
*

CS3400 - Principles of Software Engineering
Software Engineering for Multicore Systems

V. Krishna Nandivada

IIT Madras

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 1 / 63

*

Academic Formalities

Thanks!
Quiz I - 30 marks, End Sem - 50 marks, Take home assignments -
20
There will be two assignments - total 10 marks.
During the lecture time - you can get additional 5 marks.
How? - Ask a good question, Answer a chosen question, Make a
good point! Take 0.5 marks each. Max one mark per day per
person.
Plagiarism - A good word to know. A bad act to own.

Contact (Anytime) :
Email: nvk@cse.iitm.ac.in, Skype (nvkrishna77), Office: BSB 352.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 2 / 63

*

What, When and Why of Software Engineering

What: Software engineering is a profession dedicated to
designing, implementing, and modifying software so that it is of
higher quality, more affordable, maintainable, and faster to build.

When Phrase coined in 1968 by NATO.

Why Study
Software Crisis.

difficulty of writing correct, understandable, and verifiable computer
programs.
The roots of the software crisis are complexity, expectations, and
change.

Money Magazine and Salary.com, rated “software engineering” as
the best job in the United States in 2006.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 3 / 63

*

Why Multicores?

Focus on increasing the number of computing cores.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 4 / 63

*

What, When Multicores? Why not Multiprocessors

What A multi-core processor is composed of two or more
independent cores. Composition involves the interconnect,
memory, caches.

When IBM POWER4, the world’s first dual-core processor,
released in 2001.

Why not Multi-processors
An application can be ”threaded” across multiple cores, but not
across multi-CPUs – communication across multiple CPUs is fairly
expensive.
Some of the resources can be shared. For example, on Intel Core
Duo: L2 cache is shared across cores, thereby reducing further
power consumption.
Less expensive: A single CPU board with a dual-core CPU Vs a
dual board with 2 CPUs.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 5 / 63

*

Challenges Involved

Harnessing parallelism
How to map parallel activities to different cores? How to distribute
data?

Locality: Data and threads
Minimizing the communication overhead
Exploring fine grain parallelism (SIMDization), coarse grain
parallelism (SPMDization).
Assist threads
Dynamic code profiling and optimizations.
Programmability issues.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 6 / 63

*

Programmability issues

With hardware becoming increasingly multi-core, software
developed without attention to parallel processing capabilities of
the hardware will typically under-utilize the hardware - Example?
When software is designed to operate in a multi-threaded or
multi-processed manner, how the threads are mapped to the
cores becomes an important issue - Why?
Software that is critically dependent on multi-threading is always
based on assumptions regarding the thread-safety of the function
calls - Why?
Multi-threading of software is generally very important to
applications that involve human interactivity.
Understanding different levels of parallelism.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 7 / 63

*

A simple example: thread safety (more details later)

function int Withdraw(int amount){
if (balance > amount) {

balance = balance - amount;
return SUCCESS;

}
return FAIL;

}

Say balance = 100.
Two parallel threads executing Withdraw(80)
At the end of the execution, it may so happen that both of the
withdrawals are successful. Further balance can still be 20!

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 8 / 63

*

Parallelism types

Instruction level parallelism.
Parallelism at the machine-instruction level.
The processor can re-order, pipeline instructions, split them into
microinstructions, do aggressive branch prediction, etc.
Instruction-level parallelism enabled rapid increases in processor
speeds over the last 20 years.

Thread level parallelism.
This is parallelism on a more coarser scale.
Server can serve each client in a separate thread (Web server,
database server)
A computer game can do AI, graphics, and physics in three
separate threads
Single-core superscalar processors cannot fully exploit TLP.
Multicores are the way out to exploit the TLP.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 9 / 63

*

What type of applications benefit from Multi-cores?

Nearly All !
Database servers
Web servers (Web commerce)
Compilers
Multimedia applications
Scientific applications, CAD/CAM
In general, applications with Thread-level parallelism (as opposed
to instruction-level parallelism)
To build applications that benefit from Multi-cores, we have to
understand multi-cores, on how they differ from unicore machines.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 10 / 63

*

Outline

1 Introduction

2 Multicore HW Classification

3 Parallel Programming Basics

4 Performance Issues

5 Ideal and useful parallelism

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 11 / 63

*

Flynn’s Taxonomy.

