
Compact Representation and Interleaved Solving for
Scalable Constraint-Based Points-to Analysis

Ramya Kasaraneni
Dept of CSE, IIT Madras

Chennai, TN, India
raka@cse.iitm.ac.in

V. Krishna Nandivada
Dept of CSE, IIT Madras

Chennai, TN, India
nvk@iitm.ac.in

Abstract
Constraint-based points-to analysis using Andersen-style in-
clusion constraints is widely used for its convenience, gener-
ality, and precision in modeling complex program behaviors.
Typically, such analyses generate constraints and resolve
them by computing the transitive closure of a constraint
graph. However, traditional constraint modeling often intro-
duces redundancy during constraint generation, solving, or
both. In the context of points-to analysis for object-oriented
languages like Java, this redundancy primarily stems from
the modeling of virtual calls and heap operations. As a result,
the analysis produces redundant constraints and inflated
constraint graphs, thereby increasing analysis time.

To address these limitations, we propose a novel constraint
representation and solving system PInter, which extends the
traditional inclusion constraint model. It presents a novel
technique to represent the constraints in compact and expres-
sive way. Further, it defers generation of constraints until
relevant objects are discovered, enabling demand-driven and
interleaved constraint generation and solving. We present a
proof of correctness of PInter. We used PInter to implement
two different Java points-to analyses, within the Soot frame-
work, and evaluated it on 12 applications drawn from the
DaCapo benchmark suite. As is standard, we used Tamiflex to
handle dynamic features of Java benchmarks and performed
a soundy evaluation. Our results show that, compared to tra-
ditional methods, PInter reduced the constraint count by 96%
(geomean) and the analysis time by 78% (geomean). We also
evaluated PInter against Soot’s Spark and the flow-, context-
insensitive analysis in Doop, and found that PInter achieved
significantly faster performance.

CCS Concepts: • Theory of computation → Program
analysis; • Software and its engineering → Automated
static analysis; • Mathematics of computing → Solvers.

ACM acknowledges that this contribution was authored or co-authored
by an employee, contractor or affiliate of a national government. As such,
the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes
only. Request permissions from owner/author(s).
CC ’26, Sydney, NSW, Australia
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2274-5/2026/01
https://doi.org/10.1145/3771775.3786280

Keywords: program analysis, inclusion-based constraints,
parametric-constraints

ACM Reference Format:
Ramya Kasaraneni and V. Krishna Nandivada. 2026. Compact Rep-
resentation and Interleaved Solving for Scalable Constraint-Based
Points-to Analysis. In Proceedings of the 35th ACM SIGPLAN Inter-
national Conference on Compiler Construction (CC ’26), January 31
– February 1, 2026, Sydney, NSW, Australia. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3771775.3786280

1 Introduction
Points-to analysis is a fundamental technique in static pro-
gram analysis, enabling numerous optimizations, and cor-
rectness guarantees [9, 17, 18, 23]. Among various approaches,
inclusion-constraint based points-to analysis [1, 7, 22] has
gained widespread adoption due to its generality and ability
to model complex program behaviors accurately.

Despite their utility, traditional approaches to generating
and solving inclusion constraints [14, 20, 22] face perfor-
mance and scalability bottlenecks, especially in languages
like Javawith pervasive virtualmethod calls. These approaches
typically suffer from redundancy in constraint generation
or/and solving. They model heap operations and virtual
method calls by generating constraints for all potential tar-
gets upfront, often based on initial approximations like class
hierarchy analysis [8].
For instance, Spark [14], the inclusion constraint-based

points-to analysis in the Soot framework [28], pre-builds a
Pointer Assignment Graph (PAG) upfront for all possible
target methods even when the call-graph is constructed on-
the-fly (called partly on-the-fly [15]). This upfront approach
generates a large number of constraints from the start, many
of which may be unnecessary. Similarly, for heap operations
like stores (e.g., x.f = y), or loads (e.g., z = x.f), Spark
adds edges to the PAG, such as y → x.f, or x.f → z. And
when points-to sets are updated during the constraint solving
phase (say, o1 is added to the points-to set of x), Spark creates
field reference nodes for o1, creating edges y → o1.f or
o1.f → z. However, as points-to sets evolve, revealing new
objects or aliases, the solving scheme of Spark revisits and
reprocesses all load and store edges. This is because the pre-
built PAG ties field references to variables (e.g., x.f) rather
than specific objects (e.g., o1.f), making it hard to pinpoint
which loads or stores are affected by changes.

