A pattern language for parallel programs

Finding Concurrency

. 4 .
Structure the given problem to €xpose exploitable concurrency.
L

Software Engineering for Multicore Systems Algorithm Structure
[
Structuring the algorithm to take agvantage of potential concurrency.

CS3400 - Principles of Software Engineering

V. Krishna Nandivada . ;o
Supporting Structures

IIT Madras I
Helps algorithm tq be implemented.

Implementation Mechanisms

How the high level specifications are mapped.

Goal: |dentify patterns in each stage.

V.Krishna Nandivada (IIT Madras) CS3400 1/35 V.Krishna Nandivada (IIT Madras) CS3400 2/35

Overall big picture Finding concurrency and Algorithm Structure

Finding
Concurrency

Finding Concurrency

Dependency Analysis

Decomposition Ciroup Tasks

¢ | Task Decomposition ""
: — Order Toska el | Dhesign Eveluation

¢ | Daia Decomposition : { - -
S Data Sharing

Il

Algorithm Struciure

peeimimsmams e aan . S
; Y P \
¢ Omganize By Tesks |) Organize By Data Decomposition | | Organize By Flow of Dita
. P i :
P [Tusk Paraltetiomn | |} [Geometric Deconposition | || Pipeiin 4
H X ' !

& impl. mech.

U.‘..‘”'.- arnid {'rau_rr-rJ [Recureiis Dafa : .:|r.-».u.nmn.d Caardination ||
H 3 R A

E Supporting struct.

|
| Lrpperting Sirueinres |
T

Units of execution + new shared data

for extracted dependencies Corresponding source code [Emplorzentation Mechanisms |

V.Krishna Nandivada (IIT Madras) CS3400 3/35 V.Krishna Nandivada (lIT Madras) CS3400 4/35

Overall big picture Supporting structure
Hiiling g g ; ; } E i j g % } I é E L [Finding C;M CUFFEREY |
i | i | A.{,Eﬂ.-r'ifh:r:SErucmm |

B !
Original Problem Tasks, shared and local data Supporting Structures
. Program Struetures | | Data Structures |
E | SEMD E . Shared Data | E
|| Master/ Worker | Shared Queve | |
Supporting struct.] - T — !
& impl. mech. { | Loop Parallelism | 1 || Distributed Array |)

Forkidoin || |

Units of execution + new shared data
for extracted dependencies

Corresponding source code

l Implementation Mechanisms I

V.Krishna Nandivada (lIT Madras) CS3400 5/35 V.Krishna Nandivada (lIT Madras) CS3400 6/35
@ We have identified concurrency, and established an algorithm @ Each UE executes the same program, but has different data.
structure. @ They can follow different paths through the program. How?
@ Now how to implement the algorithm? @ Code at different UEs can differentiate with each other using a
Issues unique ID.
@ Clarity of abstraction - from algorithm to source code. @ Assumes that each underlying hardware are similar.
@ Scalability - how many processors can it use? Challenges
@ Efficiency - utilizing the resource of the computer, efficiently. @ Interactions among the seemingly independent activities of UEs.
Example? @ Clarity, Scalability, Efficiency, Maintainability (1m cores),
@ Maintainability - is it easy to debug, verify and modify? Environment.
@ Environment - hardware and programming environment. @ How to handle code like initialization, finalization etc?

V.Krishna Nandivada (IIT Madras) CS3400 7135 V.Krishna Nandivada (/IT Madras) CS3400 8/35

SPMD example SPMD translation. Inefficient?

T4 int main () {
™= / T
. . 0 int 1i;
int main () { int numSteps = 1000000;
// Initialization start double x, pi, step, sum = 0.0;
%nt Li step = 1.0/ (double) numSteps;
int numSteps = 1000000; int numProcs = numSteps;
double X, pi, step, sum = 0.0; |nt mle:getMyld(),
step = 1.0/ (double) numSteps;
// Initialization end i = myID;
for (i1i=0;i< numSteps; i++) { % = (i+0.5)xstep;
x = (1+0.5) xstep; sum = sum + 4.0/ (1.0+x*x);
sum = sum + 4.0/ (1.0+x*x); }
// Finalization start sum = step * sum;
piI: stfp.*osum; o DoReductionOverAllProcs(&sum, &pi); // blocking.
printf("pi %1f\n",pi); if (myID == 0) printf("pi $1f\n",pi);
return 0; return 0:
// Finalization end ’
}
V.Krishna Nandivada (IIT Madras) CS3400 9/35 V.Krishna Nandivada (IIT Madras) CS3400 10/35
SPMD translation. Better? Supporting structure
int main () {
int i; int numSteps = 1000000; [Finding Concurrency |
double x, pi, step, sum = 0.0; :
step = 1.0/ (double) numSteps; | Algorithm Structure
int numProcs = getNumProcs(); }
int myID = getMyId(); Supporting Structures

step = 1.0/numSteps; . TR
i Data Structures

iStart = myID * (numSteps / numprocs); E SPMD E Shared Data

|
iEnd = iStart * (humSteps / numprocs); i |
|
|

M(fﬂ't’r.‘r WUJ”*('F -Sllbt'.'r['ﬂr QI’;H.'(I’E'

if (mylD == numProcs-1) iEnd = numSteps;

