CS6848 - Principles of Programming Languages

Principles of Programming Languages

V. Krishna Nandivada

IIT Madras

What is a Type?

- A type is an invariant.
- For example, in Java

int v;

specifies that $\ensuremath{ \mathrm{\scriptscriptstyle V} }$ may only contain integer values in a certain range.

- Invariant on what?
- About what?

Types are Ubiquitous

• Q: Write a function to print an Array of integers?

```
void printArr(int A[]) {
   for (int i=0;i<A.length;++i) {
        System.out.println(A[i]);
   }
}</pre>
```


V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

2/2

Why Types?

Advantages with programs with types – three (tall?) claims:

 Readable: Types provide documentation; "Well-typed programs are more readable".

Example: bool equal(String s1, String s2);

• Efficient: Types enable optimizations; "Well-typed programs are faster".

Example: c = a + b

Reliable: Types provide a safety guarantee;
 "Well-typed programs cannot go wrong".

Programs with no-type information can be unreadable, inefficient, and unreliable.

Example language

- λ-calculus.
- Admits only two kinds of data: integers and functions.
- Grammar of the language:

 $e ::= x \mid \lambda x.e \mid e_1e_2 \mid c \mid succ e$

 $x \in Identifier$ (infinite set of variables)

 $c \in Integer$

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

5/25

Type environment

- Type environment $A: Var \rightarrow types$.
- A type environment is a partial function which maps variables to types.
- \bullet ϕ denotes the type environment with empty domain.
- Extending an environment A with (x,t) given by A[x:t]
- Application A(y) gives the type of the variable y.
- Type Evaluation: $A \vdash e : t e$ has type t in environment A.
- Q: How to do type evaluation?

Simply typed lambda calculus

- Types: integer types and function types.
- Grammar for the types:

$$\tau ::= \operatorname{Int} | \tau_1 \to \tau_2$$

- Extend the signature of a lambda: $\lambda x : \tau . e$ every function specifies the type of its argument.
- $\bullet \ \, \mathsf{Examples:} \left\{ \begin{array}{ll} 0 & : \ \, \mathsf{Int} \\ \lambda x : \mathsf{Int} \ .(\mathit{succ} \ x) & : \ \, \mathsf{Int} \to \mathsf{Int} \\ \lambda x : \mathsf{Int} \ .\mathit{succ} \ \lambda y : \mathsf{Int} \ .x + y & : \ \, \mathsf{Int} \to \mathsf{Int} \end{array} \right.$
- These are simple types each type can be viewed as a finite tree.
 polymorphic types, dependent types
- Infinitely many types.

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

6/0

Type rules

 The judgement A ⊢ e: t holds, when it is derivable by a finite derivation tree using the following type rules.

$$A \vdash x : t(A(x) = t) \tag{1}$$

$$\frac{A[x:s] \vdash e:t}{A \vdash \lambda x: s.e: s \to t}$$
 (2)

$$\frac{A \vdash e_1 : s \to t, A \vdash e_2 : s}{A \vdash e_1 e_2 : t} \tag{3}$$

$$A \vdash 0$$
: Int (4)

$$\frac{A \vdash e : \mathsf{Int}}{A \vdash \mathsf{succ}\ e : \mathsf{Int}} \tag{5}$$

- Exactly one rule for each construct in the language. Also note the axioms
- An expression e is well typed if there exist A, t such that $A \vdash e : t$ is derivable.

Type rules

$$A \vdash x : t(A(x) = t) \tag{1}$$

$$\frac{A[x:s] \vdash e:t}{A \vdash \lambda x: s.e:s \to t} \tag{2}$$

$$\frac{A \vdash e_1 : s \to t, \ A \vdash e_2 : s}{A \vdash e_1 e_2 : t} \tag{3}$$

$$A \vdash 0$$
: Int (4)

$$\frac{A \vdash e : \mathsf{Int}}{A \vdash \mathsf{succ}\ e : \mathsf{Int}} \tag{5}$$

► Return1 ► Return2 ► Return3

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Examples of type rules

Identity function:

$$\frac{\phi[x: \mathsf{Int}] \vdash x: \mathsf{Int}}{\phi \vdash \lambda x: \mathsf{Int} \cdot x: \mathsf{Int} \to \mathsf{Int}}$$

Apply

$$\frac{\phi[f:s \to t][x:s] \vdash f:s \to t \qquad \phi[f:s \to t][x:s] \vdash x:s}{\phi[f:s \to t][x:s] \vdash f x:t}$$

$$\frac{\phi[f:s \to t][x:s] \vdash f x:t}{\phi[f:s \to t] \vdash \lambda x:s.f x:s \to t}$$

$$\frac{\phi[f:s \to t][x:s] \vdash \lambda x:s.f x:s \to t}{\phi[f:s \to t] \vdash \lambda x:s.f x:s \to t}$$

