
Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 1

CS1100
Introduction to Programming

File I/O

SD, PSK, NSN, DK, TAG – CS&E, IIT M 2

Input/Output in C -- Recap
• C has no built-in statements for input or output
• A library of functions is supplied to perform

these operations. The I/O library functions are
listed in the “header” file <stdio.h>

• You do not need to memorize them, just be
familiar with them

• Programs using the library - portable

SD, PSK, NSN, DK, TAG – CS&E, IIT M 3

Streams
• All input and output is performed with streams
• A “stream” is a sequence of characters organized

into lines
• Each line consists of zero or more characters and

ends with the “newline” (‘\n’) character
• ANSI C standard specifies that the system must

support lines that are at least 254 characters in
length (including the newline character)

SD, PSK, NSN, DK, TAG – CS&E, IIT M 4

Types of Streams in C
• Every C program has 3 standard streams:
• Standard input stream is called stdin and is

normally connected to the keyboard
• Standard output stream is called stdout and is

normally connected to the display screen
• Standard error stream is called stderr and is also

normally connected to the screen

SD, PSK, NSN, DK, TAG – CS&E, IIT M 5

Standard Streams in C
• Input functions normally read from stdin

– scanf(), getline(), getchar()
• Output functions normally write to stdout

– printf(), putchar()
• I/O redirection: connect stdin or stdout to a file

instead of keyboard or display
– Type command: myprog

• scanf reads from keyboard, printf writes to display
– Type command with file names:

% myprog < input.dat > output.dat
• scanf reads from input.dat, printf writes to output.dat

SD, PSK, NSN, DK, TAG – CS&E, IIT M 6

File Access
• Files need to be connected to the program

– the system connects stdin, stdout, and stderr
• Reading from or writing to a file in C requires 3

basic steps:
– open the file
– do all the reading and/or writing
– close the file

• Internally a file is referred to using a file pointer
– points to a structure that contains info about the file

SD, PSK, NSN, DK, TAG – CS&E, IIT M 7

Opening a File
• Declare a file pointer and open a file using the

function fopen()
• FILE *fp; /* FILE is a type name, like int */
• Prototype: fopen(char *name, char *mode)

• fp = fopen(name, mode);

name of file what is the file going
to be used for?

SD, PSK, NSN, DK, TAG – CS&E, IIT M 8

Basic Modes for Opening Files
• “r” – Open an existing file for reading only.
• “w” – Open the file for writing only.

• If the file already exists, it is truncated to zero
length.

• Otherwise a new file is created.
• “a” – Open a file for append access; that is, writing at

the end of file only.
• If the file already exists, its initial contents are

unchanged and output to the stream is appended to
the end of the file.

• Otherwise, a new, empty file is created.

SD, PSK, NSN, DK, TAG – CS&E, IIT M 9

More File Modes
• “r+” – Open an existing file for both reading and writing.

The initial contents of the file are unchanged and the initial
file position is at the beginning of the file.

• “w+” – Open a file for both reading and writing.
• If the file already exists, it is truncated to zero length
• Otherwise, a new file is created.

• “a+” – Open or create file for both reading and appending.
• If the file exists, its initial contents are unchanged
• Otherwise, a new file is created.
• initial file position for reading is at beginning of the file
• output is always appended to the end of the file.

SD, PSK, NSN, DK, TAG – CS&E, IIT M 10

Formatted Reading and Writing
• fscanf(filepointer, “…”, args);
• fprintf(filepointer, “…”, args);
• fscanf(stdin, …., args) will behave like scanf
• fprintf(stdout, …., args) will behave like printf
• fprintf(stderr, …., args) will send mesg to stderr
• Format string and arguments same as with scanf(

) and printf()
• fgetc(), fgets() and getline() can also be used
• Advanced: sscanf after fgets/getline

SD, PSK, NSN, DK, TAG – CS&E, IIT M 11

An Example
FILE *ifp, *ofp; char *mode = "r"; int a; char s[50];
char inFilename[] = “in.list”;
char outFilename[] = "out.list";
ifp = fopen(inFilename, mode);
if (ifp == NULL) {

fprintf(stderr, "Can't open input file %s!\n”, inFilename);
exit(1);
}

fscanf(ifp, “%d %s”, &a, s);
ofp = fopen(outFilename, "w");
if (ofp == NULL) {
fprintf(stderr, "Can't open output file %s!\n", outFilename);
exit(1);
}

fprintf(ofp, “%d %s”, a, s); fclose(ifp); fclose(ofp);

fopen returns NULL if
it cannot open a file

SD, PSK, NSN, DK, TAG – CS&E, IIT M 12

File Access Functions
Function Usage Remarks
fscanf(FILE *fp, Format
String, args)

Read user-specified values from
the file based on format string

stdin can be used as a file
pointer, to read from
keyboard

fprintf(FILE *fp, Format
String, args)

Print user-specified values to the
file based on format string

stdout or stderr can be
used as a file pointer, to
print to screen

char ch = fgetc(fp); Read a character from file stdin is valid value for fp
fputc(char, fp); Print a character to file stdout/stderr is valid value

for fp
fgets(char *s, int size, fp) Reads (size-1) chars. From file into

string s; s will be NULL-
terminated; Check return value
(NULL if there is reading error)

stdin is valid value for fp;
can be combined with
sscanf

fputs(char *s, fp) Prints a string to the file stdout/stderr is valid value
for fp

SD, PSK, NSN, DK, TAG – CS&E, IIT M 13

File Input/Output in C
• char fgetc(FILE *fp);

• This function is similar to getchar() except
that input can be from keyboard or a file.