Categorization of computers based on number of instruction and data
streams1.

SISD: Single instruction Single Data - x86: sequential computer
which exploits no parallelism in instruction or data streams.
SIMD: Single instruction Multiple Data - Vector machines: A
computer which exploits multiple data streams against a single
instruction stream.
MISD: Multiple instruction Single Data - Space Shuttle - Multiple
instructions operate on a single data stream.
MIMD: Multiple instruction Multiple Data - Bluegene, Cell - Multiple
autonomous processors simultaneously executing different
instructions on different data.

1Flynn, M. (1972). “Some Computer Organizations and Their
Effectiveness”. IEEE Trans. Comput. C-21: 948.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 12 / 63

*

SISD

Traditional Von Neumann Architecture, all traditional computations.
a single processor, a uniprocessor, executes a single instruction
stream, to operate on data stored in a single memory.
Pipelined execution allowed.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 13 / 63

*

SIMD

for (int i=0;i<16;++i) A[i] = B[i] + C[i]

Fetching / Write a bulk of data is efficient than single units of data.
A compiler level optimization to generate SIMD instructions.
Not all algorithm can be vectorized - for instance, parsing.
increases power consumption and chip area.
Detecting SIMD patterns is non-trivial.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 14 / 63

*

MISD

Task replication for fault tolerance.
Not used in practise. No known commercial system.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 15 / 63

*

MIMD

Many processors that function asynchronously.
Memory can be shared (less scalable) or distributed (memory
consistency issues).
Most of the modern parallel architectures fall into this category.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 16 / 63

*

Different types of MIMD systems - homogeneous

Homogeneous multi-core systems include only identical cores.
Just as with single-processor systems, cores in multi-core
systems may implement architectures like superscalar, VLIW,
vector processing, SIMD, or multithreading.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 17 / 63

*

Different types of MIMD systems - heterogeneous

Mixture of different cores e.g.
a computational unit could be a general-purpose processor (GPP),
a special-purpose processor (i.e. digital signal processor (DSP)
a graphics processing unit (GPU)),
a co-processor, or custom acceleration logic

Each core may be optimized for different roles.
Clusters are often heterogeneous; future supercomputers mostly
will be heterogeneous systems. Examples: Grids, lab clusters.
What are hybrid multicore systems?

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 18 / 63

*

Pros and Cons
Homogeneous CPU multi-cores
Pros:

Easier programming
environment
Easier migration of existing
code

Cons:
Lack of specialization of
hardware to different tasks
Fewer cores per server today
(24 in Intels Dunnington and 8
cores / 64 threads in Suns
Niagara 2)

Heterogeneous multi-cores
Pros:

Massive parallelism today
Specialization of hardware for
different tasks.

Cons:
Developer productivity -
requires special training.
Portability - e.g. software
written for GPUs may not run
on CPUs.
Organization - multiple GPUs
and CPUs in a grid need their
work allocated and balanced,
and event-based systems
need to be supported.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 19 / 63

*

Challenges Involved (revisited)

Harnessing parallelism
How to map parallel activities to different cores? How to distribute
data?

Locality: Data and threads. What is the challenge?
Minimizing the communication overhead
Exploring fine grain parallelism (SIMDization), coarse grain
parallelism (SPMDization).
Assist threads
Dynamic code profiling and optimizations.
Programmability issues.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 20 / 63

*

Outline

1 Introduction

2 Multicore HW Classification

3 Parallel Programming Basics

4 Performance Issues

5 Ideal and useful parallelism

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 21 / 63

*

Parallel Computing

Computation is done in parallel to take advantage of a) parallel
computing elements, b) waiting time in different computations.

A program is a collection of interacting processes (logged by the
Operating System). Different address space,
A process can be a collection of one or more threads. Share
address space.
A thread may contain multiple parallel tasks/activities. Even share
the stack space.

