CS3300 Quiz 1: Sep 05, 2023. (QP Code: A)

Maximum marks = 30, Time: 45 minutes, Closed Book, Closed Neighbor

Name: Roll:

Read the instructions and questions carefully. You can use the given booklet for rough work and stating
any reasonable assumptions you make. But write the answers in the QP itself — marks will be given based on the
answers in the QP.

e MCQ and True/False questions: Each incorrect answer will lead to a deduction of 0.5 marks.

e MSQ questions:

— If you choose any wrong option - you will get a 0 for that question.

— If you choose only a subset of the correct options: you will get proportional marks.

Section 1. Lexical Analysis, 2 marks each

1. Which of the following is/are true about LL(1) grammars?

(a) Left recursive grammars are not LL(1).

(

b)
(c) A language that has no LL(1) grammar is ambiguous.
d)

(

2. The key decision(s) in bottom-up parsing is/are:
(a)
(b)

(c) Which non-terminal to use?

Some LL(1) grammars may be ambiguous.

Left factoring and left recursive removal can be used to convert any grammar to LL(1).

‘When to reduce?

What production rules to apply for reduction?

(d) Which terminals to process?
3. Which of the following is/are NOT a valid token-type(s):

(a) Type of a variable

(b) scope of a variable
(c) operator
(d) loop
4. Which of the following is/are true with respect to regular expressions:
(a) € is a regular expression.
(b) Each regular expression derives unique set of strings.
(c) Given a finite alphabet L the number of regular expressions over L is finite.
(d) Every regular expression must derived at least two strings.

5. Which of the following is/are possible attribute-values(s) for lexemes:

(a) line number

(b) type of a variable

(c) operator associativity
(d) loop

6. Given a production of the form A — S, if B has k symbols (terminals and non-terminals), then how many
LR(0) items can the production generate?

(a) k-1

(b) k

(c) kE+1

(d) Depends on the input

Section 2. Fill in the blank, 3 marks each

Consider the grammar and state LS — E3 Ip: S — eE$
Io. 2|8 = EA4T E— eE+T
3| E — FET E — oET
" The number of elements in the 4 | T E — ol
set returned by GOTO(Iy,E) = 6T — Id T — eld
7 | (B) T — o(E)

Input: A string w and a parsing table M for a
grammar G
Output: If w is in L(G), a leftmost derivation of
w; otherwise, indicate an error

1 push $ onto the stack; push S onto the stack;
2 a points to the input tape;
3 X = stack.top();
Consider the table driven parsing algorithm given 4 while X # $ do
9 below. One of the lines is erroneous. 5 if X is a then {stack.pop(); inp++} ;
’ 6 else if X is a terminal then error();
The line number that has the error is 7 else if M[X,a] is an error entry then
error();
8 else if M[X,a] =X — Y1Y2---Y; then
9 output the production X — Y1Ys---Yy;
10 stack.pop();
11 push Yi, Y2, --- Yy in that order;
12 X = stack.top();

1. state=0; // initial state 19, case 2: // accept state
. . 2. done=false; .

Consider the code shown (in the I 13. tokenType=id;
. .) 3. tokenVal=""// empty
right) for recognizing identifiers. . 14. done = true;

4. while (not done) {

5 h +Char () 15. break;

. ch=nextChar();
The minimum number of _ . 16. case 3: // error
. . 6. class=charClass[ch];
3. lines required to be changed 7 state= 17. tokenType=error;
(added/removed) in this code to ’ 18. done=true;
; nextState[class,state];
make it correct are . 8. switch(state) { 19. break;
Note: if the code is correct, enter 9' case 1: 20. } // end switch
’) 21. d whil
the value 0. 10. tokenVal=tokenVal+ch; } // end while
22. return tokenType;
11. break;
letter
digit

Consider the DFA shown to the right.
4. The number of non-error entries in the nextState
table are =

accept

Section 3. True or False Answers, 1 mark each
Given an input consisting of m terminals, the LR parsing technique for a grammar with n non-terminals,
shifts m + n number of times.

The closure of an item can be a singleton set.

In an LL(1) grammar with no epsilon productions, the FIRST and FOLLOW sets of a non-terminal may
have no common elements.

Lexical analysis can be used infer the type of each variable.

A compiler can use error recovery techniques to fix the errors in a program and generate the correct
machine-code.

Regular expressions can be used to ensure that all variables are of lower case only.

