Types are Ubiquitous

CS6848 - Principles of Programming Languages

Principles of Programming Languages @ Q: Write a function to print an Array of integers?
void printArr (int A[]) {
for (int 1=0;i<A.length;++1i) {
System.out.println (A[i]);

V. Krishna Nandivada

IIT Madras

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 2/25

What is a Type? Why Types?

Advantages with programs with types — three (tall?) claims:

@ Readable : Types provide documentation;
“Well-typed programs are more readable”.

@ Atype is an invariant.
@ For example, in Java Example: bool equal(String s1, String s2);

int v; @ Efficient: Types enable optimizations;
“Well-typed programs are faster”.

specifies that v may only contain integer values in a certain range.
@ Invariant on what? Example:c=a+b

@ About what? @ Reliable: Types provide a safety guarantee;
“Well-typed programs cannot go wrong”.

Programs with no-type information can be unreadable, inefficient,)
and unreliable.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 3/25 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 4/25

Example language Simply typed lambda calculus

@ Types: integer types and function types.
@ Grammar for the types:

@ A-calculus. to=Intjt > »
@ Admits only two kinds of data: integers and functions.
e Grammar of the language: @ Extend the signature of a lambda: Ax : 7.e — every function

specifies the type of its argument.

e = x|Axe|eier|c|succe
x € Identifier (infinite set of variables) 0 : Int
¢ € Integer @ Examples: ¢ Ax:Int.(succ x) : Int — Int
Ax:Int ssuce Ay :Int x+y : Int— Int — Int
@ These are simple types - each type can be viewed as a finite tree.
polymotrphic-types,dependenttypes
@ Infinitely many types.

Type environment Type rules

@ The judgement A+ e : 1 holds, when it is derivable by a finite derivation tree using
the following type rules.

@ Type environment A : Var — types. AR x:t(A(x) =1) (1)
@ A type environment is a partial function which maps variables to Ale:slber

types. AFAx:se:s—t)
@ ¢ denotes the type environment with empty domain. Aberis s Aber:s
e Extending an environment A with (x,7) - given by A[x : {] AFerer G)
@ Application - A(y) gives the type of the variable y. A0 Int @
@ Type Evaluation: A+ e:t — e has type r in environment A.
@ Q: How to do type evaluation? —Afe:lnt (5)

Ak succe:Int

@ Exactly one rule for each construct in the language. Also note the axioms
@ An expression e is well typed if there exist A,r such that A ¢ : ¢ is derivable.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 7125 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 8/25

Type rules Example type derivations

AFx:t(Ax) =1) (1)
Alx:s|Fe:t) @ ¢F0:Int
AFAx:se:s—t @ succ
Abej:s—t, Abey:s (3) Ofx:Int]Fx:Int
AFerer:t ¢[x:Int]+ succ x: Int
AFO:Int (4) ¢ Ax:Int.succ x:Int — Int
AFe:Int
5
AtEsucce: Int ()
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras)) V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 10/25

Examples of type rules Type derivation for SKI

@ |-combinator - identity function.

@ Identity function: @ K-combinator - K, when applied to any argument x returns a
o[x:Int]Fx: Int constant function K x, which when applied to any argument y
: ' returns x.
¢FAx:Int x:Int — Int K xy—ax
@ Apply Olx:s]ly:f]Fx:s

Olx:s]FAy:tx:t—s
OFAx:sAy:tx:s— (t—5s)

Of :s—t[x:s]bfis—t Of:s—t]x:s]bFx:s
Of s —t][x:s]-fx:t
Of is 1] FAx:sfx:s 1 @ S-combinator, for substitution: S xyz = xz(yz) '
OFAf s—idx sfx(s—1) = (5—1) Useless assignment - derive the type derivation for S combinator.
@ SKil is turing complete. Actually, SK itself is turing complete. — Self
study.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 11/25 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 12/25

Example underivable term Type soundness

@ succ (Ax:t.e) A type system for a programming language is sound
(Recall Rule 5): it if well-typed programs cannot go wrong.
AlFe:ln

AFsucce: Int

AFAx:te:Int
A succ (Ax:te):Int @ Program = a closed expression.
@ A value is a either a lambda or an integer constant.
@ A program goes wrong if it does not evaluate to a value.
@ An expression is in normal form if it cannot be further reduced.

underivable

@ No rule to derive the hypothesis ¢ - Ax : t.e.
@ succ (Ax: r.e) has no simple type.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 13/25 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 14/25

Language semantics (recall small step semantics) Recall from prior lecture on substitution

—yC Expression X Expression

(Ax.€)y =y e[x =] (6) | " y
x[x = =
i a (7) Ve = M] = y#Y)
ere2 v e (Ax.e))[x:=M] = (Ax.e)
er vy éh (Ay.er)x :=M] = Az((eily = Z)[x = M])
ver Do vel (8) (where x # y and z does not
A occur free in e; or M).
succ c; v eo([e2] = [er]+1)) (e1e2)[x := M] = (ei[x:=M])(e2[x :=M])
/ clx:=M] = ¢
succeeivvesucce’ (10) (succ e))[x :=M] = succ (ei[x :=M)])

Ax.(succ (Ay.(x+y)2)) 3

Rule 6 i succ (Ay.(3+y) 2)
Example: Rule 8,6 : (succ (3+2))

Rule 8 :succ 5

Rule 9 16

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 15/25 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 16/25

Wrong program Proof of theorem in steps

@ An expession e is stuck if it is not a value and there is no
expression ¢’ such that e —y ¢'.