Context Switching (processes) ≥ CST (thread) ≥ CST (tasks)
State information (processes) ≥ SI (thread) ≥ SI (tasks)

One of the main challenges: Mapping tasks/threads/processes onto
hardware threads to improve load balancing.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 22 / 63

*

Synchronous and Asynchronous events

Synchronous events : One must happen after the other.

Asynchronous events: Can happen in parallel.

int[] mergesort(int[]A,int L,int H){
if (H - L <= 1) return;
int m = (L+H)/2;
A = mergesort(A, L, m);
A = mergesort(A, m+1, H);
return merge(A, L,m, m+1, H); }

int[] merge(int[]A,int L1,int H1,int L2,int H2){
int[]result = ArrayCopy(A);
int L1=0, L2=0, H1=A1.length-1, H2=A2.length-1;
while (H1 - L1 > 0 OR H2 - L2 > 0){
if(H1 - L1 > 0 AND H2 - L2 > 0) {

if (A[L1] <= A[L2]) { result[r++] = A[L1++]; }
else { result[r++] = A[L2++]; }

}else if (H1 - L1 > 0) { result[r++] = A[L1++];}
else if (H2 - L2 > 0) { result[r++] = A[L2++];}

}
return result; }

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 23 / 63

*

Synchronous and Asynchronous events
Synchronous events : One must happen after the other.
Asynchronous events: Can happen in parallel.

int[] mergesort(int[]A,int L,int H){
if (H - L <= 1) return;
int m = (L+H)/2;
A1 = mergesort(A, L, m);
A2 = mergesort(A, m+1, H);
return merge(A1, A2); }

int[] merge(int[]A1, int []A2){
int[]result = new int [A1.length + A2.length];
int L1=0, L2=0, H1=A1.length-1, H2=A2.length-1;
while (A1.length > 0 OR A2.length > 0){

if (A1.length > 0 AND A2.length > 0) {
if (A[L1] <= A[L2]) { result[r++] = A[L1++]; }
else { result[r++] = A[L2++]; }

} else if (A1.length > 0) { result[r++] = A[L1++];}
else if (A2.length > 0) { result[r++] = A[L2++];}

}
return result; }

Can you parallelize the function merge?

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 24 / 63

*

Activity/Thread creation - examples

MPI: A program when invoked, is executed on multiple execution
units.
Number of threads is decided by the runtime.

MPI_Init(...);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if(myid == 0) { // main thread.
...

} else { // other threads
...

}
MPI_Finalize();

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 25 / 63

*

Activity/Thread creation - examples

X10/HJ:
Activity creation.

S0;
async {

S1
}
async {

S2
}
S4
S5

Parallel loop
foreach (i:[1..n]){

S
}

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 26 / 63

*

Activity/Thread creation - examples

X10/HJ: Abstraction of a place
place: consists of data and some activities. An abstraction of a
computing unit.
Number of places fixed per execution.
distribution: a map from indices to places.
An array can be distributed, so can a parallel loop!

distribution D = block([1..100]);

int [D] A; // declares an array A distributed over D.

ateach (p: D){
S;

}
// 100 iterations of S.
// Iteration p runs at the place D(p).

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 27 / 63

*

Communication across threads

Tasks/Threads/Processes need to communicate with each other for
the program to make progress.

Remote procedure calls.
Shared memory.
Message Passing.
Synchronization.
Examples: Files, Signals, Socket, Message queue, pipe,
semaphore, shared memory, asynchronous message passing,
memory mapped file.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 28 / 63

*

Remote Procedure Calls

A subroutine or procedure to execute in another address space
(core/processor), with no explicit coding.

Typically, RPC is an synchronous event. While the server is
processing the call the client is blocked.
Easy to program, especially in reliable environments.
Compared to local calls, a remote procedure may fail. Why?
How to handle failure?
By using RPC, programmers of distributed applications avoid the
details of the interface with the network.
The transport independence of RPC isolates the application from
the physical and logical elements of the data communications
mechanism and allows the application to use a variety of
transports.
Examples: C, Java RMI, CORBA.
Read yourself.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 29 / 63

*

Shared memory

A large common RAM shared and simultaneously accessed by the
multiple cores.
Note: Communication inside a task via memory is not generally
referred to as ‘shared memory’.