Loop Parallelizm Distributed Array

for (i = iStart; i < iEnd; ++i){ :
x = (i+0.5) *step; \
sum = sum + 4.0/ (1.0+x*x); }

sum = step *x sum;

DoReductionOverAllProcs (&sum, &pi); // blocking.

if (myID == 0) printf("pi %$1f\n",pi);

return 0;
V.Krishna Nandivada (IIT Madras) CS3400 11/35 V.Krishna Nandivada (lIT Madras) CS3400 12/35

Fork [Join

[Implementation Mechanisms I

Master/Worker Master/Worker layout

master (1) ; workers (1 to N)
Situation [initiate computation | ! |
@ workload at each task is variable and unpredictable (what if ([_setur ‘;mbl"m |
predictable?). . | create bag of tasks [. :
. i ¥ : !
@ Not easy to map to loop-based computation. [lounch workers _ }+._ :
@ The underlying hardware have different capacities. s initialize |
E : % :
Master/Worker pattern : : | compute results I
@ Has a logical master, and one or more instances of workers. i sleep mntil work is dons : %
@ Computation by each worker may vary. g] Y
. : ; 4 exit ;
@ The master starts computation and creates a set of tasks. : T 1 |

@ Master waits for tasks to get over.

Q: How to implement the set of tasks? Characteristics of this data structure?

V.Krishna Nandivada (IIT Madras) CS3400 13/35 V.Krishna Nandivada (IIT Madras) CS3400 14 /35
Master/Worker Issues Master/Worker template for master
@ Has good scalability, if number of tasks greatly exceed the number int nTasks // Number of tasks
of workers, and each worker roughly gets the same amount of int nWorkers // Number of workers
work (Why?). public static SharedQueue taskQueue; // global task queue
@ Size of tasks should not be too small. Why? public static SharedQueue resultsQueue; // queue to hold re

void master () {

@ Can work with any hardware platform.
y P // Create and initialize shared data structures

@ How to detect completion? When can the workers not wait but

shutdown? taskQueue = new SharedQueue () ;
o Easy if all tasks are ready before workers start. gIOba}ReS}lltS B r,lew SharedQu?ue O
e Use of a poison-pill in the work-queue. for (int i = 0; i < nTasks; i++)
e What if the workers can also add tasks? Issues? enqueue (taskQueue, 1);
e Issues with asynchronous message passing systems?
e How to handle fault tolerance? - did the task finish? // Create nWorkers threads
Variations ForkJoin (nWorkers);

e Master can also become a worker.
e Distributed task queue instead of a centralized task queue.
(dis)advantages?

consumeResults (nTasks);

}

V.Krishna Nandivada (IIT Madras) CS3400 15/35 V.Krishna Nandivada (IIT Madras) CS3400 16/35

Master/Worker - ForkdJoin Master/Worker - template for worker

class Worker () {
public void run() {
while (! (Master.taskQueue.empty()) {
// atomically dequeue.

void ForkJoin (int nWorker) { // do computation

Thread [] t = new Threads[nWorkers]; // add to globalResults atomically
for (int i=0;i<nWorker;++i) { b))
t[i] = new Thread(new Worker()) }
for (int i=0;i<nWorker;++i) { Known uses
t[i].Jjoin();} o SETI@HOME
) @ Map Reduce
e "Map” step: The master node takes the input, partitions it up into
smaller sub-problems, and distributes those to worker nodes.
@ A worker may again partition the problem — multi-level tree structure.
@ The worker node processes that smaller problem, and passes the
answer back to its master node. p
o "Reduce” step: Master node takes all the answers and combineg
them to get the output the answer to the original problem. s
V.Krishna Nandivada (IIT Madras) CS3400 17 /35 V.Krishna Nandivada (IIT Madras) CS3400 18/35
Supporting structure Loop Parallelization
|_Finding Concurrency | @ A program has many computationally intensive loops, with
—t “independent” iterations.
| Algorithm Structure | .]
] @ Goal: Parallelize the loops and get most of the benefits.
Supporting Struetures @ Very narrow focus.
| Program Structures | | DataStructures e Typical application: scientific and high performance computation.
E | SEPMID E , Shared Pata | (] |mpaC'[Of Amdahl’s IaW?
[Measter/ Worker] ¢ | Shared Quee | | @ Quite amenable to refactoring type of incremental parallelization.
: : S — Advantage?
! | Loop Parallelizm o Distributed Array | o
| | I Do . @ Impact on distributed memory systems?
i [l il ' i
L ’ @ Good if computation done in iterations compensates the cost of

