
*

CS6848 - Principles of Programming Languages
Principles of Programming Languages

V. Krishna Nandivada

IIT Madras

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 1 / 27

*

Axiomatic semantics

Operational semantics talks about how an expression is
evaluated.
Denotational semantics - describes what a program text means in
mathematical terms - constructs mathematical objects.
Axiomatic semantics - describes the meaning of programs in
terms of properties (axioms) about them.
Usually consists of

A language for making assertions about programs.
Rules for establishing when assertions hold for different
programming constructs.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 2 / 27

*

Language for Assertions

A specification language
Must be easy to use and expressive
Must have syntax and semantics.

Requirements:
Assertions that characterize the state of execution.
Refer to variables, memory

Examples of non state based assertions:
Variable x is live,
Lock L will be released.
No dependence between the values of x and y.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 3 / 27

*

Assertion Language

Specification language in first-order predicate logic
Terms (variables, constants, arithmetic operations)
Formulas:

true and false
If t1 and t2 are terms then, t1 = t2, t1 < t2 are formulas.
If φ is a formula, so is ¬φ .
IF φ1 and φ2 are two formulas then so are φ1∧φ2, φ1∨φ2 and φ1⇒ φ2.
If φ(x) is a formula (with a free variable x) then, ∀x.φ(x) and ∃x.φ(x)
are formulas.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 4 / 27

*

Hoare Triples

Meaning of a statement S can be described in terms of triples:
{P}S{Q}

where
P and Q are formulas or assertions.

P is a pre-condition on S
Q is a post-condition on S.

The triple is valid if
execution of S begins in a state satisfying P.
S terminates.
resulting state satisfies Q.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 5 / 27

*

Satisfiability

A formula in first-order logic can be used to characterize states.
The formula x = 3 characterizes all program states in which the
value of the location associated with x is 3.
Formulas can be thought as assertions about states.

Define {σ ∈ Σ|σ |= φ}, where |= is a satisfiability relation.
Let the value of a term t in state σ be tσ

If t is a variable x then tσ = σ(x).
If t is an integer n then tσ = n.
σ |= t1 = t2 if tσ1 = tσ2
σ |= t1∧ t2 if σ |= t1 and σ |= t2
σ |= ∀x.φ(x) if σ [x 7→ n] |= φ(n) for all integer constants n.
σ |= ∃x.φ(x) if σ [x 7→ n] |= φ(n) for some integer constant n.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 6 / 27

*

Examples

{2 = 2}x := 2{x = 2}
An assignment operation of x to 2 results in a state in which x is 2,
assuming equality of integers!
{true} if B then x := 2 else x := 1 {x = 1∨ x = 2}
A conditional expression that either assigns x to 1 or 2, if executed
will lead to a state in which x is either 1 or 2.
{2 = 2}x := 2{y = 1}
{true} if B then x := 2 else x := 1 {x = 1∧ x = 2}
Why are these invalid?

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 7 / 27

*

Partial Correctness

The validity of a Hoare triple depends upon the termination of the
statement S
{0≤ a∧0≤ b} S {z = a×b}

If executed in a state in which 0≤ a and 0≤ b, and
S terminates,
then z = a×b.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 8 / 27

*

Soundness

Hoare rules can be seen as a proof system.
Derivations are proofs.
conclusions are theorems.
We write ` {P} c {Q}, if {P} c {Q} is a theorem.

If ` {P} c {Q}, then |= {P} c {Q}.
Any derivable assertion is sound with respect to the underlying
semantics.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 9 / 27

*

Proof rules

Skip:
{P}skip{P}

Assignment:
{P[t/x]}x := t{P}

Example: Suppose t = x + 1
then, {x + 1 = 2}x := x + 1{x = 2}

Sequencing
{P1}c0{P2} {P2}c1{P3}
{P1}c0;c1{P3}

Conditionals
{P1∧b}c0{P2} {P1∧¬b}c1{P2}
{P1}if b then c0 else c1{P2}

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 10 / 27

*

Proof rules (contd)

Loop
{P∧b}c{P}

{P}while b c{P∧¬b}

Consequence
|= (P⇒ P′),{P′}c{Q′}, |= (Q′⇒ Q)

{P}c{Q}
strengthening of P′ to P, and weakening of Q′ to Q.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 11 / 27

*

Examples

{x > 0} y = x−1 {y≥ 0} implies
{x > 10} y = x−1 {y≥−5}
{x > 0} y = x−1 {y≥ 0} and
{y≥ 0} x = y {x≥ 0} implies
{x > 0} y = x−1;x = y {x≥ 0}

Apply rules of consequence to arrive at universal pre-condition and
post-condition

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 12 / 27

*

Use of Axiomatic semantics to properties

Prove that the following program:

z := 0;
n := y;

while n > 0 do
z := z + x;
n := n - 1;

computes the product of x and y (assuming y is non-negative).

