
CS3300 - Compiler Design
Syntax Directed Translation

V. Krishna Nandivada

IIT Madras

*

Syntax-Directed Translation

Attach rules or program fragments to productions in a grammar.
Syntax directed definition (SDD)
E1→ E2 +T E1.code = E2.code||T.code||′+′

Syntax directed translation Scheme (SDT)
E→ E+T {print ’+’} // semantic action
F→ id {print id.val}

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 2 / 29

*

SDD and SDT scheme

SDD: Specifies the values of attributes by associating semantic
rules with the productions.
SDT scheme: embeds program fragments (also called semantic
actions) within production bodies.

The position of the action defines the order in which the action is
executed (in the middle of production or end).

SDD is easier to read; easy for specification.
SDT scheme – can be more efficient; easy for implementation.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 3 / 29

*

Example: SDD vs SDT scheme – infix to postfix trans

SDTScheme
E→ E+T {print′+′}
E→ E−T {print′−′}
E→ T
T→ 0 {print′0′}
T→ 1 {print′1′}
· · ·
T→ 9 {print′9′}

SDD
E→ E+T E.code = E.code||T.code||′+′
E→ E−T E.code = E.code||T.code||′−′
E→ T E.code = T.code
T→ 0 T.code =′ 0′

T→ 1 T.code =′ 1′

· · ·
T→ 9 T.code =′ 9′

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 4 / 29

*

Syntax directed translation - overview

1 Construct a parse tree
2 Compute the values of the attributes at the nodes of the tree by

visiting the tree

Key: We don’t need to build a parse tree all the time.
Translation can be done during parsing.

class of SDTs called “L-attributed translations”.
class of SDTs called “S-attributed translations”.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 5 / 29

*

Syntax directed definition

SDD is a CFG along with attributes and rules.
An attribute is associated with grammar symbols (attribute
grammar).
Rules are are associated with productions.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 6 / 29

*

Attributes

Attribute is any quantity associated with a programming construct.
Example: data types, line numbers, instruction details

Two kinds of attributes: for a non-terminal A, at a parse tree node N

A synthesized attribute: defined by a semantic rule associated
with the production at N.

defined only in terms of attribute values at the children of N and at
N itself.
An inherited attribute: defined by a semantic rule associated with
the parent production of N.

defined only in terms of attribute values at the parent of N siblings
of N and at N itself.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 7 / 29

*

Specifying the actions: Attribute grammars

Idea: attribute the syntax tree

can add attributes (fields) to each node
specify equations to define values (unique)
can use attributes from parent and children

Example: to ensure that constants are immutable:
add type and class attributes to expression nodes
rules for production on := that

1 check that LHS.class is variable
2 check that LHS.type and RHS.type are consistent or conform

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 8 / 29

*

Attribute grammars

To formalize such systems Knuth introduced attribute grammars:
grammar-based specification of tree attributes
value assignments associated with productions
each attribute uniquely, locally defined
label identical terms uniquely

Can specify context-sensitive actions with attribute grammars

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 9 / 29

*

Example

PRODUCTION SEMANTIC RULES

D → T L L.in := T.type
T → int T.type := integer
T → real T.type := real
L → L1 , id L1.in := L.in

addtype(id.entry,L.in)
L → id addtype(id.entry,L.in)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 10 / 29

*

Example: Evaluate signed binary numbers

PRODUCTION SEMANTIC RULES

NUM → SIGN LIST LIST.pos := 0
if SIGN.neg

NUM.val := -LIST.val
else

NUM.val := LIST.val
SIGN→ + SIGN.neg := false
SIGN→ - SIGN.neg := true
LIST → BIT BIT.pos := LIST.pos

LIST.val := BIT.val
LIST → LIST1 BIT LIST1.pos := LIST.pos + 1

BIT.pos := LIST.pos
LIST.val := LIST1.val + BIT.val

BIT → 0 BIT.val := 0
BIT → 1 BIT.val := 2BIT.pos

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 11 / 29

*

Example (continued)

The attributed parse tree for -101:

val: -5NUM

neg: TSIGN

-

pos: 0

val: 5

LIST

pos: 1

val: 4

LIST

pos: 2

val: 4

LIST

pos: 2

val: 4

BIT

1

pos: 1

val: 0

BIT

0

pos: 0

val: 1

BIT

1

val and neg are
synthesized attributes
pos is an inherited
attribute

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 12 / 29

*

Dependences between attributes

values are computed from constants & other attributes
synthesized attribute – value computed from children
inherited attribute – value computed from siblings & parent
key notion: induced dependency graph

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 13 / 29

*

The attribute dependency graph

nodes represent attributes
edges represent flow of values
graph is specific to parse tree
size is related to parse tree’s size
can be built alongside parse tree

The dependency graph must be acyclic
Evaluation order:

topological sort the dependency graph to order attributes
using this order, evaluate the rules

The order depends on both the grammar and the input string

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 14 / 29

*

Example (continued)