Easy to visualize for the programmer.
Communication can be fast.
(Partitioned) Global Address Space.
Scalable, especially for small number of cores.
Not easily scalable for large number of cores.
Cache coherence issues - Say a core updates its local cache -
how to reflect the changes in the shared memory such that data
access is not inconsistent.
#pragma omp flush [a, b, c] : A synchronization point
where memory consistency is enforced.
#pragma omp parallel private (a)

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 30 / 63

*

Message passing

Allows communication between processes (threads) using specific
message-passing system calls.
All shared data is communicated through messages
Physical memory not necessarily shared
Allows for asynchronous events
Does not require programmer to write in terms of loop-level
parallelism
scalable to distributed systems
A more general model of programming, extremely flexible
Considered extremely difficult to write
Difficult to incrementally increase parallelism
Traditionally - no implicitly shared data (allowed in MPI 2.0)

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 31 / 63

*

MPI in implementation

MPI (Message Passing Interface): A standard programming environment
for distributed-meory parallel computers.

All the processes involved in the computation are launched together,
when the program starts. Say you need 1024 processes, all of them start
at once. They may or not have anything meaningful to do immediately.

Each process has an unique id, Each message has a label.

Message label: ID of sender, ID of receiver, tag for the message.

Only the intended receiver, waiting for the message receives it.
int MPI Send(buff, count, type, dest, tag, Comm) int
MPI Recv(buff, count, type, source, tag, Comm, *stat)

buff : Pointer to buffer count : # of elem of buff.
type : type of elem of buff. dest : destination id.
source : source id tag : message tag.
stat : status information.

Deceptively simple, low level, yet extremely powerful abstraction.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 32 / 63

*

Synchronizations

Task/Thread/Process Synchronization
Tasks handshake or join at different program points to synchronize
or commit.
Achieved via locks, monitors, semaphores, barriers.
Examples: C mutexes, Java synchronized, HJ/X10 finish, atomic,
clocks.

Data Synchronization
Keeping multiple copies of the data in coherence.

Easy to program
Most popular form of communication.
Can lead to deadlocks.
Data races still is an issue.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 33 / 63

*

Synchronization examples

Java synchronized methods - only one thread enters the code.

synchronized boolean Withdraw(int amount){
...

}

Java wait-notify: wait waits for notify message from others.

synchronized(lockObject) {
while (!condition) {lockObject.wait();}
action;

}

Java Lock : Mutex locks. (Make sure to unlock. Else?) What is the
problem with the following code?

Lock lock = new ReentrantLock();
...
lock.lock();
while(list.notEmpty()){... Traverse the list}
lock.unlock();

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 34 / 63

*

Synchronization examples (contd)

X10 (from IBM)/HJ (from Rice universty)
finish : Join operation
clocks: Used for quiescence detection.
An activity can register / deregister onto clocks dynamically.
next: suspends an activity till all clocks that the current activity is
registered can advance.

finish {
async clocked (c1) {

S1
next;
S2 }

async clocked (c1) {
S3
next;
S4 }

}
S5

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 35 / 63

*

Outline

1 Introduction

2 Multicore HW Classification

3 Parallel Programming Basics

4 Performance Issues

5 Ideal and useful parallelism

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 36 / 63

*

Speedups in Parallel Programs

Say a serial Program P takes T units of time.
Q: How much time will the best parallel version P ′ take (when run
on N number of cores)? T

N units?
Linear speedups is almost unrealizable, especially for increasing
number of compute elements.
Ttotal = Tsetup + Tcompute + Tfinalization

Tsetup and Tfinalization may not run concurrently - represent the
execution time for the non-parallelizable parts of code.
Best hope : Tcompute can be fully parallelized.