@ Stuck expression = runtime error.

1. Useless Assumption: /fA[x:s]+ e: ¢, and x does not occur free in
@ A program e goes wrong if e —y x¢’ and ¢’ is stuck. ethenAtk et

@ Example of stuck program: cv, and succ Ax.e

Theorem: Well typed programs cannot go wrong.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 17/25 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 18/25

Proof of theorem in steps Proof of theorem in steps

@ Rule (2). We have e = Ay.e;. Two subcases.
o x=y. We have Ay.e|[x:=M] = Ay.e;.

. . . . Since x does not occur free in Ay.eq,
Proof: By induction on the structure of e. Five subcases (depending From femma 1 and the derivatigne;\[x . s]F Ay.e1 : 1 produces a

on the type rules (1) - (5)) derivation A Ay.e; : ¢.
@ Rule (1) e = y: Two subcases: o x#y. We have Ay.e|[x := M] = Az.((e1]y := 2])[x := M]).
e x=y. We have y[x:=M] =M. The last step in the type derivation is of the form
FromAfx:s]Fe:1,

2. Substitution: I/fA[x:s|Fe:1,andA+-M:sthenAt e[x:=M)]:1.

e=y,x=yand Rule (1)

We have (A[x:s])(x) =1,80s="1.

From A M:sands=r we concludethatA+- M :t.
x#y. We have y[x :=M] =y.

From Afx:s]Fe:t,

e=y,and
Rule (1), it follows that A(y) = ¢, so we conclude
AFy:t.
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 19/25

Alx:slly:n]tFer:n
A[x:S]FAyItQZE] h — 1N

From the premise of this rule and renaming of y to z, we have
Alx:s]lz:n] ey =1

From the induction hypothesis, we have

Alz:] F ((erily =) x :=M]) : 1.

So from Rule (2) we can derive

AFAz((eily :=2])[x :=M]) :t5 = 1,.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 20/25

Proof of theorem in steps

@ Rule (3). We have ¢ = ¢je,, and
(e1€2)[x := M] = (e1][x := M])(e2[x := M]).
The last step in the derivation of the type rule is of the form: Lemma

4. Typable Value: I/fAFv:Int thenv is of the formc. IfAFv:s—t

then v is of the form Ax.e.

3. Type preservation: I[fAt-e:1,ande —y e thenAk ¢ :t.

Alx:slkFei:th =t Alx:s|ter:t
Alx:s|Fejex:t

| \

From the induction hypothesis, we have A+ ¢;[x := M] : t, — t and Lemma
A ex[x:=M]: 1,.Using type derivation rule (3), we get 5. Progress: Ife is a closed expression, and A\ e : t then either e is a
Al eifx:=Mlex[x:=M] : ¢. value or there exists ¢' such thate —y ¢'.
@ Rule (4). We have e =c¢, and c[x:=M] =c. ’
The entire derivation of A[x : s] - e : ¢ is of the form
6. Closedness Preservation: Ife is closed, ande —y ¢ thené' is
Afx:s]Fezint also closed.

Thus from rule (4) we have A+ c: Int. T
@ Rule (5): similar to Rule (3). =

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 21/25 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 22/25

Type soundness Lemmas’ recollect
3. Type preservation: I[fAt-e:r,ande —y e thenAk ¢ 1.
Well typed programs cannot go wrong.

Lemma

4. Typable Value: I/fAFv:Int thenv is of the formec. IfAbFv:s—t
then v is of the form Ax.e.

Proof
@ Say we have a well typed program e. That is, ¢ is closed and we
have A,z, suchthat At e: 1.
@ Proof by contradiction. Say, ¢ can go wrong. Lemma

@ < Jastuck expression ¢’ such that e —7, ¢'. 5. Progress: Ife is a closed expression, and A\ e : t then either e is a
@ From Lemma 6, ¢ is closed. value or there exists ¢’ such thate —vy ¢'.

| A

v

@ From Lemma 3,we have A - ¢’ : 1.

@ From Lemma 5, we have ¢’ is not stuck. Hence a contradiction.
] 6. Closedness Preservation: Ife is closed, ande —y ¢ thené' is

also closed.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 23/25 V.Krishna Nandivada (lIT Madras) CS6848 (IIT Madras) 24 /25

@ Type rules.
@ Simply typed lambda calculus.
@ Type soundness proof.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 25/25

