Syntax-Directed Translation

CS3300 - Compiler Design

@ Attach rules or program fragments to productions in a grammar.

Syntax Directed Translation
@ Syntax directed definition (SDD)

@ Ey > Ex+T E\.code = Ey.code||T .code||'+'
V. Krishna Nandivada @ Syntax directed translation Scheme (SDT)
IIT Madras @ ESE+T {print "+’} // semantic action
@ F—id {print id.val}
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 2/29

SDD and SDT scheme Example: SDD vs SDT scheme — infix to postfix trans

@ SDD: Specifies the values of attributes by associating semantic SDTScheme SDD
rules with the productions. . E—E+T A{prinf+'} E—E+T E.code=E.code||T.code||'+
@ SDT scheme: embeds program fragments (also called semantic E—E-T {prin'~'} E—E—T E.code= E.code||T.code||'~'
actions) within production bodies. EST ET E.code — T .code
e The position of the action defines the order in which the action is 10 ' ™
executed (in the middle of production or end). ;: (1) EZZ;,?% ;: (1) ;'EZZZ :, (1),
@ SDD is easier to read; easy for specification.] '
@ SDT scheme — can be more efficient; easy for implementation. T—9 {print9'} T —9 T.code ='9

4/29

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 3/29 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019

Syntax directed translation - overview

@ Construct a parse tree

© Compute the values of the attributes at the nodes of the tree by
visiting the tree

Key: We don'’t need to build a parse tree all the time.
@ Translation can be done during parsing.

o class of SDTs called “L-attributed translations”.
e class of SDTs called “S-attributed translations”.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 5/29

Attributes

@ Attribute is any quantity associated with a programming construct.
@ Example: data types, line numbers, instruction details

Two kinds of attributes: for a non-terminal A, at a parse tree node N

@ A synthesized attribute: defined by a semantic rule associated
with the production at N.

defined only in terms of attribute values at the children of N and at
N itself.

@ An inherited attribute: defined by a semantic rule associated with
the parent production of N.

defined only in terms of attribute values at the parent of N siblings
of N and at N itself.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 7129

Syntax directed definition

@ SDD is a CFG along with attributes and rules.

@ An attribute is associated with grammar symbols (attribute
grammar).

@ Rules are are associated with productions.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 6/29

Specifying the actions: Attribute grammars

Idea: attribute the syntax tree

@ can add attributes (fields) to each node
@ specify equations to define values (unique)
@ can use attributes from parent and children

Example: to ensure that constants are immutable:

@ add type and class attributes to expression nodes
@ rules for production on : = that

@ check that LHS.class is variable
@ check that LHS.type and RHS.type are consistent or conform

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 8/29

Attibute grammars

To formalize such systems Knuth introduced attribute grammars: PRODUCTION | SEMANTIC RULES

@ grammar-based specification of tree attributes D —TL L.in := T.type

@ value assignments associated with productions T — int T .type := integer

o labl dontcal torms Unicuely T real | Typei—real

_ umiquely L — Ly,id | Ly.in:=Lin
Can specify context-sensitive actions with attribute grammars addtype(id.entry, L.in)
L — id addtype(id.entry, L.in)

V.Krishna Nandivada (lIT Madras) CS3300 - Aug 2019 9/29 V.Krishna Nandivada (lIT Madras) CS3300 - Aug 2019 10/29

Example: Evaluate signed binary numbers Example (continued)

The attributed parse tree for —-101:

PRODUCTION SEMANTIC RULES
NUM — SIGN LIST | LIST.pos :=0
if SIGN.neg
NUM.val := -LIST.val
else SIGN (neg: T
NUM.val := LIST.val
SIGN — + SIGN.neg := false @ valand neg are
SIGN — - SIGN.neg := true synthesized attributes
LIST — BIT BIT.pos := LIST.pos @ pos is an inherited

LIST.val := BIT.val attribute

LIST — LIST, BIT | LIST;.pos :=LIST.pos + 1
BIT.pos := LIST.pos

LIST.val := LIST;.val + BIT.val
BIT —0 BlT.val := 0

BIT —1 BIT.val := 2BITros

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 11/29 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 12/29

Dependences between attributes The attribute dependency graph

@ nodes represent attributes

@ edges represent flow of values

@ graph is specific to parse tree

@ size is related to parse tree’s size

@ values are computed from constants & other attributes

@ synthesized attribute — value computed from children

@ Inherited attribute — value computed from siblings & parent _ _
@ key notion: induced dependency graph @ can be built alongside parse tree

The dependency graph must be acyclic
Evaluation order:

@ topological sort the dependency graph to order attributes
@ using this order, evaluate the rules
The order depends on both the grammar and the input string

V.Krishna Nandivada (lIT Madras) CS3300 - Aug 2019 13/29 V.Krishna Nandivada (lIT Madras) CS3300 - Aug 2019 14/29

Example (continued) Example: A topological order

The attribute dependency graph:

@ SIGN.neg
© LISTy.pos
© LIST,.pos
© LIST,.pos
@ BIT.pos
Q BIT,.pos
@ BIT,.pos
© BITy.val

©Q LIST,.val
@ BIT,.val

@ LIST,.val
@ BIT,.val

® LIST,.val
@ NUM.val

Evaluating in this order yields NUM.val: -5

SIGN [neg: T

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 15/29 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 16 /29

Evaluation strategies Avoiding cycles

@ Parse-tree methods (dynamic)
@ build the parse tree @ Hard to tell, for a given grammar, whether there exists any parse
Q build the dependency graph tree whoe depdency graphs have cycles.

topological sort the graph)
g evgmﬁe it grap (cyclic graph fails) @ Focus on classes of SDD’s that guarantee an evaluation order —
do not permit dependency graphs with cycles.

o L-attributed — class of SDTs called “L-attributed translations”.
e S-attributed — class of SDTs called “S-attributed translations”.

