:

void StatementListReturn ()
{1
{

(Statement ())* "return" Expression() ";"

}

V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012

V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012

"O"

)

5/1

Generating a parser with JavaCC

javacc fortran.jj //_generates a parser with a specified name

// Sample Main.java
public class Main {
public static void main(String [] args) {
try {
new FortranParser (System.in) .Goal();
System.out.println ("Program parsed successfully");
}
catch (ParseException e) {
System.out.println(e.toString());

javac Main.java //_Main.djava contains a call of the parser
java Main < prog.f // parses the program prog.f

V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 6/1

The Visitor Pattern

@ The visitor design pattern is a way of separating an algorithm from
an object structure on which it operates.

@ Implication: the ability to add new operations to existing object
structures without modifying those structures.

@ Interesting in object oriented programming and software
engineering.

Requirements

@ The set of classes must be fixed in advance, and
@ each class must have an accept method.

V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 8/1

Motivate Visitor by summing an integer list 1/3 approach: instanceof and type casts

List 1; // The List-object

int sum = 0;

boolean proceed = true;
interface List {} while (proceed) {

if (1 instanceof Nil)
class Nil implements List {}

proceed = false;
else if (1 instanceof Cons) {
class Cons implements List { sum = sum + ((Cons) 1) .head;
int head; 1 = ((Cons) 1).tail;

List tail; // Notice the two type casts!

}

Adv: The code is written without touching the classes Ni1 and Cons.
Drawback: The code constantly uses explicit type cast and
instanceof operations.

V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 9/1 V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 10/1

2/3 approach: dedicated methods 2/3 approach: dedicated methods (contd)

class Nil implements List {
public int sum() {
return 0;

@ The first approach is NOT object-oriented!

@ Classical method to access parts of an object: dedicated methods }
which both access and act on the subobjects. }
class Cons implements List {
interface List { int head;
int sum{() ; List tail;
} public int sum() {
return head + tail.sum();
}
@ We can now compute the sum of all components of a given }

List-object 11 by writing 11. sum (). @ Adv: The type casts and instanceof operations have disappeared,

and the code can be written in a systematic way.
@ Drawback: For each new operation, new dedicated methods

have to be written, and all classes must be recompiled.
V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 11/1 V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 12/1

3/3 approach: Visitor pattern 3/3 approach: Visitor pattern

The Idea: @ The purpose of the accept methods is to invoke the visit method in
@ Divide the code into an object structure and a Visitor. the Visitor which can handle the current object.

@ Insert an accept method in each class. Each accept method takes
a Visitor as argument.

@ A Visitor contains a visit method for each class (overloading!) A
visit method for a class C takes an argument of type C.

class Nil implements List {
public void accept (Visitor v) {
v.visit (this);

}
interface List { J
. . class Cons implements List {
void accept (Visitor v); int head:
14
) List tail;

\ £ Visi
interface Visitor { public void accept (Visitor v) {

void visit (Nil x); v.Visit (this)
. ’

void visit (Cons x);

V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 13/1 V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 14/1

3/3 approach: Visitor pattern 3/3 approach: Visitor pattern control flow

@ The control flow goes back and forth between the visit methods in

the Visitor and the accept methods in the object structure. class Nil implements List {
public void accept (Visitor v) {

. . T interf List . .
class SumVisitor implements Visitor { lnviida?%wlf (Visitor i v.visit (this); } }
int sum = 0; interfa;éwVisitor ; ! class Cons implements List {
publlc void visit (Nll X) {} void visit (Nil x); int head;
; ; g List tail;
public void visit (Cons x) { void visit (Cons x); } 1St taili o
public void accept (Visitor v) {
sum = sum + x.head; v.visit (this); } }
x.tail.accept (this);
} class SumVisitor implements Visitor {
} int sum = 0;

public void visit (Nil x) {}

public void wvisit (Cons x) {
SumVisitor sv = new SumVisitor(); sum = sum + x.head;

1l.accept (sv); x.tail.accept (this); } }

System.out.println (sv.sum); e
Y P ! SumVisitor sv = new SumVisitor();

l.accept (sv);

The visit methods describe both

1) actions, and 2) access of subobjects.
V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 15/1 V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 16 /1

Visiors: Summary

| detail Frequent type casts | Frequent recompilation o . _ _ _
1. | Instanceof + type-cast Yes No @ Visitor makes adding new operations easy. Simply write a new
2. | Dedicated methods No Yes visitor.
3. | Visitor pattern No No @ A visitor gathers related operations. It also separates unrelated
@ The Visitor pattern combines the advantages of the two other one.s. _ _ _
approaches. @ Adding new classes to the object structure is hard. Key consid-
eration: are you most likely to change the algorithm applied over
@ Advantage of Visitors: New methods without recompilation! an object structure, or are you most like to change the classes of