https://doi.org/10.1145/3771775.3786280
https://doi.org/10.1145/3771775.3786280

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Ramya Kasaraneni and V. Krishna Nandivada

Similar issues can also be observed in the constraint-based
type inference approach [20], which generates constraints
for all methods and constructs a trace graph to model type
flows. It has an incremental solving approach which re-
duces redundant processing, but still requires generating
constraints upfront for all potential methods, limiting scal-
ability for large programs. Another popular approach, the
annotated constraint-based points-to analysis [22], extends
Andersen’s analysis to Java using annotated inclusion con-
straints, where field annotations track flows through specific
fields and method annotations model virtual calls with on-
the-fly call graph construction. Constraints are generated
incrementally for statements in reachable methods, discov-
ered via reachability from entry points, and solved using
local closure rules on a sparse, inductive-form graph until
a fixed point is reached. This avoids global reprocessing of
loads and stores by propagating points-to sets locally based
on matching annotations. However, it does not use type-
based filtering [14] during analysis, applying declared types
only post-analysis, potentially leading to larger points-to sets
and more reachable methods. It also introduces fresh vari-
ables for load and store constraints, increasing the constraint
graph size. We further illustrate some of these challenges
using an example.
Consider the example code snippet in Fig. 1, featuring a

main class M and four classes: A, B, C, and D, where B, C, and
D inherit from A. Each class defines an overridden method
foo(). An object created at line n is denoted by On. For a
virtual call like r.foo() at Line 16, traditional static analy-
sis [14, 20] generates constraints for all possible implemen-
tations of foo based on the class hierarchy (A::foo, B::foo,
C::foo, D::foo). These constraints can be redundant de-
pending on the type of the analysis being performed, and
gives us an idea of scope of improvement: Performing a flow
and context-insensitive points-to analysis will result in r
pointing to {O4,O10,O13}, thereby requiring only a subset
of the generated constraints (A::foo, B::foo). With a type-
based filtering during the analysis, the potential targets for
the call would only be B::foo. Similarly, for heap opera-
tions, such as the field store a.f=b at Line 7, traditional ap-
proaches [14] tie field references to the base variable a. This
requires revisiting all loads and stores whenever the points-
to set of the base variable changes. Alternatively, introducing
fresh variables [22] to model heap operations reduces the
number of revisits but creates large sized constraint graphs.

To address these limitations, we propose a novel approach
using parameterized constraints. Instead of eagerly gener-
ating constraints for all potential targets, we associate a
single parameterized constraint with each operation (e.g.,
field access or virtual call). Such a constraint is instantiated
only when a new object flows into the base variable. This
demand-driven approach interleaves constraint generation
and solving, incrementally producing constraints as points-
to sets evolve. By aligning constraint generation closely with

1 class M{

2 public static void main(..)

3 {

4 A a = new A(); //O4

5 A b = new B(); //O5

6 A c = new A(); //O6

7 a.f = b;

8 c.f = a;

9 if(..){

10 a = new A(); //O10

11 }

12 else{

13 a = new B(); //O13

14 }

15 B r = (B)a;

16 r.foo();

17 }

18 class A{

19 A f;

20 void foo(){...}

21 }

22 class B extends A{

23 void foo(){...}

24 }

25 class C extends A{

26 void foo(){...}

27 }

28 class D extends A{

29 void foo(){...}

30 }

Figure 1. Example code snippet.

the points-to set propagation, our method reduces the com-
putational cost of constraint generation and solving.

This paper proposes a novel constraint representation and
solving scheme called PInterwith the following key contribu-
tions that enhance the traditional inclusion constraint-based
framework.