Example type derivations

- \bullet $\phi \vdash 0$: Int
- succ

$$\frac{\phi[x: \text{Int }] \vdash x: \text{Int}}{\phi[x: \text{Int }] \vdash \text{succ } x: \text{Int}}$$

$$\frac{\phi[x: \text{Int }] \vdash \text{succ } x: \text{Int}}{\phi \vdash \lambda x: \text{Int .succ } x: \text{Int } \to \text{Int}}$$

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Type derivation for SKI

- I-combinator identity function.
- K-combinator K, when applied to any argument x returns a constant function \mathbf{K} x, which when applied to any argument y returns x.

$$\mathbf{K} xy = x$$

V.Krishna Nandivada (IIT Madras)

$$\frac{\phi[x:s][y:t] \vdash x:s}{\phi[x:s] \vdash \lambda y:t.x:t \to s}$$
$$\frac{\phi[\lambda x:s] \vdash \lambda y:t.x:s \to (t \to s)}{\phi[\lambda x:s] \mapsto \lambda y:t.x:s \to (t \to s)}$$

- S-combinator, for substitution: **S** xyz = xz(yz)Useless assignment - derive the type derivation for **S** combinator.
- SKI is turing complete. Actually, SK itself is turing complete. Self study.

Example underivable term

• succ $(\lambda x : t.e)$ (Recall Rule 5):

$$\frac{A \vdash e : \mathsf{Int}}{A \vdash \mathsf{succ}\ e : \mathsf{Int}}$$

underivable
$$A \vdash \lambda x : t.e : Int$$

 $A \vdash succ (\lambda x : t.e) : Int$

- No rule to derive the hypothesis $\phi \vdash \lambda x : t.e.$
- succ $(\lambda x : t.e)$ has no simple type.

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Type soundness

A type system for a programming language is sound if well-typed programs cannot go wrong.

- Program = a closed expression.
- A value is a either a lambda or an integer constant.
- A program goes wrong if it does not evaluate to a value.
- An expression is in normal form if it cannot be further reduced.

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Language semantics (recall small step semantics)

 $\rightarrow_V \subseteq Expression \times Expression$

$$(\lambda x.e)v \to_V e[x := v] \tag{6}$$

$$\frac{e_1 \to_V e_1'}{e_1 e_2 \to_V e_1' e_2} \tag{7}$$

$$\frac{e_2 \to_V e_2'}{ve_2 \to_V ve_2'} \tag{8}$$

$$\operatorname{succ} c_1 \to_V c_2(\lceil c_2 \rceil = \lceil c_1 \rceil + 1) \tag{9}$$

$$\frac{e \to_V e'}{\text{SUCC } e \to_V \text{ SUCC} e'} \tag{10}$$

$$\lambda x.(\operatorname{succ}(\lambda y.(x+y)2))3$$

: succ $(\lambda y.(3+y) 2)$ Rule 6 Example: Rule 8, 6 : (succ (3+2))

> Rule 8 : succ 5 Rule 9 : 6

Recall from prior lecture on substitution

$$x[x := M] \qquad \equiv M$$

$$y[x := M] \qquad \equiv y \ (x \neq y)$$

$$(\lambda x.e_1)[x := M] \qquad \equiv (\lambda x.e_1)$$

$$(\lambda y.e_1)[x := M] \qquad \equiv \lambda z.((e_1[y := z])[x := M])$$

$$(\text{where } x \neq y \text{ and } z \text{ does not occur free in } e_1 \text{ or } M).$$

$$(e_1e_2)[x := M] \qquad \equiv (e_1[x := M])(e_2[x := M])$$

$$c[x := M] \qquad \equiv c$$

$$(succ \ e_1)[x := M] \qquad \equiv succ \ (e_1[x := M])$$

Wrong program

- An expession e is stuck if it is not a value and there is no expression e' such that $e \rightarrow_V e'$.
- Stuck expression ⇒ runtime error.
- A program e goes wrong if $e \rightarrow_V *e'$ and e' is stuck.
- Example of stuck program: cv, and succ $\lambda x.e$

Theorem: Well typed programs cannot go wrong.

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

17 / 25

Proof of theorem in steps

Lemma

1. Useless Assumption: If $A[x:s] \vdash e:t$, and x does not occur free in e then $A \vdash e:t$.

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

.

Proof of theorem in steps

Lemma

2. Substitution: If $A[x:s] \vdash e:t$, and $A \vdash M:s$ then $A \vdash e[x:=M]:t$.

Proof: By induction on the structure of e. Five subcases (depending on the type rules (1) - (5)) • Type rules • Substitution

- Rule (1) $e \equiv y$: Two subcases:
 - $x \equiv y$. We have $y[x := M] \equiv M$.

