Challenges in the back end

@ The input to the backend (What?).

@ The target program — instruction set, constraints, relocatable or
not (adv/disadv?), machine code or assembly?

CS3300 - Compiler Design @ Instruction selection (undecidable): maps groups of IR instructions
to one or more machine instructions. Why not say each IR
instruction maps to one more more machine level instructions?

e Easy, if we don’t care about the efficiency.
e Choices may be involved (add / inc); may involve understanding of
the context in which the instruction appears.

@ Register Allocation (NP-complete): Intermediate code has
temporaries. Need to translate them to registers (fastest storage).

e Finite number of registers.

e If cannot allocate on registers, store in the memory — will be
expensive.

e Sub problems: Register allocation, register assignment, spill
location, coalescing. All NP-complete.

@ Evaluation order: Order of evaluation of instructions may impad
the code efficiency (e.g., distance between load and use).

Basic Blocks and CFG

V. Krishna Nandivada

IIT Madras

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 2/19

Compiler analysis Basic blocks

source
code

Scanner |-£9KenS | parger

l A graph representation of intermediate code.
Table

l syntactic structure

e - Basic block properties
i e e e [@ The flow of control can only enter the basic block through the first
S— 1 | instruction in the block.
°edae" @ No jumps into the middle of the block.

@ Control leaves the block without halting / branching (except may
be the last instruction of the block).

@ Code optimization requires that the compiler has a global
“understanding” of how programs use the available resources.
@ It has to understand how the control flows (control-flow analysis) in

the program and how the data is manipulated (data-flow analysis) The basic blocks become the nodes of a flow graph, whose edges
@ Control-flow analysis: flow of control within each procedure. indicate which blocks can follow which other blocks.
@ Data-flow analysis: understanding how the data is manipulatedg
the program.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 3/19 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 4/19

Exampl - flow chart and cortrok-flow

unsigned int fib(m)
t (]
receive m (val)

unsigned int m; 1
{ unsigned int f0 = 0, f1 =1, £2, i; 2 0 « 0 2
if(m<=1){ 3 f1 <« 1
return m; 4 if m <= 1 goto L3 3
¥ 5 i< 2 \ \
else { 6 P i <= L2 4 B2 B3
L1: if 1 m goto s s
for (i = 2; i <=m; i++) { 7 return f2 2
2 = £0 + £1; 8 L2: f2 <« f0 + f1 i (ien)t N
f0 = f1; 9 10 « f1 l ¢ l | B4 |
f1 = £2; 10 1 « £2 7 [zetum 2] s r Y
} 11 i« i+ 1 N | oS I I o I
return f£2; 12 goto L1
} 13 L3: return m 10
I . 11 ie i+l
& receive specifies the reception of a parameter. Why do we want to e

have an explicit receive instruction?To specify the parameter name and
the parameter-passing discipline (by-value, by-result, value-result,
reference); also gives a definition point.unknown and undefined

@ The high-level abstractions might be lost in the IR.

@ Control-flow analysis can expose control structures not obvious in the
high level code. Possible?Loops constructed from i f and goto

@ What is the control structure? Obvious?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 5/19 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 6/19

Deep dive - Basic block Example 2

Basic block definition

@ A basic block is a maximal sequence of instructions that can be entered 1) 1 f &
only at the first of them .?3 13:1- 110 .
= i
@ The basic block can be exited only from the last of the instructions of the 4) 2 = t1 + j
basic block. 5) t3 =8 * t2
@ Implication:First instruction can be a) first instruction of a routine,b) £ o1 10 4 6) t4 =1t3 - 88
target of a branch, c) instruction following a branch or a return. or =L ... © 7) alt4]l = 0.0
First instruction is called the leader of the BB For 3=t ... 10 do § J=3+1
@ First instruction is called the leader of the BB. ali, 3] = 0.0; 9) if j <= 10 goto (3)
How to construct the basic block? 10) i=41+1
@ Identify all the leaders in the program. for i=1 ... 10 do E) if i <= 10 goto (2)
. L i =1
@ For each leader: include in its basic block all the instructions from the ali,i] = 1.0; 133 11:5 -1
leader to the next leader (next leader not included) or the end of the 14) t6 = 88 * t5
routine, in sequence. 15) alt6] = 1.0

What about function calls? 16) i=1i+1

@ In most cases it is not considered as a branch+return. Why? 17) if i <= 10 goto (13)

@ Problem with setjmp() and longjmp()? [self-study]

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 7/19 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 8/19

Next use information

@ Goal: when the value of a variable will be used next.
Ll: x =
12: v = x
Statement 1.2 uses the value of x computed (defined) at L.1.

We also say x is live at 1.2.

@ For each three-address statement x = y + z, what is the next use of
x,y,and z?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 9/19

Algorithm to compute next use information

Input: A basic block B of three-address statements. We assume that the
symbol table initially shows all non-temporary variables in B as being
live on exit.

Output: Ateachstatementl, : x = y op zin B, we attach to L the

liveness and next-use information of x, vy, and z.
begin
List /s = Starting at last statement in B and list of instructions obtained by
scan backwards to the beginning of B;
foreach statementL.: x = v op z €lsrdo
Attach to statement L the information currently found in the symbol
table regarding the next use and liveness of x, v, and z;
In the symbol table, set x to “not live” and “no next use.”;
In the symbol table, set y and z to “live” and the next uses of y and z
toL;
end

end
Q: Can we interchange last two steps?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 11/19

Compute next-use information

@ We want to compute next use information within a basic block.