• Example:
– char ch;
– ch = fgetc(stdin); /* input from keyboard */
– ch = fgetc(fileptr); /* input from a file */

– getc() is a macro that expands to fgetc()

SD, PSK, NSN, DK, TAG – CS&E, IIT M 14

… File Input/Output in C
• fputc(char, FILE *fp);

• This function is similar to putchar() except
that the output can be to the screen or a file.

• Example:
– char ch;
– ch = fgetc(stdin); /* input from keyboard */
– fputc(ch, stdout); /* output to the screen */
– fputc(ch, outfileptr); /*output to a file */

SD, PSK, NSN, DK, TAG – CS&E, IIT M 15

Attendance Question for Oct. 23

What is the purpose of the following program?
int main (int argc, char *argv[]) {

FILE *ifp, *ofp; char ch;

ifp = fopen(argv[1], “r”);
ofp = fopen(argv[2], "w");

while ((ch = fgetc(ifp)) != EOF)
fputc(ch, ofp);

fclose(ifp); fclose(ofp);
}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 16

Closing a File
• When done with a file, it must be closed using the

function fclose()
fclose(ifp); fclose(ofp);

• Closing a file is important, especially with output files.
• The reason is that output is often buffered.
• This means that when you tell C to write something

out, it doesn't necessary get written to disk right away,
but may be stored in a buffer in memory

• This output buffer holds the text temporarily
• When the buffer fills up (or when the file is closed), the data is

finally written to disk

SD, PSK, NSN, DK, TAG – CS&E, IIT M 17

Force Write of File Buffer to Disk
• Sometimes, it is necessary to forcefully flush a

buffer to its stream, in the middle of a program
fprintf(outf,”%d %s”, i, s);
fflush(outf); // Forces output to be written to file

SD, PSK, NSN, DK, TAG – CS&E, IIT M 18

The Function fgets
• One of the alternatives to scanf/fscanf is fgets
• The prototype is:

– char *fgets(char *s, int size, FILE *stream);
– fgets reads in (size – 1) characters from the stream

and stores it into *s pointer
– The string is automatically null-terminated
– Returns s or NULL if there is an error

• fgets stops reading in characters if it reaches an
EOF or NULL

• The string can be scanned using sscanf()

SD, PSK, NSN, DK, TAG – CS&E, IIT M 19

Reading from a File using fgets
• fgets is a better way to read from a file
• We can read into a string using fgets

FILE *fptr;
char line [1000];
/* Open file and check it is open */
while (fgets(line,1000, fptr) != NULL) {
printf ("Read line %s\n", line);

}
Recall that fgets takes 3 arguments, a string, the maximum
number of characters to read, and a file pointer. It returns
NULL if there is an error (such as EOF).

SD, PSK, NSN, DK, TAG – CS&E, IIT M 20

Using fgets to Read from the Keyboard
• fgets and stdin can be combined to get a safe way

to get a line of input from the user

#include <stdio.h>
int main()
{
const intMAXLEN=1000;
char readline[MAXLEN];
fgets(readline, MAXLEN, stdin);
printf("You typed %s", readline);
return 0;

}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 21

// Creating a sequential file -- from Deitel and Deitel
#include <stdio.h>

int main (int argc, char *argv[])
{

FILE *cfPtr; // cfPtr = clients.txt file pointer

// fopen opens file. Exit program if unable to create file
if ((cfPtr = fopen("clients.txt", "w")) == NULL) {

puts("File could not be opened");
}
else {

printf("Enter the account, name, and balance.");
printf("Enter EOF to end input.");
printf("%s", "? ");

Creating a File with Keyboard input

SD, PSK, NSN, DK, TAG – CS&E, IIT M 22

unsigned int account; // account number
char name[30]; // account name
double balance; // account balance

fscanf(stdin, "%d%29s%lf", &account, name, &balance);

// write account, name and balance into file with fprintf
while (!feof(stdin)) {

fprintf(cfPtr, "%d %s %.2f\n", account, name, balance);
printf("%s", "? ");
fscanf(stdin, "%d%29s%lf", &account, name, &balance);