From $A[x:s] \vdash e:t$,

 $e \equiv y$, $x \equiv y$ and Rule (1)

We have (A[x:s])(x) = t, so s = t.

From $A \vdash M : s$ and s = t, we conclude that $A \vdash M : t$.

• $x \not\equiv y$. We have $y[x := M] \equiv y$.

From $A[x:s] \vdash e:t$,

 $e \equiv y$, and

Rule (1), it follows that A(y) = t, so we conclude $A \vdash y : t$.

Proof of theorem in steps

- Rule (2). We have $e \equiv \lambda y.e_1$. Two subcases.
 - $x \equiv y$. We have $\lambda y.e_1[x := M] \equiv \lambda y.e_1$. Since x does not occur free in $\lambda y.e_1$, From Lemma 1 and the derivation $A[x : s] \vdash \lambda y.e_1 : t$ produces a derivation $A \vdash \lambda y.e_1 : t$.
 - $x \neq y$. We have $\lambda y.e_1[x := M] \equiv \lambda z.((e_1[y := z])[x := M])$. The last step in the type derivation is of the form

$$\frac{A[x:s][y:t_2] \vdash e_1:t_1}{A[x:s] \vdash \lambda y:t_2:e_1:t_2 \to t_1}$$

From the premise of this rule and renaming of y to z, we have

 $A[x:s][z:t_2] \vdash e_1[y:=z]$

From the induction hypothesis, we have

 $A[z:t_2] \vdash ((e_1[y:=z])[x:=M]):t_1.$

So from Rule (2) we can derive

 $A \vdash \lambda z.((e_1[y := z])[x := M]) : t_2 \to t_1.$

Proof of theorem in steps

• Rule (3). We have $e \equiv e_1 e_2$, and $(e_1e_2)[x := M] \equiv (e_1[x := M])(e_2[x := M]).$

The last step in the derivation of the type rule is of the form:

$$A[x:s] \vdash e_1: t_2 \to t, \ A[x:s] \vdash e_2: t_2$$

 $A[x:s] \vdash e_1e_2: t$

From the induction hypothesis, we have $A \vdash e_1[x := M] : t_2 \to t$ and $A \vdash e_2[x := M] : t_2$. Using type derivation rule (3), we get $A \vdash e_1[x := M]e_2[x := M] : t.$

• Rule (4). We have $e \equiv c$, and $c[x := M] \equiv c$. The entire derivation of $A[x:s] \vdash e:t$ is of the form

$$A[x:s] \vdash c: \mathsf{Int}$$

Thus from rule (4) we have $A \vdash c$: Int.

• Rule (5): similar to Rule (3).

V.Krishna Nandivada (IIT Madras)

Type soundness

Corollary

Well typed programs cannot go wrong.

Proof

- Say we have a well typed program e. That is, e is closed and we have A, t, such that $A \vdash e : t$.
- Proof by contradiction. Say, e can go wrong.
- $\bullet \Leftrightarrow \exists$ a stuck expression e' such that $e \to_{V}^{*} e'$.
- From Lemma 6, e' is closed.
- From Lemma 3,we have $A \vdash e' : t$.
- From Lemma 5, we have e' is not stuck. Hence a contradiction.

Lemma

3. Type preservation: If $A \vdash e : t$, and $e \rightarrow_V e'$ then $A \vdash e' : t$.

Lemma

4. Typable Value: If $A \vdash v$: Int then v is of the form c. If $A \vdash v : s \rightarrow t$ then v is of the form $\lambda x.e.$

Lemma

5. Progress: If e is a closed expression, and $A \vdash e : t$ then either e is a value or there exists e' such that $e \rightarrow_V e'$.

Lemma

6. Closedness Preservation: If *e* is closed, and $e \rightarrow_V e'$ then e' is also closed.

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Lemmas' recollect

Lemma

3. Type preservation: If $A \vdash e : t$, and $e \rightarrow_V e'$ then $A \vdash e' : t$.

Lemma

4. Typable Value: If $A \vdash v$: Int then v is of the form c. If $A \vdash v : s \rightarrow t$ then v is of the form $\lambda x.e.$

Lemma

5. Progress: If e is a closed expression, and $A \vdash e : t$ then either e is a value or there exists e' such that $e \rightarrow_V e'$.

Lemma

6. Closedness Preservation: *If* e *is closed, and* $e \rightarrow_{V} e'$ *then* e' *is* also closed.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras)

Recap

- Type rules.
- Simply typed lambda calculus.
- Type soundness proof.

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

E / 25