
Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 1

CS1100
Introduction to Programming

Introduction to Pointers

SD, PSK, NSN, DK, TAG – CS&E, IIT M 2

*p

100250

What is a Pointer?
• Recap: a variable int k

– Names a memory location that can
hold one value at a time

– Memory is allocated statically at
compile time

– One name points to one location
• A pointer variable int *p

– Contains the address of a memory
location that contains the actual value

– Memory can be allocated at runtime
– One name points to many locations

p 200

k 38 100

Addr

*p

25084m

SD, PSK, NSN, DK, TAG – CS&E, IIT M 4

Pointer Variables
• Pointer variables are variables that store the

address of a memory location
• Memory required by a pointer variable depends

upon the size of the memory in the machine
– one byte could address a memory of 256 locations
– two bytes can address a memory of 64K locations
– four bytes can address a memory of 4G locations
– modern machines have RAM of 1GB or more…

• The task of allocating this memory is best left to
the system

SD, PSK, NSN, DK, TAG – CS&E, IIT M 5

Declaring Pointers
• Pointer variable – precede its name with an

asterisk
• Pointer type - the type of data stored at the

address
– For example, int *p;
– p is the name of the variable. The ‘*’ informs the

compiler that p is a pointer variable
– The int says that p is used to point to an integer

value

Ted Jenson’s tutorial on pointers
http://pweb.netcom.com/~tjensen/ptr/cpoint.htm

SD, PSK, NSN, DK, TAG – CS&E, IIT M 6

Random Q

int q = 40;

int* p = &q;

q = 45;

printf(“%d\n”, *p);

SD, PSK, NSN, DK, TAG – CS&E, IIT M 7

Random Q2

int q = 40; // q’s address is 1008

int* p = &q; // p’s address is 1028
int *s = NULL;
int **r = &p; // r’s address is 1048
q = 45;
// r 1028; *r 1008; **r 45
printf(“%d\n”, *p);

SD, PSK, NSN, DK, TAG – CS&E, IIT M 8

Contents of Pointer Variables
• In ANSI C, if a pointer is declared outside any

function, it is initialized to a null pointer
– For example,
int k;
int *p, *q = NULL;
p = &k; //assigns the address of int k to p
if (q == NULL) //tests for a null pointer

q = malloc(sizeof(int)); //dynamic allocation,
//creates an anonymous

int // in memory at runtime

SD, PSK, NSN, DK, TAG – CS&E, IIT M 9

Dereferencing Operator
• The asterisk symbol is the "dereferencing operator" and

it is used as follows
*ptr = 7;

– Will copy 7 to the memory location whose address is
pointed to by ptr

– Thus, since p "points to" (contains the address of) k,
the above statement will set the value of k to 7

• Using '*' is a way of referring to the value in the
location which ptr is pointing to, but not the value of the
pointer itself
– printf("%d\n",*ptr); --- prints the number 7

SD, PSK, NSN, DK, TAG – CS&E, IIT M 10

Random Q.

#include <stdio.h>
#include <stdlib.h>
int main(){
int num;
double *darray = NULL; /* initialize */
scanf(“%d”, &num);
// Creating a dynamic sized array of length num;
// Each element in the array is of type double.
darray = malloc(num * __sizeof (double)___________);

}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 11

malloc and free
• malloc() system call allocates memory on demand
• Dynamic memory allocation
• Needed when we do not know the memory requirements

at the time of program compilation
• More efficient way to utilize memory space
• Allocates space in program Heap memory

• free() system call releases memory that is not
needed anymore
• Eliminates memory leaks in program

SD, PSK, NSN, DK, TAG – CS&E, IIT M 12

short int Pointer
• short *ptr;

– says that ptr is the address of a short integer type

• short – allocates two bytes of memory

– *ptr = 20; //store the value 20 in the above two bytes
• if we had said “int *ptr”

– it would have allocated four bytes of memory

ptr

100 101 102 103 104 105 …

SD, PSK, NSN, DK, TAG – CS&E, IIT M 14

Memory Needed for a Pointer
• A pointer requires two chunks of memory to be

allocated:
– Memory to hold the pointer (address)

• Allocated statically by the pointer declaration
– Memory to hold the value pointed to

• Allocated statically by a variable declaration
• OR allocated dynamically by malloc()

• One variable or pointer declaration à allocation
of one chunk of memory

SD, PSK, NSN, DK, TAG – CS&E, IIT M 15

Accessing Arrays with Pointers
#include <stdio.h>
int myArray[] = {1,24,17,4,-5,100};
int *ptr;
int main(void){
int i;
ptr = &myArray[0]; // myArray, &myArray are also same.
printf(“\n”);
for (i = 0; i < 6; i++){

printf("myArray[%d] = %d ", i, myArray[i]);
printf(“value at ptr + %d is %d\n", i, ptr[i]);

}
return 0;

}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 16

Arrays
The name of the array is the address of the first

element in the array
Given
int myArray[10];

In C, we can replace
int *ptr = &myArray[0];

with
ptr = myArray;

to achieve the same result

SD, PSK, NSN, DK, TAG – CS&E, IIT M 17

Arrays Names Are Not Pointers
While we can write

ptr = myArray;
we cannot write

myArray = ptr;
The reason:

While ptr is a variable, myArray is a constant
That is, the location at which the first element of

myArray will be stored cannot be changed once
myArray has been declared

SD, PSK, NSN, DK, TAG – CS&E, IIT M 19

Pointer Types
C provides for a pointer of type void. We can

declare such a pointer by writing:
void *vptr;

A void pointer is a generic pointer
For example, a pointer to any type can be compared to a

void pointer

Type casts can be used to convert from one type of
pointer to another under proper circumstances

SD, PSK, NSN, DK, TAG – CS&E, IIT M 20

Trying Out Pointers

Generic address of j

Dereferencing – will print r-value of k

#include <stdio.h>
int j = 1, k = 2; int *ptr;
main() {
ptr = &k;
printf(“\n j has the value %d and is stored at %p”,j,(void*)&j);
printf(“\n k has the value %d and is stored at %p”,k,(void*)

&k);
printf(“\n ptr has the value %p stored at %p”, ptr, (void *)

&ptr); printf(“\nThe value of the
integer pointed to by ptr is %d\n”,
*ptr);
}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 21

Random Q
#include <stdio.h>
#include <stdlib.h>
int main() {
int *p1 = NULL, *p2 = NULL;
p1 = (int *) calloc(1, sizeof(int)); //initi. To 0
printf(“Value stored in p1 is %d\n”, *p1);
*p1 = 27;
p2 = p1;
printf(“Value stored in p2 is %d\n”, *p2);
}

