Optimization of Basic blocks

- It is a linear piece of code.
- Analyzing and optimizing is easier.
- Has local scope - and hence effect is limited.
- Substantial enough, not to ignore it.
- Can be seen as part of a larger (global) optimization problem.

DAG representation of basic blocks

Recall: DAG representation of expressions
- leaves corresponding to atomic operands, and interior nodes corresponding to operators.
- A node N has multiple parents - N is a common subexpression.
- Example: $(a + a \ast (b - c)) + ((b - c) \ast d)$

DAG construction for a basic block

- There is a node in the DAG for each of the initial values of the variables appearing in the basic block.
- There is a node N associated with each statement s within the block. The children of N are those nodes corresponding to statements that are the last definitions, prior to s, of the operands used by s.
- Node N is labeled by the operator applied at s, and also attached to N is the list of variables for which it is the last definition within the block.
- Certain nodes are designated output nodes. These are the nodes whose variables are live on exit from the block;
Optimizations on the DAG

- Common subexpression elimination.
- Eliminate dead code.
- Code reordering.
- Algebraic optimizations.

Example (contd)

\[
\begin{align*}
a &= b + c \\
d &= a - d \\
c &= b + c \\
d &= a - d
\end{align*}
\]

// if \(b\) is live
\[b = d\]

Q: How to know if \(b\) is live after the basic block?

Construct the DAG. Example

\[
\begin{align*}
a &= b + c \\
b &= a - d \\
c &= b + c \\
d &= a - d
\end{align*}
\]

Limitations of the DAG based CSE

- The two occurrences of the sub-expressions \(b + c\) computes the same value.
- Value computed by \(a\) and \(e\) are the same.
- How to handle the algebraic identities?
- Q: Do the sub-expressions always compute the same value?
Dead code elimination

- Delete any root from DAG that has no ancestors and is not live out (has no live out variable associated).
- Repeat previous step till no change.

\[+ \quad + \quad e \]
\[+ \quad a \quad - \quad b \quad + \quad c \]
\[b_0 \quad c_0 \quad d_0 \]

- Assume \(a \) and \(b \) are live out.
- Remove first \(e \) and then \(c \).
- \(a \) and \(b \) remain.

CSE via Algebraic identities

- Recall: In common sub-expression elimination, we want to reuse nodes that compute the same value.
- Recall: We mainly focussed on syntactic similarities.
- Q: Can we go beyond that?

Similarities in the semantics - identity, inverse, zero

\[x + 0 = 0 + x = x \]
\[x * 1 = 1 * x = x \quad \text{identity, examples?} \]
\[a && true = true && a = a \]
\[a || false = false || a = a \]
\[x * 0 = 0 * x = 0 \]
\[0 / x = 0 \]

Goal: apply arithmetic identities to eliminate computation.

Similarities in the semantics - strength reduction

\[x^2 = x * x \]
\[2 * x = x + x = x << 1 (?) \]
\[x/2 = x * 0.5 = x >> 1 (?) \]

Constant folding

\[2 * 0.123456789101112131415 = 0.246913578202224262830 \]

Chapernowne's constant

Goal: identify equivalence module strength reduction operations.
Algebraic properties

- Commutative: Say the operator * is commutative. $x * y = y * x$
- Associative: $a + (b - c) = (a + b) - c$

- $a = b + c$
- $e = c + d + b$
- $t = c + d$
- $a = t + b$
- $a = b + c$
- $e = a + d$
- $a = b - 1; c = a + 1 \rightarrow c = b$

How to?

In general the problem is that of checking equivalence of two expressions – Undecidable!

A rough idea:
- When creating the DAG, create the node for expression that has the most reduced strength.
- For each expression e,
 - Take all “sub-expressions” that “build” the operands of e.
 - Build a new large expression using these sub-expressions.
 - Simplify the large expression.
 - Check if the simplified expression (or part thereof) or any variations thereof can be found in the tree.
 - Build sub-tree for the rest.

Restrictions

- The language manual may restrict.
 - Fortran: you can evaluate any equivalent expression, but cannot violate the integrity of paranthesis.
 - Thus $x * y - x * z \rightarrow x * (y - z)$
 - But $a + (b - c) \neq (a + b) - c$
- Keep a language manual handy if you are writing a compiler!

Representing Array accesses in the DAG

$x = a[i]$

$z = a[i]$
Array representation (2)

\[b = a + 12 \]
\[x = b[i] \]
\[a[j] = y \]

Q: Say, elements of 'a' are 4bytes size

Peephole optimization

- A local optimization technique.
- Simplistic in nature, but effective in practise.
- Idea:
 - Keep a sliding window (called peephole)
 - Replace instruction sequences within the peephole by a by an efficient (shorter / faster / ...) sequence.

Home reading: How to handle pointers.

Peephole optimization

- The “peephole” is typically small. Why?
- The code in the peephole need not be contiguous.
- Each improvement may lead to additional improvements.
- In general, we may have to make multiple passes.

Eliminating redundant loads and stores

- Load a, R0
- Store R0, a

Delete the pair of instructions. Always?

What if there is a label on the store instruction?

We need to be sure that the Store instruction and Load are executed as a pair.

Why would we have such stupid code?
Eliminating unreachable code

- An unlabelled statement after an unconditional jump – can be removed.

goto L2

INCR R0

L2:

- **Eliminating jumps over jumps:**

 if class == 2015 goto L1
goto L2

L1: print 22

L2:

→
 if class != 2015 goto L2
print 22

L2:

- What can constant propagation do?

Algebraic simplification and strength reduction

- Eliminate identity operations.
- Replace x^2 by $x \times x$, and so on.
- Replace fixed-point mult by a power of two (by left-shift) and division by a power of two (by right shift).
- Replace floating-point division by multiplication!

Flow-of-control optimizations

- Naive code generation creates many jumps.
- Jumps to jumps can be short circuited!

goto L1

...
L1: goto L2

Can be replaced with

goto L2

...
L1: goto L2

Further optimizations on L1 are possible.
Similar situation with conditional jumps

if (cond) goto L1

...
L1: goto L2

Machine specific peephole optimization

- Use auto-increment / auto-decrement if available.

 add r1, (r2)+ → r1 = r1 + M[r2]; r2 = r2+d

- A cool PA-RISC instruction called sh2add

 r2 = r1 * 5 → sh2add r1, r1, r2

- PA-RISC instruction ADDBT, <= r2, r1, L1
Peephole procedure

- First make a list of patterns that you want to replace with a list of target patterns.
- Identify the pattern in the code and do the replacement.
- Iterate till you are done.
- Can be efficiently done on an DAG.
- No guarantees about optimality.
- Most of the peephole optimizations guarantee improvement.