}

fclose(cfPtr); // fclose closes file
}

}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 23

Reading from a file
// Fig. 11.6: fig11_06.c - Deitel & Deitel
// Reading and printing a sequential file
#include <stdio.h>

int main(void)
{

FILE *cfPtr; // cfPtr = clients.txt file pointer

// fopen opens file; exits program if file cannot be
opened

if ((cfPtr = fopen("clients.txt", "r")) == NULL) {
puts("File could not be opened");

}
else { // read account, name and balance from file

unsigned int account; // account number
char name[30]; // account name
double balance; // account balance

printf("%-10s%-13s%s\n", "Account", "Name",
"Balance");

fscanf(cfPtr, "%d%29s%lf", &account, name,
&balance);

// while not end of file

while (!feof(cfPtr)) {

printf("%-10d%-13s%7.2f\n", account, name,
balance);

fscanf(cfPtr, "%d%29s%lf", &account, name,
&balance);

}

fclose(cfPtr); // fclose closes the file

}

}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 24

Quiz 2 Statistics etc

SD, PSK, NSN, DK, TAG – CS&E, IIT M 25

Random Access Files – Advanced and Optional

• File contains a set of fixed-length records
• Each record contains different fields and values
• Record corresponds to a C struct

• Assume that there are 100 records in a file
• Possible to read or write any record (say 12th)

• Requires other functions
• fread()
• fwrite()
• fseek() is used to position read/write pointer to

specified byte position in the file

SD, PSK, NSN, DK, TAG – CS&E, IIT M 26

MULTI-FILE COMPILATION

SD, PSK, NSN, DK, TAG – CS&E, IIT M 27

Writing program using multiple files
• Assume that a large-scale program has to be written
• Breakup program into related sets of functions.
• Each set of functions is programmed with:
• A header file, ending in “.h” (complex.h)
• Contains mostly structure definitions and function prototypes
• Global variables

• An implementation file, ending in “.c” (complex.c)
• Includes all related functions’ C code

• One main file that calls functions as needed
• Includes all relevant .h files
• This and only this file contains main() function

SD, PSK, NSN, DK, TAG – CS&E, IIT M 28

Example

• Assume: main file and helper files are same
directory

• Helper files:
• FileA.h, FileA.c, FileB.h, FileB.c, FileC.h, FileC.c

• Main() is in file called MyProg.c
• #include <stdio.h> and other system libraries
• #include “FileA.h” etc.
• Can also link to other needed system libraries (e.g. xyz)

• Compile using:
$ gcc –o prog MyProg.c FileA.c FileB.c FileC.c –lxyz
$./prog

SD, PSK, NSN, DK, TAG – CS&E, IIT M 29

Makefile

• Makefile and other techniques to automate the
process
• Compile only files that have changed
• Define dependencies between the different files etc.

SD, PSK, NSN, DK, TAG – CS&E, IIT M 30

OPTIONAL

SD, PSK, NSN, DK, TAG – CS&E, IIT M 31

Implementing echo
#include <stdio.h>
/* echo command line arguments: 1st version */
main(int argc, char *argv[]){
int i;
for (i = 1; i < argc; i++)
printf(“%s%s”, argv[i], (i<argc – 1)? “ ” : “”);
printf(“\n”);
return 0;

}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 32

echo – Pointer Version

printf((argc > 1) ? “%s ” : “%s”, *++argv);

#include <stdio.h>
/* echo comand line arguments: 2nd version */
main(int argc, char *argv[]){
while (--argc > 0)

printf(“%s%s”, *++argv, (argc > 1)? “ ” : “”);
printf(“\n”);
return 0;

}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 33

cat – Reads Files and Prints Them
#include <stdio.h>
main(int argc, char *argv[]){

FILE *fp;
void filecopy(FILE *, FILE *)
if (argc == 1) /* no args; copy from stdin */

filecopy(stdin, stdout);
else

/*open the first file, copy it onto screen,
close it, go to next file …. */

SD, PSK, NSN, DK, TAG – CS&E, IIT M 34

cat - Continued

modify program to direct error messages to
stderr, so that redirection does not affect it.
cat f1 f2 > outfile

while (--argc > 0)
if ((fp = fopen(*++argv, “r”) == NULL){

printf(“cat: can’t open %s\n”, *argv);
return 1;

}
else {

filecopy(fp, stdout);
fclose(fp);
}

return 0;
} /* end of main */

SD, PSK, NSN, DK, TAG – CS&E, IIT M 35

Copying a File

copy everything, blanks, tabs,
endofline, till the file ends

/* filecopy: copy file ifp to file ofp */
void filecopy(FILE *ifp, FILE *ofp)
{
int c;
while ((c = getc(ifp)) != EOF)

putc(c, ofp);
}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 36

Program Name in Error Message
...
char *prog = argv[0];
...
if ((fp = fopen(*++argv, “r”)) == NULL){
fprintf (stderr, “%s: can’t open %s\n”, prog,

*argv);
...

