Axiomatic semantics

@ Operational semantics talks about how an expression is
evaluated.

@ Denotational semantics - describes what a program text means in
mathematical terms - constructs mathematical objects.

CS6848 - Principles of Programming Languages

Principles of Programming Languages

V. Krishna Nandivada @ Axiomatic semantics - describes the meaning of programs in
terms of properties (axioms) about them.
IIT Madras @ Usually consists of

e A language for making assertions about programs.
o Rules for establishing when assertions hold for different
programming constructs.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 1/27 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 2/27

Language for Assertions Assertion Language

@ A specification language

e Must be easy to use and expressive @ Specification language in first-order predicate logic
e Must have syntax and semantics. e Terms (variables, constants, arithmetic operations)
@ Requirements: o Formulas:

@ trueand false
If 1; and 1, are terms then, 1y =1, 1; < t, are formulas.
If ¢ is a formula, so is —¢.

@ Assertions that characterize the state of execution.
o Refer to variables, memory

@ Examples of non state based assertions: IF ¢; and ¢, are two formulas then so are ¢; A ¢», ¢V ¢, and ¢; = ¢,.
e Variable x is live, If ¢(x) is a formula (with a free variable x) then, Vx.¢(x) and 3x.¢(x)

e Lock L will be released. are formulas.
o No dependence between the values of x and y.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 3/27 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 4/27

Hoare Triples Satisfiability

. . . .) @ A formula in first-order logic can be used to characterize states.
@ Meaning of a statement S can be described in terms of triples: i) i
(P}S{0} e The formula x = 3 characterizes all program states in which the
value of the location associated with x is 3.
e Formulas can be thought as assertions about states.

: < @ Define {o € |0 = ¢}, where [= is a satisfiability relation.
° Pisa pre-condltl_qn ons o Let the value of a term rin state o be 1°
° Qs a post-condition on . e If tis a variable x then 1% = o(x).
@ The triple is valid if If ¢ is an integer n then 1 = n.
e execution of S begins in a state satisfying P. okEn=nifif =15
° §terminates. . Eg Aq)ti i; icf; ':[| anﬂgq}; t; for all integer constants
H fafl (e} X.QlXx Olx—n n n.
o resulting state satisfies Q. o = 3x.¢(x) if o[x— n] E ¢(n) for some i%teger constant n.

where
@ P and Q are formulas or assertions.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 5/27 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 6/27

Partial Correciness

o {2=2x:=2{x=2}
An assignment operation of x to 2 results in a state in which x is 2,
assuming equality of integers!

@ {true}if Bthenx:=2elsex:=1{x=1Vvx=2}
AIIcI:c|>ndc|;uonaI expr§SS|ohq trr:at.elthehr a513|gn25 xto 1 or 2, if executed o If executed in a state in which 0 < @ and 0 < b, and
will lead to a state in which x is either 1 or 2. o S terminates,

@ {2=2}x:=2{y=1} o thenz=axh.

@ {true} if Bthenx:=2elsex:=1{x=1Ax=2}
Why are these invalid?

@ The validity of a Hoare triple depends upon the termination of the
statement S
@ {0<an0<b}S{z=axb}

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 7127 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 8/27

Soundness Proof rules

@ Skip:
{P}skip{P}
@ Hoare rules can be seen as a proof system. @ Assignment: B
e Derivations are proofs. . {P[t/x]}x :=t{P}
e conclusions are theorems. Example: Suppose r =x+1
o We write - {P} ¢ {Q}, if {P} ¢ {Q} is a theorem. then, {x+1=2}x:=x+1{x=2}
o If - {P} c {Q}, then = {P} c {Q}. °
@ Any derivable assertion is sound with respect to the underlying Sequencing {Pi}jcoiPa} {Pa}ei{Ps}
semantics. {P1}cosc1{P3}
°

{P] /\b}Co{PQ} {P] /\—\b}cl{Pz}
{P1}if b then ¢y else ci{P,}

Conditionals

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 9/27 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 10/27

Proot ules (contd

° @ {x>0}y=x—1{y>0} implies
Loop {,P/\b}C{P} {x> 10}y)’ =x—1 ?y > —5}
{P}while b c{PA-D} o (x>0} y=x—1{y>0} and
e / / / / {y >0} x=y {x >0} implies
Consequence):(Pépx{fp];j{g}}”):(Q ~9) {x>0}y=x—1x=y{x>0}

Apply rules of consequence to arrive at universal pre-condition and

strengthening of P’ to P, and weakening of Q' to Q. post-condition

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 11/27 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 12/27

Use of Axiomatic semantics to properties Step | - choosing the invariants

Prove that the following program:

z i Of @ Want to show the following Hoare triple is valid:
no= i {y > 0} above-program {z = x * y}
while n > 0 do @ Invariant for the while loop:

z 1= z + x; P ={z = xx(y-n) A n > 0}

n :=n - 1;

computes the product of x and y (assuming y is non-negative).