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 13 / 27

*

Step I - choosing the invariants

Want to show the following Hoare triple is valid:
{y ≥ 0} above-program {z = x * y}
Invariant for the while loop:
P = {z = x*(y-n) ∧ n ≥ 0}

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 14 / 27

*

Step II - constructing the proof in reverse order

{z = x * (y-n) ∧ n ≥ 0}
while n > 0 do z := z+x; n := n-1
{z = x * y}

z = x * (y-n) ∧ n ≥ 0 ∧ ¬ (n > 0) ⇒ z = x * y
(definition of while)

(apply the consequence rule)
{z = x * (y-n) ∧ n ≥ 0}
while n > 0 do z := z+x; n := n-1
{z = x * (y-n) ∧ n ≥ 0 ∧ ¬ (n > 0) }

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 15 / 27

*

Step II - constructing the proof in reverse order

(any iteration)
{(z+x) = x * (y-(n-1)) ∧ (n-1) ≥ 0}
z := z+x;
{z=x*(y-(n-1)) ∧ (n-1) ≥ 0}
n := n-1
{z=x*(y-n) ∧ n ≥ 0}

z = x*(y-n) ∧ n ≥ 0 ∧ n > 0 ⇒
{(z+x) = x * (y-(n-1)) ∧ (n-1) ≥ 0}

(consequence)
{z = x*(y-n) ∧ n ≥ 0 ∧ n > 0}
z := z+x; n := n-1
{z=x*(y-n) ∧ n ≥ 0}

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 16 / 27

*

Step II - constructing the proof in reverse order

(pre-loop code)
{z = x*(y-y) ∧ y ≥ 0}
n := y
{z = x*(y-n) ∧ n ≥ 0}

{0 = x*(y-y) ∧ y ≥ 0}
z := 0
{z = x*(y-y) ∧ y ≥ 0}

{y ≥ 0}
z := 0; n := y
{z = x*(y-n) ∧ n ≥ 0}
{y ≥ 0} above-program {z = x * y}

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 17 / 27

*

Useless assignment

while (x != y) do
if (x <= y)
then
y := y-x
else
x := x-y

Derive that
` {x = m ∧ y = n} above-program {x = gcd(m, n)}

Hint: Start with the loop invariant to be {gcd(x, y) = gcd(m, n)}

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 18 / 27

*

Last Class

Axiomatic Semantics
Proof rules
Proving the semantics of the multiplication routine.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 19 / 27

*

More proofs

Proving that the factorial (using loops) computes factorial
Proving that the exp (using loops) computes exp (M, N).

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 20 / 27

*

Connection between axiomatic and operational
semantics

Semantics of Valid assertions
Soundness
Completeness

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 21 / 27

*

Validity

Validity via Partial correctness
{P}c{Q}: Whenever we start the execution of command c in a
state that satisfies P, the program either does not terminate or it
terminates in a state that satisfies Q.
∀σ ,P,Q,c |= {P}c{Q}
if
∀σ ′:

σ BP ` 〈true,σ〉 ∧
σ B c ` σ ′

then
σ ′BQ ` 〈true,σ ′〉

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 22 / 27

*

Validity

Validity via total correctness
[P]c[Q]: Whenever we start the execution of command c in a state
that satisfies P, the program terminates in a state that satisfies Q.
∀σ ,P,Q,c |= [P]c[Q]
if σ BP ` 〈true,σ〉
then
∃σ ′:

σ B c ` σ ′ ∧
σ ′BQ ` 〈true,σ ′〉

note the square brackets (not curly brackets).

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 23 / 27

*

Derivations and Validity

We use ` A to indicate that we can prove (derive) the assertion A.
We use ` {A}c{B} to indicate that we can prove the partial
correctness assertion {A}c{B}.
We wish that |= {A}c{B} iff ` {A}c{B}.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 24 / 27

*

Soundness

All derived triples are valid.
If ` {P} c {Q}, then |= {P} c {Q}.

Any derivable assertion is sound with respect to the underlying
operational semantics.

Soundness is guaranteed from our proof rules.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 25 / 27

*

Completeness

All derived triples are derivable from empty set of assumptions.
If |= {P} c {Q}, then
∃σ ′

init-state B{P}c{Q} ` 〈true,σ ′〉.
Harder to achieve (in general) – complete only if the underlying
logic is complete if (|= A) then ` A.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 26 / 27

*

Acknowledgements

Suresh Jagannathan
George Necula
Internet.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 27 / 27