Ttotal(N) = Tsetup +
Tcompute

N + Tfinalization (1)

Speedup S(N) = Ttotal (1)
Ttotal (N)

Chief factor in performance improvement : Serial fraction of the
code.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 37 / 63

*

Amdahl’s Law

Serial fraction γ =
Tsetup+Tfinalization

Ttotal (1)

Fraction of time spent in parallelizable part = (1− γ)

Ttotal(N) =
γ × Ttotal(1)︸ ︷︷ ︸
serial code

+
(1− γ)× Ttotal(1)

N︸ ︷︷ ︸
parallel code

=
(
γ + 1−γ

N

)
× Ttotal(1)

Speedup S(N) = Ttotal (1)
(γ+ 1−γ

N)×Ttotal (1)

= 1
(γ+ 1−γ

N)
≈ 1

γ . . . Amdahl’s Law

Max speedup is inversely proportional to the serial fraction of the
code.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 38 / 63

*

Implications of Amdahl’s law

As we increase the number of parallel compute units, the speed
up need not increase - an upper limit on the usefulness of adding
more parallel execution units.
For a given program maximum speedup nearly remains a
constant.
Say a parallel program spends only 10% of time in parallelizable
code. If the code is fully parallelized, as we aggressively increase
the number of cores, the speedup will be capped by (∼) 1.11×.
Say a parallel program spends only 10% of time in parallelizable
code. Q: How much time would you spend to parallelize it?
Amdahl’s law helps to set realistic expectations for performance
gains from the parallelization exercise.
Mythical Man-month - Essays on Software Engineering. Frederic
Brooks.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 39 / 63

*

Peaking via Amdahl’s law

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 40 / 63

*

Limitations of Amdahl’s law

An over approximation : In reality many factors affect the
parallelization and even fully parallelizable code does not result in
linear speed ups.
Overheads exist in parallel task
creations/termination/synchronization.
Does not say anything about the impact of cache - may result in
much more or far less improvements.
Dependence of the serial code on the parallelizable code - can the
parallelization in result in faster execution of the serial code?
Amdahl’s law assumes that the problem size remains the same
after parallelization: When we buy a more powerful machine, do
we play only old games or new more powerful games?

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 41 / 63

*

Discussion: Amdahl’s Law

When we increase the number of cores - the problem size is also
increased in practise.
Also, naturally we use more and more complex algorithms,
increased amount of details etc.
Given a fixed problem, increasing the number of cores will hit the
limits of Amdahl’s law. However, if the problem grows along with
the increase in the number of processors - Amdahl’s law would be
pessimistic
Q: Say a program P has been improved to P ′ (increase the
problem size) - how to keep the running time same? How many
parallel compute elements do we need?

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 42 / 63

*

Gustafson’s Law

Invert the parameters in Eq(1):
Ttotal(1) = Tsetup + N × Tcompute(N) + Tfinalization (2)

Scaled serial fraction γscaled =
Tsetup+Tfinalization

Ttotal (N) .

Ttotal(1) = γscaled × Ttotal(N) + N × (1− γscaled)× Ttotal(N)

S(N) = N + (1− N)× γscaled (Gustafson’s Law)
We are increasing the problem size. If we increase the number of
parallel compute units - execution time may remain same
(provided γscaled remains constant).
It means that speedup is linear in N. Is it contradictory to
Amdahl’s law?

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 43 / 63

*

Comparison Amdhal’s law and Gustafson’s law

Say we have program that takes 100s. The serial part takes 90s
and the parallelizable part takes 10s.
If we parallelize the parallel part (over 10 compute elements) the
total time taken = 90 + 10

10 = 91s.

Amdahl’s law: Gustafson’s law:
γ = 0.9 γscaled = 90

91 = 0.99
Speedup ≈ 1

0.9 = 1.1 Speedup(10) = 10 + (1− 10)× 0.99 = 1.1

Speedups indicated by both Gustafson’s Law and Amdahl’s law
are same.
Gustafson’s Law gives a better understanding for problems with
varying sizes.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 44 / 63

*

Bottlenecks in Parallel applications

Traditional programs running on Von-Neumann Architectures -
memory latency.
The “memory wall” is the growing disparity of speed between CPU
and memory outside the CPU chip.
In the context of multi-core systems, the role of memory wall?
Communication latency plays a far major role.
Communication = task creation, sending data, synchronization
etc.
Tmessaage−transfer = α+ N

β .
α communication latency - time it takes to send a single empty
message.
β bandwidth of the communication medium. (bytes/sec)
N length of the message.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 45 / 63

*

Reducing the communication latency cost

A typical program involves, computation, communication and
idling (why?).
Overlap computation, communication and idle time.