@ Requirement for using Visitors: All classes must have an accept objects that make up the structure.
method. @ Visitors can accumulate state.
@ Visitor can break encapsulation. Visitor’s approach assumes that

_ _ the interface of the data structure classes is powerful enough to let
@ JJTree (from Sun Microsystems), the Java Tree Builder (from Purdue visitors do their job. As a result, the pattern often forces you to

University), both frontends for The JavaCC from Sun Microsystems. provide public operations that access internal state, which may _
compromise its encapsulation.

Tools that use the Visitor pattern:

@ ANTLR generates default visitors for its parse trees.

V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 17 /1 V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 18/1

Java Tree buider

@ The Java Tree Builder (JTB) has been developed here at Purdue
(my ex group).
@ JTB is a frontend for The Java Compiler Compiler.

@ JTB supports the building of syntax trees which can be traversed
using visitors. Q: Why is it interesting?
@ JTB transforms a bare JavaCC grammar into three components:

e a JavaCC grammar with embedded Java code for building a syntax
tree;

e one class for every form of syntax tree node; and

e a default visitor which can do a depth-first traversal of a syntax tree.

V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 19/1 V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 20/1

The Java Tree Builder Invoking JTB

jtb fortran.jj //_generates jtb.out.j]
The produced JavaCC grammar can then be processed by the Java Com- javacc jtb.out.jj // generates a parser with a specified name
piler Compiler to give a parser which produces syntax trees. // _Sample Main.java:
public class Main {
The produced syntax trees can now be traversed by a Java program by public static void main(String [] args) {
writing subclasses of the default visitor. try | .
Node root = new FortranParser (System.in) .Goal();

System.out.println ("Program parsed successfully");
root.accept (new GJINoArguDepthFirst ());

Program

}

. catch (ParseException e) {
JavaCC — JTB — JavaCC grammar— Java Compiler — Parser

grammar with embedded Compiler System.out.println(e.toString());
Java code] }
}

Syntax-tree-node Syntax tree }

classes with accept methods

Default visitor javac Main.java //Main. java contains a call of the parser
and calls to visitors

java Main < prog.f //builds a syntax tree for prog.f, and
executes the visitors
V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 21 /1 V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 22 /1
(simplified) Example (simplified) Example

For example, consider the Java production

. . JTB produces a syntax-tree-node class for Assignment:
void Assignment () : {}

{PrimaryExpression () AssignmentOperator () Expression()} . . .
public class Assignment implements Node {

PrimaryExpression £0; AssignmentOperator f1;

JTB produces: Expression f2;

Assignment Assignment () : public Assignment (PrimaryExpression n0,

{ PrimaryExpression n0; AssignmentOperator nl,
AssignmentOperator nl; Expression n2)
Expression n2; {} } { £0 = n0; f1 = nl; £2 = n2; }

{ n0=PrimaryExpression ()
nl=AssignmentOperator ()
n2=Expression ()

{ return new Assignment (nO,nl,n2); }

public void accept (visitor.Visitor v) {
v.visit (this);

} Notice the accept method; it invokes the method visit for
Notice that the production returns a syntax tree represented as an Assignment in the default visitor.
Assignment object.

V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 23/1 V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 24 /1

(simplified) Example
The default visitor looks like this:

public class DepthFirstVisitor implements Visitor {
//
// f£0 -> PrimaryExpression ()
// fl1 —=> AssignmentOperator ()
// £2 —-> Expression()
//
public void wvisit (Assignment n) {
n.f0.accept (this);
n.fl.accept (this);

n.f2.accept (this);
Pl

Notice the body of the method which visits each of the three
subtrees of the Assignment node.

V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 25/1

(simplified) Example (multiple visitors in action)

Here is an example of a program which operates on syntax trees for Java
programs. The program prints the right-hand side of every assignment. The
entire program is six lines:

public class VprintAssignRHS extends DepthFirstVisitor {
void wvisit (Assignment n) {
VPrettyPrinter v = new VPrettyPrinter();
n.f2.accept (v); v.out.println();
n.f2.accept (this);
Pl

When this visitor is passed to the root of the syntax tree, the depth-first
traversal will begin, and when Assignment nodes are reached, the method
visit in VprintAssignRHS is executed.

VPrettyPrinter is a visitor that pretty prints Java programs.

JTB is bootstrapped.

V.Krishna Nandivada (IIT Madras) CS3310 - Aug 2012 26/1