The attribute dependency graph:

val: -5NUM

neg: TSIGN

-

pos: 0

val: 5

LIST0

pos: 1

val: 4

LIST1

pos: 2

val: 4

LIST2

pos: 2

val: 4

BIT0

1

pos: 1

val: 0

BIT1

0

pos: 0

val: 1

BIT2

1

0

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 15 / 29

*

Example: A topological order

1 SIGN.neg
2 LIST0.pos
3 LIST1.pos
4 LIST2.pos
5 BIT0.pos
6 BIT1.pos
7 BIT2.pos
8 BIT0.val
9 LIST2.val

10 BIT1.val
11 LIST1.val
12 BIT2.val
13 LIST0.val
14 NUM.val

Evaluating in this order yields NUM.val: -5

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 16 / 29

*

Evaluation strategies

Parse-tree methods (dynamic)
1 build the parse tree
2 build the dependency graph
3 topological sort the graph
4 evaluate it (cyclic graph fails)

What if there are cycles?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 17 / 29

*

Avoiding cycles

Hard to tell, for a given grammar, whether there exists any parse
tree whoe depdency graphs have cycles.
Focus on classes of SDD’s that guarantee an evaluation order –
do not permit dependency graphs with cycles.

L-attributed – class of SDTs called “L-attributed translations”.
S-attributed – class of SDTs called “S-attributed translations”.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 18 / 29

*

Top-down (LL) on-the-fly one-pass evaluation

L-attributed grammar:
Informally – dependency-graph edges may go from left to right, not
other way around.
given production A→ X1X2 · · ·Xn

inherited attributes of Xj depend only on:
1 inherited attributes of A
2 arbitrary attributes of X1,X2, · · ·Xj−1

synthesized attributes of A depend only on its inherited attributes
and arbitrary RHS attributes
synthesized attributes of an action depends only on its inherited
attributes

i.e., evaluation order:
Inh(A), Inh(X1), Syn(X1), . . . , Inh(Xn), Syn(Xn), Syn(A)
This is precisely the order of evaluation for an LL parser

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 19 / 29

*

Bottom-up (LR) on-the-fly one-pass evaluation

S-attributed grammar:
L-attributed
only synthesized attributes for non-terminals
actions at far right of a RHS

Can evaluate S-attributed in one bottom-up (LR) pass.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 20 / 29

*

Evaluate S-attributed grammar in bottom-up parsing

Evaluate it in any bottum-up order of the nodes in the parse tree.
(One option:) Apply postorder to the root of the parse tree:
void postorder (N) {

for (each child C of N)
do
postorder(C);

done
evaluate the attributes associated with N;

}

post order traversal of the parse tree corresponds to the exact
order in which the bottom-up parsing builds the parse tree.
Thus, we can evaluate S-attributed in one bottom-up (LR) pass.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 21 / 29

*

Inherited Vs Synthesised attributes

Synthesized attributes are limited

Inherited attributes (are good): derive values from constants, parents,
siblings

used to express context (context-sensitive checking)
inherited attributes are more “natural”

We want to use both kinds of attributes
can always rewrite L-attributed LL grammars (using markers and
copying) to avoid inherited attribute problems with LR

Self reading (if interested) – Dragon book Section 5.5.4.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 22 / 29

*

LL parsers and actions

How does an LL parser handle (aka - execute) actions?
Expand productions before scanning RHS symbols, so:

push actions onto parse stack like other grammar symbols
pop and perform action when it comes to top of parse stack

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 23 / 29

*

LL parsers and actions

push EOF
push Start Symbol
token← next token()
repeat

pop X
if X is a terminal or EOF then

if X = token then
token← next token()

else error()
else if X is an action

perform X
else /* X is a non-terminal */

if M[X,token] = X→ Y1Y2 · · ·Yk then
push Yk,Yk−1, · · · ,Y1

else error()
until X = EOF

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 24 / 29

*

LR parsers and action symbols

What about LR parsers?
Scan entire RHS before applying production, so:

cannot perform actions until entire RHS scanned
can only place actions at very end of RHS of production
introduce new marker non-terminals and corresponding
productions to get around this restriction†

A→ w action β

becomes
A→Mβ

M→ w action

†yacc, bison, CUP do this automatically

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 25 / 29

*

Action-controlled semantic stacks

Approach:
stack is managed explicitly by action routines
actions take arguments from top of stack
actions place results back on stack

Advantages:
actions can directly access entries in stack without popping
(efficient)

Disadvantages:
implementation is exposed
action routines must include explicit code to manage stack (or use
stack abstract data type).

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 26 / 29

*

LR parser-controlled semantic stacks

Idea: let parser manage the semantic stack
LR parser-controlled semantic stacks:

parse stack contains already parsed symbols
maintain semantic values in parallel with their symbols
add space in parse stack or parallel stack for semantic values
every matched grammar symbol has semantic value
pop semantic values along with symbols

⇒ LR parsers have a very nice fit with semantic processing

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 27 / 29

*

LL parser-controlled semantic stacks

Problems:
parse stack contains predicted symbols, not yet matched
often need semantic value after its corresponding symbol is
popped

Solution:
use separate semantic stack
push entries on semantic stack along with their symbols
on completion of production, pop its RHS’s semantic values

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 28 / 29

*

Attribute Grammars

Advantages
clean formalism
automatic generation of evaluator
high-level specification

Disadvantages
evaluation strategy determines efficiency
increased space requirements
parse tree evaluators need dependency graph
results distributed over tree
circularity testing

Intel’s 80286 Pascal compiler used an attribute grammar evaluator to
perform context-sensitive analysis.
Historically, attribute grammar evaluators have been deemed too large
and expensive for commercial-quality compilers.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 29 / 29