Start the communication as early as possible. [always good?]
Instead of idling - do work of some other worker.

Advantageous to aggregate communications into larger chunks.
Avoid sending self-messages. (Why and How?)
Ideal and useful parallelism.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 46 / 63

*

Outline

1 Introduction

2 Multicore HW Classification

3 Parallel Programming Basics

4 Performance Issues

5 Ideal and useful parallelism
Ideal and useful parallelism (1) - Loop chunking
Ideal and useful parallelism (2) - forall distillation

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 47 / 63

*

Relevant X10 syntax

async S : creates an asynchronous activity.
finish S : ensures activity termination.

// Parent Activity
finish {

S1; // Parent Activity
async {

S2; // Child Activity
}
S3; // Parent activity continues

}
S4;

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 48 / 63

*

Relevant X10 syntax (contd)

foreach (i: [1..n])
S

≡
for (i: [1..n])

async S

async(p) clocked (c1, c2) S:
creates an activity registered
over clocks c1, c2.
next : clock barrier

finish {
async clocked (c1) {

S1
next;
S2 }

async clocked (c1) {
S3
next;
S4 }

}
S5

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 49 / 63

*

Gap between Ideal and Useful parallelism

foreach(p: [1..1024]) {
S1;

}

foreach (q: [1..16]){
for (p: [1..64]){
S1;

}
}

Programmers express ideal parallelism – over-specify.
Only part of the parallelism is useful, for the target machine.

Synchronizations and Exceptions.

[Chunking parallel loops in the presence of synchronization, ICS 2009,
Jun Shirako, Jisheng Zhao, V. Krishna Nandivada, Vivek Sarkar.]

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 50 / 63

*

Loop chunking Hardness

delta = epsilon+1;
clock ph = new clock();
foreach (j : [1:n]) clocked(ph) {

while (delta > epsilon) {
newA[j] = (oldA[j-1]+oldA[j+1])/2.0 ;
diff[j] = Math.abs(newA[j]-oldA[j]);
next ; // barrier
... delta = diff.sum(); ...

} }

nextwhile loop

diff[1]= ... 2]= ... diff[3]= ... diff[4]= ...diff[

delt=diff.sum()

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 51 / 63

*

Loop chunking hardness - safety

delta = epsilon+1;
clock ph = new clock();
foreach (jj : [1:n:2]) clocked(ph) {
for (int j = jj ; j < min(jj+2,n) ; j++) {
while (delta > epsilon) {
newA[j] = (oldA[j-1]+oldA[j+1])/2.0 ;
diff[j] = Math.abs(newA[j]-oldA[j]);
next ; // barrier
... delta = diff.sum(); ...

} } }

for loop j = 1

while loop next

diff[1]= ... diff[5 diff[7]= ...]= ...3]= ...diff[

delta = diff.sum()

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 52 / 63

*

Chunking in the presence of exceptions

Exception semantics of asyncs : caught only at the finish.
Semantics of the chunked loop must match that of the original
loop in the presence of exceptions.

foreach (i: Ie(R,g))
S // contains no barriers

6≡ for (p: Ie(R,g))
S

Each loop iteration must throw the exceptions in an asynchronous
way.

for(p: Ie(R, g))
try {
S
} catch (Exception e){
async throw e;
}

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 53 / 63

*

What is the right chunking policy?