1. We propose a compact representation of Andersen-style
conditional constraints that speeds up the solving process
and effectively reduces memory consumption.
2. To better handle calls to overridden methods—a primary
source of constraint explosion in object-oriented analysis—we
introduce a new constraint type called the "FunctionCall"
constraint. This specialized constraint encodes virtual calls
in a manner that avoids generating redundant constraints
typically associated with method overriding, thus streamlin-
ing the resolution of dynamic dispatch in the analysis.
3. We present a novel, efficient interleaved constraint gener-
ation and solving scheme that ensures that we only generate
the necessary constraints on demand and solve them.
4. We present a proof of correctness for the proposed scheme.
5.We implemented flow-insensitive and flow-sensitive points-
to analyses for Java using PInter as well as the traditional
constraints scheme [20] in Soot framework [28], and evalu-
ated on 12 benchmarks from DaCapo [4] benchmark suite.
We show that PInter generates 96% (geomean) less number of
constraints and takes 78% (geomean) less time compared to
the traditional constraints scheme. We also show that PInter
takes significantly less time compared to the flow, context-
insensitive analysis implementations available in Spark [14]
and Doop [6].

Compact Representation and Interleaved Solving for Constraint-Based Points-to Analysis CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

2 The Interleaved generation and solving
algorithm

Considering the complexity and redundancy in the genera-
tion and solving of traditional constraint system, we propose
the parameterization of conditional constraints and an inter-
leaved constraint generation and solving scheme, which we
name the Parameterized Interleaved scheme (PInter).

Fig. 2 shows the working of our interleaved analysis. The
PInterDriver algorithm takes as input a Java application and
the entry point (main method) and generates and solves
constraints. It is a worklist based algorithm that interleaves
the processing of each method: constraint generation, and
constraint solving. For all the methods present in the cur-
rent worklist, the PInter algorithm first invokes the process-
Method function to generate the relevant constraints for
each method. Then it solves the generated constraints for all
these methods together. Solving of these constraints may add
more methods (based on the current points-to information)
to the worklist. In this algorithm, a method is processed at
most once. This iterative process is summarized in Fig. 3.
In Section 2.1, we discuss our constraint system and the

constraints for points-to analysis and in Section 2.2 we dis-
cuss our constraint solving algorithm.

2.1 Constraint Generation
2.1.1 Traditional Constraint System. In program anal-
ysis, constraints are formal rules that model relationships
between program entities, such as variables, objects, or types,
based on program semantics like assignments or method
calls. Constraint-based program analyses construct and solve
these rules to infer properties, such as points-to sets in points-
to analysis, or type sets in type inference, ensuring prop-
erties like type safety or valid pointer targets. For exam-
ple, in points-to analysis, constraints define how objects
flow through variables. Drawing from Oxhøj et al. [20], con-
straints are categorized as: (i) member constraints of the form
𝑥 ∈ 𝐴, ensuring specific element 𝑥 is in a set 𝐴; (ii) propaga-
tion constraints of the form 𝑋 ⊆ 𝑌 , ensuring that elements
of set 𝑋 flow to set 𝑌 ; and (iii) conditional constraints of the
form 𝑎 ∈ 𝐴 ⇒ 𝑋 ⊆ 𝑌 , modeling dependencies along pro-
gram paths indicating a constraint 𝑋 ⊆ 𝑌 holds only under
a certain condition (if 𝑎 ∈ 𝐴). These constraints are typically
solved using a fixed-point iteration over a constraint graph.
For each statement, constraints are generated based on how
the statement affects the points-to information.

2.1.2 Modifications to the Traditional Constraint Sys-
tem . We generate four types of constraints: Member, Prop-
agation, Conditional, FunctionCall as shown in Fig. 4. The
member and propagation constraints are the same as the tra-
ditional ones [20]. Unlike traditional conditional constraints,
which associate a static condition with a constraint, our
framework defines parametric conditional constraints that
explicitly depend on parameters.

Traditional [20] conditional constraints are of the form
(𝑂𝑥 ∈ 𝐴 ⇒ 𝑋 ⊆ 𝑌), where 𝑂𝑥 is a possible member of set
𝐴. The RHS constraint (𝑋 ⊆ 𝑌) is evaluated whenever the
condition becomes true. In contrast, in our concise repre-
sentation, membership conditions are of the form 𝑟 ∈ 𝐴,
where 𝑟 is a parameter ranging over all possible members of
𝐴. This avoids listing of large number of (often redundant)
individual constraints for each possible member element of
𝐴. To distinguish these concise constraints from traditional
conditional constraints, we represent them as L𝑐𝑜𝑛𝑑𝑟 ,𝐶𝑟 M,
where 𝑐𝑜𝑛𝑑𝑟 is a parameterized membership condition, and.
𝐶𝑟 can be any arbitrary constraint that may have 𝑟 as a free
variable. The idea is that 𝐶𝑟 is to be evaluated whenever
𝑐𝑜𝑛𝑑𝑟 is true.