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 13/27 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 14/27

Step Il - constructing the proof in reverse order Step |l - constructing the proof in reverse order

(any iteration)

{z = x » (y-n) A n > 0}

while n > 0 do z := z+x; n := n-1 z 1= z+X;
{z = x v} {z=x* (y-(n-1)) A (n-1) > 0}
n := n-1
z=x % (y-n) An>0A=(n>0) =2z =2x %Yy {z=xx (y-n) A n > 0}
(definition of while)
z = xx(y-n) An>0An>0 =
(apply the consequence rule) {(z+x) = x x (y-(n=-1)) A (n-1) > O}
{z = x x (y-n) A n > 0}

while n > 0 do z := z+x; n := n-1 (consequence)

{z =x % (yn) An>0A- (n>0)} {z = xx(y-n) A'n >0 A n > 0}
z = z+x; n := n-1
{z=x*(y-n) A n > 0}

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 15/27 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 16 /27

Step Il - constructing the proof in reverse order Useless assignment

(pre—loop code)

{z = xx(y-y) Ay > 0}
n:=y while (x != y) do
{z = xx(y-n) A n > 0} if (x <= vy)
then
{0 = xx(y-y) ANy > 0} y 1= y—X
z :=0 else
{z = xx(y-y) ANy > 0} X 1= X7y
Derive that
{y > 0} F{x =m A y = n} above-program {x = gcd(m, n)}
z = 0; n =y })))
{z = xx(y-n) A n > 0} Hint: Start with the loop invariant to be {gcd (x, y) = gcd(m, n)}
{y > 0} above-program {z = x * y}
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 17/27 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 18/27

Last Class

@ Axiomatic Semantics

@ Proving that the factorial (using loops) computes factorial
@ Proof rules

_ _ o _ @ Proving that the exp (using loops) computes exp (M, N).
@ Proving the semantics of the multiplication routine.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 19/27 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 20/27

Connection between axiomatic and operational

semantics

@ Semantics of Valid assertions
@ Soundness
@ Completeness

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 21/27

Validity

Validity via total correctness

@ [P]c[Q]: Whenever we start the execution of command ¢ in a state
that satisfies P, the program terminates in a state that satisfies Q.
® Vo,P,Q,c |=[Pc[Q]
if o> Pt (true, o)
then
Jdo’:
oc>cko' A
o' > QF (true, o)
@ note the square brackets (not curly brackets).

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 23/27

Validity

Validity via Partial correctness

@ {P}c{Q}: Whenever we start the execution of command c in a
state that satisfies P, the program either does not terminate or it
terminates in a state that satisfies Q.
@ Vo,P,0,c = {P}c{0Q}
if
Vo':
o> Pl (true,c) N
o>chko’

then

o' > QF (true,o’)

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 22/27

Derivations and Validity

@ We use I A to indicate that we can prove (derive) the assertion A.

@ We use + {A}c{B} to indicate that we can prove the partial
correctness assertion {A}c{B}.

o We wish that |= {A}c{B} iff - {A}c{B}.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 24 /27

Soundness Completeness

o All derived triples are valid. @ All derived triples are derivable from empty set of assumptions.

e If- {P} ¢ {Q}, then = {P} c {Q}. o If = {P} ¢ {Q}, then

/
e Any derivable assertion is sound with respect to the underlying 30, . ,
operational semantics. init-state 1> {P}c{Q} - (true,d’).

@ Soundness is guaranteed from our proof rules. @ Harder to achieve (in general) — complete only if the underlying
logic is complete if (= A) then - A.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 25/27 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 26/27

Acknowledgements

@ Suresh Jagannathan
@ George Necula
@ Internet.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 27127