Assume N elements, P chunks, one dimension.
Blocked distribution -
{0,1, . . . N

P −1}, {N
P ,

N
P +1, . . .2× N

P −1}, . . . {(P−1)× N
P , . . .N − 1}

Cyclic distribution -
{0,P, . . .}, {1,P + 1, . . .}, . . . {P − 1,2× P − 1, . . .}
Blocked cyclic distribution (blocking factor m, cycle stride c) -
{0,1, . . .m− 1, c ×m, c ×m + 1, · · · }, {m,m + 1, . . .2×m− 1,2×
c ×m,2× c ×m + 1, · · · }, · · ·

Interesting in multi dimensional data.
Dynamic distribution

Create one activity per core.
Enable activities to dynamically share chunks of parallel iterations -
based on different heuristics.

Arbitrary distribution: Allow user to specify arbitrary distributions; a
function from indices to places.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 54 / 63

*

Step by step procedure for loop chunking

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 55 / 63

*

Outline

1 Introduction

2 Multicore HW Classification

3 Parallel Programming Basics

4 Performance Issues

5 Ideal and useful parallelism
Ideal and useful parallelism (1) - Loop chunking
Ideal and useful parallelism (2) - forall distillation

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 56 / 63

*

Language syntax (contd)

Language syntax (contd)
forall : parallel loop.
forall (point [i]: [1..n])

S

≡
finish for (point [i]: [1..n])

async S

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 57 / 63

*

• New Challenges: Scalable Synchronization and Communication.

for(i=0;i<n;++i){
forall(j: [1..m]){

S
} }

barriers created n
activities created m × n
Max # parallel activities m

forall(j: [1..m]){
for(i=0;i<n;++i){

S
} }

barriers created 1
activities created m
Max # parallel activities m

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 58 / 63

*

forall distillation: What’s the big deal?

delta=epsilon+1;iters=0;
while (delta > epsilon) {

forall (j : [1:n]) {
B[j]=(A[j-1]+A[j+1])/2.0;
diff[j]=abs(B[j]-A[j]);

} // forall
// sum and exchange
delta=diff.sum(); iters++;
t=B;B=A;A=t;
} // while

delta=epsilon+1;iters=0;
forall (j : [1:n]) {

while (delta > epsilon) {
B[j]=(A[j-1]+A[j+1])/2.0;
diff[j]=abs(B[j]-A[j]);
// sum and exchange
delta = diff.sum(); iters++;
t=B;B=A;A=t;

} // while
} // forall

Challenges: (1) Data dependence (2) Exceptions

[Reducing task creation and termination overhead in explicitly parallel
programs, PACT 2010, Jisheng Zhao, Jun Shirako, V. Krishna Nandivada,
Vivek Sarkar.]

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 59 / 63

*

forall Distillation and Exceptions

Exception semantics of forall: caught only at the implicit finish.

Semantics of the translated code must match that of the original code in
the presence of exceptions.

for (i:[1..n])
forall (point p: R)

S
6≡

forall (point p: R)
for (i:[1..n])

S

In iteration i of the for loop, if one ore more exceptions are thrown in
the inner forall loop⇒ iteration i+1, i+2, ... are not executed.

boolean excp = false;
forall (point p : R)
for (i: [1..n]) {
try {S;}
catch (Exception e) {excp = true; throw e;}
next;
// synchronization ensures no data race for excp;
if (excp == true) break; }

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 60 / 63

*

Impact of data locality?

The improvements from distillation:
From reducing the task creation and termination overheads.
From locality.

How to measure the impact of locality?
Add code to compensate for the reduced task creation and
termination.

Our experience:
On a Niagara T2 system (dual-socket, socket = 8 cores x 8
hardware threads).

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 61 / 63

*

Step by step procedure for distillation

Useless assignment - design a step-by-step procedure for forall
distillation.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 62 / 63

*

Sources

Patterns for Parallel Programming: Sandors, Massingills.
multicoreinfo.com
Wikipedia
fixstars.com
Jernej Barbic slides.
Loop Chunking in the presence of synchronization.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 63 / 63

	Introduction
	Multicore HW Classification
	Parallel Programming Basics
	Performance Issues
	Ideal and useful parallelism
	Ideal and useful parallelism (1) - Loop chunking
	Ideal and useful parallelism (2) - forall distillation