What if there are cycles?

V.Krishna Nandivada (lIT Madras) CS3300 - Aug 2019 17/29 V.Krishna Nandivada (lIT Madras) CS3300 - Aug 2019 18/29

Top-down (LL) on-the-fly one-pass evaluation Bottom-up (LR) on-the-fly one-pass evaluation

L-attributed grammar:

Informally — dependency-graph edges may go from left to right, not

other way around.

given production A — X1 X, --- X,

S-attributed grammar:

@ inherited attributes of X; depend only on:
@ L-attributed

inherited attributes of A i i - i
3 arbitrary attributes of X, Xa, X, @ only synthesized attributes for non-terminals

: . o : . @ actions at far right of a RHS
@ synthesized attributes of A depend only on its inherited attributes _ _
and arbitrary RHS attributes Can evaluate S-attributed in one bottom-up (LR) pass.

@ synthesized attributes of an action depends only on its inherited
attributes

i.e., evaluation order:
Inh(A), Inh(X;), Syn(X1), ..., Inh(X,), Syn(X,), Syn(A)
This is precisely the order of evaluation for an LL parser

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 19/29 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 20/29

Evaluate S-attributed grammar in bottom-up parsing Inherited Vs Synthesised attributes

@ Evaluate it in any bottum-up order of the nodes in the parse tree. Synthesized attributes are limited
@ (One option:) Apply postorder to the root of the parse tree:

void postorder (N) {

Inherited attributes (are good): derive values from constants, parents,
for (each child C of N)

siblings
do @ used to express context (context-sensitive checking)
g postorder(C); @ inherited attributes are more “natural”
one

We want to use both kinds of attributes
@ can always rewrite L-attributed LL grammars (using markers and
} copying) to avoid inherited attribute problems with LR

@ post order traversal of the parse tree corresponds to the exact Self reading (if interested) — Dragon book Section 5.5.4.
order in which the bottom-up parsing builds the parse tree.

@ Thus, we can evaluate S-attributed in one bottom-up (LR) pass.

evaluate the attributes associated with Nj;

V.Krishna Nandivada (lIT Madras) CS3300 - Aug 2019 21/29 V.Krishna Nandivada (lIT Madras) CS3300 - Aug 2019 22/29
LL parsers and actions LL parsers and actions
push EOF

push Start Symbol
token < next_token()

repeat
How does an LL parser handle (aka - execute) actions? .p°p.x .
Expand productions before scanning RHS symbols, so: If X is a terminal or EOF then
P if X = token then
@ push actions onto parse stack like other grammar symbols token « next_token()
@ pop and perform action when it comes to top of parse stack else error()
else if X is an action
perform X

else /* X is a non-terminal */
if M[X,token] = X — Y Y,---Y; then
pUSh Yi,Yi1,--- 1
else error()
until X = EOF

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 23/29 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 24 /29

LR parsers and action symbols Action-controlled semantic stacks

What about LR parsers?

Scan entire RHS before applying production, so: @ Approach:
@ cannot perform actions until entire RHS scanned e stack is managed explicitly by action routines
@ can only place actions at very end of RHS of production o actions take arguments from top of stack

@ actions place results back on stack
@ Advantages:
e actions can directly access entries in stack without popping

@ introduce new marker non-terminals and corresponding
productions to get around this restriction®

(efficient)
A — w action 3 @ Disadvantages:
becomes o implementation is exposed N
A= MB @ action routines must include explicit code to manage stack (or use

stack abstract data type).
M — w action

fyacc, bison, CUP do this automatically

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 25/29 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 26/29

LR parser-controlled semantic stacks LL parser-controlled semantic stacks

Idea: let parser manage the semantic stack
LR parser-controlled semantic stacks:

@ parse stack contains already parsed symbols
@ maintain semantic values in parallel with their symbols
@ add space in parse stack or parallel stack for semantic values

Problems:
@ parse stack contains predicted symbols, not yet matched
@ often need semantic value after its corresponding symbol is
popped

. Solution:
@ every matched grammar symbol has semantic value

@ use separate semantic stack
@ pop semantic values along with symbols

@ push entries on semantic stack along with their symbols

= LR parsers have a very nice fit with semantic processing @ on completion of production, pop its RHS’s semantic values

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 27 /29 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 28/29

Attribute Grammars

Advantages
@ clean formalism
@ automatic generation of evaluator
@ high-level specification
Disadvantages
@ evaluation strategy determines efficiency
@ increased space requirements
@ parse tree evaluators need dependency graph
@ results distributed over tree
@ circularity testing

Intel’s 80286 Pascal compiler used an attribute grammar evaluator to
perform context-sensitive analysis.

Historically, attribute grammar evaluators have been deemed too lar;
and expensive for commercial-quality compilers.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 29/29