In addition to these membership based conditional con-
straints, to support strong update [24] in store statements,
we also support cardinality based constraints of the form
L𝑐𝑜𝑛𝑑,𝐶, 𝑒𝑙𝑠𝑒𝐶M, where 𝑐𝑜𝑛𝑑 is a cardinality condition of the
form |𝐴| == 1, and 𝐶 and 𝑒𝑙𝑠𝑒𝐶 are arbitrary constraints.
In such a conditional constraint, if 𝐴 is non-empty, the con-
straint 𝐶 holds if the condition 𝑐𝑜𝑛𝑑 evaluates to true; oth-
erwise 𝑒𝑙𝑠𝑒𝐶 holds. Our system requires that 𝐶 and 𝑒𝑙𝑠𝑒𝐶

have the following monotonic discipline: (i) solving of either
of the constraints should add elements to the same target
set. (ii) the set of values added by 𝑒𝑙𝑠𝑒𝐶 must be ⊇ the set of
values added by 𝐶 . This discipline helps in our correctness
argument (see Section 4).

Example: For example, consider a store statement x.f =
y. Assume, the maps varPts and fieldPts store the points-to in-
formation of variables and heap respectively. Then, the condi-
tional constraint, L𝑟 ∈ varPts(x), varPts(y) ⊆ fieldPts(𝑟, f)M,
indicates that for each reference ’𝑟 ’ that flows into varPts(x)
(the points-to set of x), varPts(y) will flow into fieldPts(𝑟, y).

In general, we believe that in PInter, 𝑐𝑜𝑛𝑑𝑟 can encode a
variety of conditions defined over the set 𝐴, enabling the
expression of different semantic properties. We leave it as a
future work to explore the same.
In addition to the three types of standard constraints, to

avoid generating redundant constraints due to method call
statements, we maintain an additional type of constraint
called FunctionCall-constraint. A FunctionCall-constraint is
of the form J𝑐𝑜𝑛𝑑𝑟 ; 𝑆1K, where the 𝑐𝑜𝑛𝑑𝑟 can only be a mem-
bership condition on the receiver variable. For example, con-
sider a statement 𝑆𝑐 of the form 𝑥 .𝑏𝑎𝑟 () and a FunctionCall
constraint Jo ∈ varPts(𝑆𝑐 , 𝑥); 𝑆𝑐K. This constraint indicates
that the call-site 𝑆𝑐 should be processed by considering each
object (o) that the receiver 𝑥 may point to.

2.1.3 Points-to Analysis using PInter. Points-to anal-
ysis statically computes the set of objects that variables
or fields of objects, may point to at runtime. Constraint-
based points-to analysis models these relationships using
set-inclusion constraints [1] which are formal rules capturing

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Ramya Kasaraneni and V. Krishna Nandivada

1 Function PInterDriver :
2 workList := {mainMethod};
3 while (workList is not empty) do
4 consList = 𝑔𝑒𝑛𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(workList);
5 𝑠𝑜𝑙𝑣𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(consList);

6 Function genConstraints :
7 while workList is not empty do
8 m = workList.remove();
9 consList = consList

⋃
processMethod(m);

10 return consList

11 Function solveConstraints :
12 for 𝑐 in consList do
13 solve(𝑐); // May add to workList.

Figure 2. Details of the PInterDriver algorithm.

Constraint
Generator
(∀ methods
in Worklist)

Constraint
Solver

Is
empty?WorkList

ExitStart

generated constraints

No

Add resolved methods

Add entry method
Yes

Figure 3. Block diagram showing the working of the
interleaved approach, described in Fig. 2. The process
is iterated till the worklist returned by the constraint-
solver is empty.

Constraint type Notation Description
Member J𝑀 ∈ 𝐴K Ensures that an element𝑀 belongs to a set 𝐴.
Propagation J𝐴 ⊆ 𝐵K Ensures that set 𝐴 is a subset of set 𝐵.
Conditional L𝑐𝑜𝑛𝑑𝑟 , 𝐶𝑟 , [𝑒𝑙𝑠𝑒𝐶𝑟]M Applies constraint 𝐶𝑟 if condition 𝑐𝑜𝑛𝑑𝑟 is satisfied. Otherwise, optionally applies an 𝑒𝑙𝑠𝑒𝐶𝑟

FunctionCall J𝑐𝑜𝑛𝑑𝑟 ; 𝑆𝑐K Resolves function in 𝑆𝑐 based on condition 𝑐𝑜𝑛𝑑𝑟 .

