
*

CS3400 - Principles of Software Engineering
Software Engineering for Multicore Systems

V. Krishna Nandivada

IIT Madras

V.Krishna Nandivada (IIT Madras) CS3400 1 / 35

*

A pattern language for parallel programs

Structure the given problem to expose exploitable concurrency.

Structuring the algorithm to take advantage of potential concurrency.

Helps algorithm to be implemented.

How the high level specifications are mapped.

Goal: Identify patterns in each stage.

V.Krishna Nandivada (IIT Madras) CS3400 2 / 35

*

Overall big picture

V.Krishna Nandivada (IIT Madras) CS3400 3 / 35

*

Finding concurrency and Algorithm Structure

V.Krishna Nandivada (IIT Madras) CS3400 4 / 35



*

Overall big picture

V.Krishna Nandivada (IIT Madras) CS3400 5 / 35

*

Supporting structure

V.Krishna Nandivada (IIT Madras) CS3400 6 / 35

*

Supporting structures

We have identified concurrency, and established an algorithm
structure.
Now how to implement the algorithm?

Issues
Clarity of abstraction - from algorithm to source code.
Scalability - how many processors can it use?
Efficiency - utilizing the resource of the computer, efficiently.
Example?
Maintainability - is it easy to debug, verify and modify?
Environment - hardware and programming environment.

V.Krishna Nandivada (IIT Madras) CS3400 7 / 35

*

SPMD pattern

Each UE executes the same program, but has different data.
They can follow different paths through the program. How?
Code at different UEs can differentiate with each other using a
unique ID.
Assumes that each underlying hardware are similar.

Challenges
Interactions among the seemingly independent activities of UEs.
Clarity, Scalability, Efficiency, Maintainability (1m cores),
Environment.
How to handle code like initialization, finalization etc?

V.Krishna Nandivada (IIT Madras) CS3400 8 / 35



*

SPMD example

π =

∫ 1

0

4
1 + xx dx

int main () {
// Initialization start
int i;
int numSteps = 1000000;
double x, pi, step, sum = 0.0;
step = 1.0/(double) numSteps;
// Initialization end
for (i=0;i< numSteps; i++) {
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x); }

// Finalization start
pi = step * sum;
printf("pi %lf\n",pi);
return 0;
// Finalization end

}
V.Krishna Nandivada (IIT Madras) CS3400 9 / 35

*

SPMD translation. Inefficient?

int main () {

int i;
int numSteps = 1000000;
double x, pi, step, sum = 0.0;
step = 1.0/(double) numSteps;
int numProcs = numSteps;
int myID = getMyId();

i = myID;
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

sum = step * sum;
DoReductionOverAllProcs(&sum, &pi); // blocking.
if (myID == 0) printf("pi %lf\n",pi);
return 0;

}
V.Krishna Nandivada (IIT Madras) CS3400 10 / 35

*

SPMD translation. Better?

int main () {
int i; int numSteps = 1000000;
double x, pi, step, sum = 0.0;
step = 1.0/(double) numSteps;
int numProcs = getNumProcs();
int myID = getMyId();
step = 1.0/numSteps;

iStart = myID * (numSteps / numprocs);
iEnd = iStart * (numSteps / numprocs);
if (myID == numProcs-1) iEnd = numSteps;

for (i = iStart; i < iEnd; ++i){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x); }

sum = step * sum;
DoReductionOverAllProcs(&sum, &pi); // blocking.
if (myID == 0) printf("pi %lf\n",pi);
return 0; }

V.Krishna Nandivada (IIT Madras) CS3400 11 / 35

*

Supporting structure

V.Krishna Nandivada (IIT Madras) CS3400 12 / 35



*

Master/Worker

Situation
workload at each task is variable and unpredictable (what if
predictable?).
Not easy to map to loop-based computation.
The underlying hardware have different capacities.

Master/Worker pattern
Has a logical master, and one or more instances of workers.
Computation by each worker may vary.
The master starts computation and creates a set of tasks.
Master waits for tasks to get over.

V.Krishna Nandivada (IIT Madras) CS3400 13 / 35

*

Master/Worker layout

Q: How to implement the set of tasks? Characteristics of this data structure?
V.Krishna Nandivada (IIT Madras) CS3400 14 / 35

*

Master/Worker Issues

Has good scalability, if number of tasks greatly exceed the number
of workers, and each worker roughly gets the same amount of
work (Why?).
Size of tasks should not be too small. Why?
Can work with any hardware platform.
How to detect completion? When can the workers not wait but
shutdown?