thread creation - how to improve the tradeoff? Coalescing,
merging.

[Implementation Mechanisms I

V.Krishna Nandivada (IIT Madras) CS3400 19/35 V.Krishna Nandivada (IIT Madras) CS3400 20/35

Loop coalescing and merging for parallelization

Merging/Fusion Coalescing

for (1 : 1..n) { for (i : 0..m) {

S1 .
} for (j : 0..n) {
for (j : 1..n) { °
S2 s
) —>
s for (ij O0..m*n) {
for (1 : 1..n) { b ; i
s1 1 =17 n;
. S
] = 1; }
S2
}
V.Krishna Nandivada (IIT Madras) CS3400 21/35

Loop parallelization example

1
4
7r:y/—————dx
o 1+ x*¥

int main () { int main O |

int i, numSteps=1000000;
double pi, step, sum=0.0;
step=1.0/ (double) numSteps;

int i, numSteps = 1000000;
double x,pi,step,sum=0.0;
step=1.0/ (double) numSteps;

forall(i: [O0..numSteps]) {
double x=(i+0.5) xstep;
double tmp=4.0/(1.0+x%*x)
atomic sum=sum+tmp; }

for(i: [0..numSteps]) {
x=(1+0.5) xstep;
sum=sum+4.0/ (1.0+x*x);}

pi=stepx*sum;
printf ("pi $1f\n",pi);
return 0; }

pi = step * sum;
printf ("pi $1f\n",pi);
] .) _return 0; }

Reading material: Automatic loop parallelization.

V.Krishna Nandivada (IIT Madras) CS3400 23/35

Loop parallelization issues

@ Distributed memory architectures.

@ False sharing : variables not needed to be shared, but are in the
same same cache line. Can incur high overheads.

@ Seen in systems with distributed, coherent caches.
@ The caching protocol may force the reload of a cache line despite
a lack of logical necessity.

foreach(j : [0..N]) {

foreach(j : [0..N]) { double tmp;
for (i=0; i<M; 1i++) { for (1i=0; 1i<M; i++) {
A[j]l+= compute(j,1i); tmp += compute(j,1i);
} }
} atomic A[]j] += tmp;
}
V.Krishna Nandivada (lIT Madras) CS3400 22/35

Supporting structure

[Finding Concurrency |
[
r

| Algorithm Structure |

Supporting Structures
" Prgeam Structurea | | DataStructurea |
. | SPMID E . Shared Data | E
; | M(rsft'r.-r WUJ”*('F é i SI‘LGJ"[’{.I’ QI’IA’.’(I’E‘ | i
I | Loop Parallelizm ? : Distributed Array | :
[Forkldoin : !

Implementation Mechanisms |

V.Krishna Nandivada (lIT Madras) CS3400 24/35

Fork/Join - example Mergesort

int[] mergesort (int[]A,int L,int H) {

if (H-L <= T) {quickSort (A, L, H); return;}
@ The number of concurrent tasks varies as the program executes. int m = (L+H)/2;
@ Parallelism beyond just loops AL = mergesort (s, L, m); // fork
y J. pS- A2 = mergesort (A, m+l, H); // fork
@ Tasks created dynamically (beyond master-worker). // oin.

@ One or more tasks waits for the created tasks to terminate.

@ Each task may or not result in an actual UE. Many-to-one
mapping. Examples?

V.Krishna Nandivada (lIT Madras)

CS3400

Supporting structures and algorithm structure

25/35

return merge (Al,

A2);

// returns a merged sorted array.

}
Issues

@ Cost.
@ Alternatives?

