Optimization of Basic blocks

- It is a linear piece of code.
- Analyzing and optimizing is easier.
- Has local scope - and hence effect is limited.
- Substantial enough, not to ignore it.
- Can be seen as part of a larger (global) optimization problem.

DAG representation of basic blocks

Recall: DAG representation of expressions
- leaves corresponding to atomic operands, and interior nodes corresponding to operators.
- A node N has multiple parents - N is a common subexpression.
- Example: $(a + a \ast (b - c)) + ((b - c) \ast d)$

DAG construction for a basic block

- There is a node in the DAG for each of the initial values of the variables appearing in the basic block.
- There is a node N associated with each statement s within the block. The children of N are those nodes corresponding to statements that are the last definitions, prior to s, of the operands used by s.
- Node N is labeled by the operator applied at s, and also attached to N is the list of variables for which it is the last definition within the block.
- Certain nodes are designated output nodes. These are the nodes whose variables are live on exit from the block;
Optimizations on the DAG

- Common subexpression elimination.
- Eliminate dead code.
- Code reordering.
- Algebraic optimizations.

Construct the DAG. Example

```
a = b + c
b = a - d
c = b + c
d = a - d
```

Example (contd)

```
a = b + c
d = a - d
c = d + c
```

// if b is live
b = d

Q: How to know if b is live after the basic block?

Limitations of the DAG based CSE

```
a = b + c
b = b - d
c = c + d
e = b + c
```

- The two occurrences of the sub-expressions b + c computes the same value.
- Value computed by a and e are the same.
- How to handle the algebraic identities?
- Q: Do the sub-expressions always compute the same value?
Dead code elimination

- Delete any root from DAG that has no ancestors and is not live out (has no live out variable associated).
- Repeat previous step till no change.

![DAG diagram]

- Assume \(a \) and \(b \) are live out.
- Remove first \(e \) and then \(c \).
- \(a \) and \(b \) remain.

CSE via Algebraic identities

- Recall: In common sub-expression elimination, we want to reuse nodes that compute the same value.
- Recall: We mainly focussed on syntactic similarities.
- Q: Can we go beyond that?

Similarities in the semantics - identity, inverse, zero

\[
\begin{align*}
x + 0 &= 0 + x = x \\
x * 1 &= 1 * x = x & \text{identity, examples?} \\
a && \text{true} &= \text{true} && a = a \\
a || \text{false} &= \text{false} || a = a \\
x * 0 &= 0 * x = 0 \\
0 / x &= 0
\end{align*}
\]

Goal: apply arithmetic identities to eliminate computation.

Similarities in the semantics - strength reduction

\[
\begin{align*}
x^2 &= x * x \\
2 * x &= x + x = x << 1 \ (?) \\
x/2 &= x * 0.5 = x >> 1 \ (?) \\
\text{Constant folding} \\
2 * 0.123456789101112131415 &= 0.246913578202224262830
\end{align*}
\]

Chapernowne's constant

Goal: identify equivalence module strength reduction operations.
Algebraic properties

- **Commutative:** Say the operator * is commutative. \(x \cdot y = y \cdot x \)
- **Associative:** \(a + (b - c) = (a + b) - c \)

```plaintext
a = b + c
e = c + d + b
\rightarrow
a = b + c
t = c + d
a = t + b
\rightarrow \text{(assuming t is not used anywhere else)}
a = b + c
e = a + d
\rightarrow a = b - 1; c = a + 1 \rightarrow c = b
```

How to?

In general the problem is that of checking equivalence of two expressions – Undecidable!

A rough idea:
- **When creating the DAG, create the node for expression that has the most reduced strength.**
- **For each expression \(e \):**
 - Take all “sub-expressions” that “build” the operands of \(e \).
 - Build a new large expression using these sub-expressions.
 - Simplify the large expression.
 - Check if the simplified expression (or part thereof) or any variations thereof can be found in the tree.
 - Build sub-tree for the rest.

Restrictions

- The language manual may restrict.
 - **Fortran:** you can evaluate any equivalent expression, but cannot violate the integrity of parenthesis.
 - Thus: \(x \cdot y - x \cdot z \rightarrow x \cdot (y - z) \)
 - But: \(a + (b - c) \neq (a + b) - c \)
- Keep a language manual handy if you are writing a compiler!

Representing Array accesses in the DAG

```
x = a[i]
a[j] = y
z = a[i]
```

Q: Is \(a[i] \) a common sub-expression?
Array representation (2)

```
b = a + 12
x = b[i]
a[j] = y
```

Q: Say, elements of ‘a’ are 4bytes size

Home reading: How to handle pointers.

Peephole optimization

- A local optimization technique.
- Simplistic in nature, but effective in practise.
- Idea:
 - Keep a sliding window (called peephole)
 - Replace instruction sequences within the peephole by a by an efficient (shorter / faster / ...) sequence.

The “peephole” is typically small. Why?
- The code in the peephole need not be contiguous.
- Each improvement may lead to additional improvements.
- In general, we may have to make multiple passes.

Eliminating redundant loads and stores

```
Load a, R0
Store R0, a
```

Delete the pair of instructions. Always?

What if there is a label on the store instruction?

We need to be sure that the Store instruction and Load are executed as a pair.

Why would we have such stupid code?
Eliminating unreachable code

- An unlabelled statement after an unconditional jump – can be removed.

goto L2
INCR R0
L2:

- Eliminating jumps over jumps:

 if class == 2010 goto L1
 goto L2

L1: print 22
L2:

 →
 if class != 2010 goto L2
 print 22
L2:

- What can constant propagation do?

Flow-of-control optimizations

- Naive code generation creates many jumps.

goto L1
 ...
 L1: goto L2

- Jumps to jumps can be short circuited!

goto L2
 ...
 L1: goto L2

- Can be replaced with

goto L2
 ...
 L1: goto L2

- Further optimizations on L1 are possible.

 Similar situation with conditional jumps

 if (cond) goto L1
 ...
 L1: goto L2

Algebraic simplification and strength reduction

- Eliminate identity operations.
- Replace x^2 by $x \times x$, and so on.
- Replace fixed-point mult by a power of two (by left-shift) and division by a power of two (by right shift).
- Replace floating-point division by multiplication!

Machine specific peephole optimization

- Use auto-incrementet / auto-decrement if available.

 add r1, (r2)+ → r1 = r1 + M[r2]; r2 = r2+d

- A cool PA-RISC instruction called \texttt{sh2add}

 $r2 = r1 \times 5 \rightarrow \text{sh2add} r1, r1, r2$

- PA-RISC instruction \texttt{ADDBT}, $\leq r2, r1, L1$
Peephole procedure

- First make a list of patterns that you want to replace with a list of target patterns.
- Identify the pattern in the code and do the replacement.
- Iterate till you are done.
- Can be efficiently done on an DAG.
- No guarantees about optimality.
- Most of the peephole optimizations guarantee improvement.