Easy if all tasks are ready before workers start.
Use of a poison-pill in the work-queue.
What if the workers can also add tasks? Issues?
Issues with asynchronous message passing systems?
How to handle fault tolerance? - did the task finish?

Variations
Master can also become a worker.
Distributed task queue instead of a centralized task queue.
(dis)advantages?

V.Krishna Nandivada (IIT Madras) CS3400 15 / 35

*

Master/Worker template for master

int nTasks // Number of tasks
int nWorkers // Number of workers
public static SharedQueue taskQueue; // global task queue
public static SharedQueue resultsQueue; // queue to hold results
void master() {
// Create and initialize shared data structures
taskQueue = new SharedQueue();
globalResults = new SharedQueue();
for (int i = 0; i < nTasks; i++)

enqueue(taskQueue, i);

// Create nWorkers threads
ForkJoin (nWorkers);

consumeResults (nTasks);
}

V.Krishna Nandivada (IIT Madras) CS3400 16 / 35



*

Master/Worker - ForkJoin

void ForkJoin(int nWorker){
Thread [] t = new Threads[nWorkers];
for (int i=0;i<nWorker;++i) {

t[i] = new Thread(new Worker()) }
for (int i=0;i<nWorker;++i) {

t[i].join();}
}

V.Krishna Nandivada (IIT Madras) CS3400 17 / 35

*

Master/Worker - template for worker

class Worker(){
public void run() {

while (!(Master.taskQueue.empty()){
// atomically dequeue.
// do computation.
// add to globalResults atomically

} } }

Known uses
SETI@HOME
Map Reduce

”Map” step: The master node takes the input, partitions it up into
smaller sub-problems, and distributes those to worker nodes.

A worker may again partition the problem – multi-level tree structure.
The worker node processes that smaller problem, and passes the
answer back to its master node.

”Reduce” step: Master node takes all the answers and combines
them to get the output the answer to the original problem.

V.Krishna Nandivada (IIT Madras) CS3400 18 / 35

*

Supporting structure

V.Krishna Nandivada (IIT Madras) CS3400 19 / 35

*

Loop Parallelization

A program has many computationally intensive loops, with
“independent” iterations.
Goal: Parallelize the loops and get most of the benefits.
Very narrow focus.
Typical application: scientific and high performance computation.
Impact of Amdahl’s law?
Quite amenable to refactoring type of incremental parallelization.
Advantage?
Impact on distributed memory systems?
Good if computation done in iterations compensates the cost of
thread creation - how to improve the tradeoff? Coalescing,
merging.

V.Krishna Nandivada (IIT Madras) CS3400 20 / 35



*

Loop coalescing and merging for parallelization

Merging/Fusion

for (i : 1..n) {
S1

}
for (j : 1..n) {

S2
}
-->
for (i : 1..n) {

S1
j = i;
S2

}

Coalescing

for (i : 0..m) {
for (j : 0..n) {

S
}
-->
for (ij : 0..m*n) {

j = ij % n;
i = ij / n;
S

}

V.Krishna Nandivada (IIT Madras) CS3400 21 / 35

*

Loop parallelization issues

Distributed memory architectures.
False sharing : variables not needed to be shared, but are in the
same same cache line. Can incur high overheads.
Seen in systems with distributed, coherent caches.
The caching protocol may force the reload of a cache line despite
a lack of logical necessity.

foreach(j : [0..N]) {
for(i=0; i<M; i++){

A[j]+= compute(j,i);
}

}

foreach(j : [0..N]) {
double tmp;
for(i=0; i<M; i++){

tmp += compute(j,i);
}
atomic A[j] += tmp;

}

V.Krishna Nandivada (IIT Madras) CS3400 22 / 35

*

Loop parallelization example

π =

∫ 1

0

4
1 + xx dx

int main () {

int i,numSteps = 1000000;
double x,pi,step,sum=0.0;
step=1.0/(double)numSteps;

for(i: [0..numSteps]){
x=(i+0.5)*step;
sum=sum+4.0/(1.0+x*x);}

pi=step*sum;
printf("pi %lf\n",pi);
return 0; }

int main () {

int i,numSteps=1000000;
double pi,step,sum=0.0;
step=1.0/(double)numSteps;

forall(i: [0..numSteps]){
double x=(i+0.5)*step;
double tmp=4.0/(1.0+x*x)
atomic sum=sum+tmp; }

pi = step * sum;
printf("pi %lf\n",pi);
return 0; }

Reading material: Automatic loop parallelization.
V.Krishna Nandivada (IIT Madras) CS3400 23 / 35

*

Supporting structure

V.Krishna Nandivada (IIT Madras) CS3400 24 / 35



*

Fork/Join

The number of concurrent tasks varies as the program executes.
Parallelism beyond just loops.
Tasks created dynamically (beyond master-worker).
One or more tasks waits for the created tasks to terminate.
Each task may or not result in an actual UE. Many-to-one
mapping. Examples?