V.Krishna Nandivada (lIT Madras)

Supporting structure

CS3400

[Finding Concurrency |

26/35

Divide . " Event- i
Task Geomeltric Recursive o
2 and S Pipeline Based L]
Parallelism Ehoniiky Decomposition Data Covrdination | Algorithm Structure |
SPMD Thkk | kkk Ak w ok Kk o '
E,T'L‘eﬁsm o ok ok ok Supporting Structures
Master/ pTTTTTTT TS o m e W TTTTTTTTTommommmmm e |
Worker %k ok ** * * * * . Program Struetures | | Data Structures |
Fork/Join *k dek ko ok e ke ek %k ko : | SPMD o Shared Data | !
Homework | Master/ Worker | Shared Queve | |
OpenMP | MPI | Java | X10 | UPC | Cilk | Hadoop ! : to — :
SPMD — P > : | Loop Parallelizm o Distributed Array | :
Loop Parallelism FokAk * Fokk ! Fork [Join L !
Master/Worker Hk KAk | okk e e e e '
Fork/Join Fokk —
\f_mp!vnmuatfﬂn Mechanisms |
V.Krishna Nandivada (IIT Madras) CS3400 27 /35 V.Krishna Nandivada (lIT Madras) CS3400 28/35

Shared Data

Million dollar question: How to handle shared data?
@ Managing shared data incurs overhead.
@ Scalability can become an issue.
@ Can lead to programmability issues.
@ Avoid if possible - by
e replication,

e privatization,
e reduction.
@ Use appropriate concurrency control. Why?
e Should preserve the semantics.
e Should not be too conservative.
@ Shared data organization: distributed or at a central location?

@ Shared Queue (remember master-worker?) is a type of shared
data.

V.Krishna Nandivada (IIT Madras) CS3400 29/35

Issues with shared data

@ Deadlocks : two or more competing actions are each waiting for
the other to finish.

lockA — lockB

lockB — lockA
One way to avoid: partial order among locks. Locks are acquired
in an order respecting the partial order.

@ Livelocks : the states of the processes involved in the livelock
constantly change with regard to one another, none progressing.
Example: recovery from deadlock - If more than one process
takes action, the deadlock detection algorithm can be repeatedly
triggered leading to a livelock

@ Locality : Trivial if data is not shared.

@ Memory synchronization: when memory / cache is distributed.

@ Task scheduling - tasks might be suspended for access to sharg
data. Minimize the wait.

(Example via nested locks)

V.Krishna Nandivada (IIT Madras) CS3400 31/35

Issues with shared data

@ Data race and interference: Two shared activities access a shared
data. And at least one of them is a write. The activities said to
interfere.
forall (i:[1..n]) {

sum += A[i];

}

for (i[1l..n]) {
forall (j=1; j<m;++7) {
A[1]1[31=(A[1-11[3-11+A[1-11[JI+A[1-113+1]1)/3;
}
}
@ Dependencies : Use synchronization (locks, barriers, atomics, ...)
to enforce the dependencies.
e How to implement all-to-all synchronization?

V.Krishna Nandivada (IIT Madras) CS3400 30/35

Supporting structure

[Finding Concurrency |
[
r

| Algorithm Structure |

Supporting Structures
" Prgeam Structurea | | DataStructurea |
. | SPMID E . Shared Data | E
; | M(rs!t'r.-' WUJ”*(’F é i Sﬁ&'ﬂ'ﬂr QI’.{{'(I’E‘ | i
I | Loop Parallelizm ? : Distributed Array | :
‘[Forktdoin__] | | |

| Implementation Mechanisms I

V.Krishna Nandivada (lIT Madras) CS3400 32/35

Distributed Array Supporting structure

[Finding Concurrency |
[
r
Arrays often are partitioned between multiple tasks. | Algorithm Structure |
Goal: Efficient code, programmability. }
o Distribute the arrays such that elelement needed by a taskis | Supporting Struetures
“available” and “nearby”. ¢ Program Siruetures 15 ; Data Structures |
@ Array element redistribution? | SPMD Shared Data__] |
@ An abstraction is needed: a map from elements to places. | Master/ Worker Shared Queue |
@ Some standard ones: Blocked, Cyclic, Blocked cyclic, Unique, | Loop Parallelism | i ' | Distributed Array | |
@ Chosing a distribution. | Fork lJoin !

l Implementation Mechanisms I

V.Krishna Nandivada (IIT Madras) CS3400 33/35 V.Krishna Nandivada (IIT Madras) CS3400 34/35

Sources

@ Patterns for Parallel Programming: Sandors, Massingills.
@ multicoreinfo.com

@ Wikipedia

@ fixstars.com

@ Jernej Barbic slides.

@ Loop Chunking in the presence of synchronization.

@ Java Memory Model JSR-133: “Java Memory Model and Thread
Specification Revision”

V.Krishna Nandivada (IIT Madras) CS3400 35/35

	Patterns
	So far
	Supporting Structures
	Supporting Structures
	Conclusion