@ Many uses : For example: knowing that a variable (assigned a
register) is not used any further, helps reassign the register to
some other variable. Any other?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 10/19

CFG - Control flow graph

Definition:
@ A rooted directed graph G = (N, E), where N is given by the set of
basic blocks + two special BBs: entry and exit.

@ And edge connects two basic blocks »; and b, if control can pass
from b; to b,.

@ An edge(s) from ent ry node to the initial basic block(s?)
@ From each final basic blocks (with no successors) to exit BB.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 12/19

CFG continued

@ successor and predecessor — defined in a natural way.

@ A basic block is called branch node - if it has more than one
sSuccessor.

@ join node — has more than one predecessor.
@ For each basic block b:

Succ(b) = {n € N|Je € E such thate =b — n}
Pred(b) = {n € N|Je € E such that e =n — b}

@ A region is a strongly connected subgraph of a flow-graph.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 13/19

Dominators and Postdominators

@ Goal: To determine loops in the flowgraph.
Dominance relation:

@ Node d dominates node i (written d dom i), if every possible execution path from
entry toiincludes d.

@ This relations is antisymmetric (a dom b, b dom a = a = b), reflexive (a dom a),
and transitive (if a dom b and b dom c, then a dom c.

@ We write dom(a) to denote the dominators of a.
Immediate dominance:
@ A subrelation of dominance.

@ Fora#g, we say a idom b iff a dom b and there does not exist a node ¢ such that
¢ #aand c # b, for which a dom ¢ and ¢ dom b.

@ We write idom(a) to denote the immediate dominator of @ — note it is unique.
Strict dominance:

@ d sdom i, if d dominates i and d # i.
Post dominance:

@ p pdom i, if every possible execution path from i to exit includes p.

@ Opposite of dominance (i domp), in the reversed CFG (edges reversed, ent
and exit exchanged).
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 15/19

Basic blocks - what do we get?

@ entry and exit are added for
reasons to be explained later.

@ We can identify loops by using
dominators
@ anode A in the flowgraph dominates
a node B if every path from entry
node to B includes A.
e This relations is antisymmetric,
reflexive, and transitive.

| B | | B ||e backedge: An edge in the flow graph,
whose head dominates its tail
(example - edge from B6 to B4.

@ A loop consists of all nodes
dominated by its entry node (head of
the back edge) and having exactly;
one back edge in it.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 14/19

Computing all the dominators

procedure Dom_Comp(N,Pred,r) returns Node —> set of Node

N: in set of Node
Pred: in Node —> set of Node
r: in Node
begin Y B1 N
D, T: set of Node B

n, p: Node
change := true: boolean B2
Domin: Node —> set of Node
Domin(r) := {r}

for each n € N - {r} do

Domin(n) := N
od
repeat
change := false
* for each n € N - {r} do
T :=N
for each p € Pred(n) do
T n= Domin(p)
od Compute the dominators.
D:={n}uT i Domin(i)
if D # Domin(n) then
change := true entry {entry}
Domin(n) := D B1 {entry,B1}
A B2 {entry,B1,B2}
fi B3 {entry,B1,B3}
od B4 {entry,B1,B3,B4}
until !change B5 {entry,B1,B3,B4,B5}
return Domin B6 {entry,B1,B3,B4,B6}
ond |1 Dom_Comp exit {entry,B1,exit}

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 16/19

|dentifying loops Algorithm to compute natural loops

@ Back edge: an edge in the flowgraph, whose head dominates its procedure Nat Loop(m,n,Pred) retums set of Node
tail.(COUnter example) Pred: in Node —> set of Node
begin
a Loop: set of Node
Stack: sequence of Node
l p, q: Node
! Stack := []
Loop :i= {m,n}
/\ if m # n then
. /_“‘d Stack #= [m)
-~ fi
l while Stack # [] de
|| add predecessors of m that are not predecessors of n
¢ || to the set of nodes in the loop; since n dominates m,
Il this only adds nodes in the loop
Has a loop, but no back edge — hence not a natural loop. gt"kszack:-l
. . ac ==
@ Given a back edge m — n, the natural loop of m — n is for each q € Pred(p) do
@ the subgraph consisting of the set of nodes containing » and all the i Eu: Ljfp{“}m
nodes from which m can be reached in the flowgraph without suask o= tEq]
passing through n, and i

od

@ the edge set connecting all the nodes in its node set. od

© Node 7 is called the loop header. return Loop
end |l Nat_Loop
V.Krishna Nandivada (lIT Madras) CS3300 - Aug 2019 17 /19 V.Krishna Nandivada (lIT Madras) CS3300 - Aug 2019 18/19

Approaches to Control flow Analysis

Two main approaches to control-flow analysis of single routines.

@ Both start by determining the basic blocks that make up the
routine.

@ Construct the control-flowgraph.
First approach:

@ Use dominators to discover loops; to be used in later
optimizations.

@ Sufficient for many optimizations (ones that do iterative data-flow
analysis, or ones that work on individual loops only).

Second approach (interval analysis):
@ Analyzes the overall structure of the routine.
@ Decomposes the routine into nested regions - called intervals.
@ The resulting nesting structure is called a control tree.
@ A sophisticated variety of interval analysis is called structural
analysis.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 19/19