V.Krishna Nandivada (IIT Madras) CS3400 25 / 35

*

Fork/Join - example Mergesort

int[] mergesort(int[]A,int L,int H){
if (H-L <= T) {quickSort(A, L, H); return;}
int m = (L+H)/2;
A1 = mergesort(A, L, m); // fork
A2 = mergesort(A, m+1, H); // fork
// join.
return merge(A1, A2);
// returns a merged sorted array.

}

Issues
Cost.
Alternatives?

V.Krishna Nandivada (IIT Madras) CS3400 26 / 35

*

Supporting structures and algorithm structure

Homework
OpenMP MPI Java X10 UPC Cilk Hadoop

SPMD ??? ???? ??
Loop Parallelism ???? ? ???
Master/Worker ?? ??? ???

Fork/Join ??? ????

V.Krishna Nandivada (IIT Madras) CS3400 27 / 35

*

Supporting structure

V.Krishna Nandivada (IIT Madras) CS3400 28 / 35



*

Shared Data

Million dollar question: How to handle shared data?
Managing shared data incurs overhead.
Scalability can become an issue.
Can lead to programmability issues.
Avoid if possible - by

replication,
privatization,
reduction.

Use appropriate concurrency control. Why?
Should preserve the semantics.
Should not be too conservative.

Shared data organization: distributed or at a central location?
Shared Queue (remember master-worker?) is a type of shared
data.

V.Krishna Nandivada (IIT Madras) CS3400 29 / 35

*

Issues with shared data

Data race and interference: Two shared activities access a shared
data. And at least one of them is a write. The activities said to
interfere.
forall (i:[1..n]) {

sum += A[i];
}

for (i[1..n]) {
forall (j=1;j<m;++j) {

A[i][j]=(A[i-1][j-1]+A[i-1][j]+A[i-1][j+1])/3;
}

}

Dependencies : Use synchronization (locks, barriers, atomics, . . . )
to enforce the dependencies.

How to implement all-to-all synchronization?

V.Krishna Nandivada (IIT Madras) CS3400 30 / 35

*

Issues with shared data

Deadlocks : two or more competing actions are each waiting for
the other to finish.

(Example via nested locks)
lockA → lockB
lockB → lockA

One way to avoid: partial order among locks. Locks are acquired
in an order respecting the partial order.
Livelocks : the states of the processes involved in the livelock
constantly change with regard to one another, none progressing.
Example: recovery from deadlock - If more than one process
takes action, the deadlock detection algorithm can be repeatedly
triggered leading to a livelock
Locality : Trivial if data is not shared.
Memory synchronization: when memory / cache is distributed.
Task scheduling - tasks might be suspended for access to shared
data. Minimize the wait.

V.Krishna Nandivada (IIT Madras) CS3400 31 / 35

*

Supporting structure

V.Krishna Nandivada (IIT Madras) CS3400 32 / 35



*

Distributed Array

Arrays often are partitioned between multiple tasks.
Goal: Efficient code, programmability.

Distribute the arrays such that elelement needed by a task is
“available” and “nearby”.
Array element redistribution?
An abstraction is needed: a map from elements to places.
Some standard ones: Blocked, Cyclic, Blocked cyclic, Unique,
Chosing a distribution.

V.Krishna Nandivada (IIT Madras) CS3400 33 / 35

*

Supporting structure

V.Krishna Nandivada (IIT Madras) CS3400 34 / 35

*

Sources

Patterns for Parallel Programming: Sandors, Massingills.
multicoreinfo.com
Wikipedia
fixstars.com
Jernej Barbic slides.
Loop Chunking in the presence of synchronization.
Java Memory Model JSR-133: “Java Memory Model and Thread
Specification Revision”

V.Krishna Nandivada (IIT Madras) CS3400 35 / 35


	Patterns
	So far
	Supporting Structures
	Supporting Structures
	Conclusion