Figure 4. Constraint types. Notation used: 𝐴 and 𝐵 indicate flow-sets, 𝐶 indicates constraint;𝑀 indicates any element in the
flow-set; 𝑟 indicates temporary variables used by our scheme (not application variables); 𝑐𝑜𝑛𝑑𝑟 , 𝐶𝑟 , indicate conditions and
constraints that may be referring to a temporary 𝑟 ; 𝑆𝑐 indicates a call statement.

subset relationships, or element membership based on pro-
gram semantics. We now present instantiations of PInter to
perform popular flow-insensitive and flow-sensitive (context-
insensitive) points-to analyses.

For each pair of statements (𝑆1, 𝑆2) in the program, where
𝑆2 is a control-flow successor of 𝑆1 [19], we define constraints
for both flow-sensitive and flow-insensitive points-to analy-
ses. We store points-to information in two maps: varPts for
variables and fieldPts for fields. In flow-insensitive analysis,
points-to maps are global, and their keys exclude statements.
In flow-sensitive analysis, points-to maps are maintained at
each statement, and we demonstrate how the maps at 𝑆2 are
influenced by the semantics of 𝑆1.

1. Allocation: For an allocation statement 𝑎 = new 𝑋 (),
let 𝑜 denote the abstract object created at 𝑆1. The fol-
lowing constraints are added:

- Flow-insensitive: J𝑜 ∈ varPts(𝑎)K
- Flow-sensitive: J𝑜 ∈ varPts(𝑆2, 𝑎)K
2. Assignment: For an assignment statement 𝑎 = 𝑏, the

points-to set of 𝑏 is transferred to 𝑎. The constraints
are:

- Flow-insensitive: JvarPts(𝑏) ⊆ varPts(𝑎)K
- Flow-sensitive: JvarPts(𝑆1, 𝑏) ⊆ varPts(𝑆2, 𝑎)K
3. Load: For a load statement 𝑎 = 𝑏.𝑓 , the constraints are:

- Flow-insensitive:
L𝑟 ∈ varPts(𝑏), JfieldPts(𝑟, 𝑓) ⊆ varPts(𝑎)KM

- Flow-sensitive:
L𝑟 ∈ varPts(𝑆1, 𝑏), JfieldPts(𝑆1, 𝑟 , 𝑓) ⊆ varPts(𝑆2, 𝑎)KM

4. Store: For a store statement 𝑎.𝑓 = 𝑏, the constraints
are shown below. The flow-sensitive variant performs
strong update [24] in case varPts(𝑆1, 𝑎) is singleton
set, and the object in it is guaranteed to represent a
unique object at run time. Otherwise, it performs a
weak update which is given as the else-constraint. As-
sume that using a simple prepass, the set of unique ab-
stract objects in the program are stored in uniqueObjs
set and the non-unique abstract objects are stored in
nonUniqueObjs. The constraint (ii) depicts the usage
of a cardinality based conditional constraint.

- Flow-insensitive:
L𝑟 ∈ varPts(𝑎), JvarPts(𝑏) ⊆ fieldPts(𝑟, 𝑓)KM

- Flow-sensitive:
(i) L𝑟 ∈ varPts(𝑆1, 𝑎) ∩ nonUniqueObjs,

JvarPts(𝑆1, 𝑏) ∪fieldPts(𝑆1, 𝑟 , f) ⊆ fieldPts(𝑆2, 𝑟 , f)KM
(ii) L𝑟 ∈ varPts(𝑆1, 𝑎) ∩ uniqueObjs,

L|varPts(𝑆1, 𝑎) | == 1,
JvarPts(𝑆1, 𝑏) ⊆ fieldPts(𝑆2, 𝑟 , 𝑓)K,
JvarPts(𝑆1, 𝑏)∪fieldPts(𝑆1, 𝑟 , f) ⊆ fieldPts(𝑆2, 𝑟 , f)KMM

Compact Representation and Interleaved Solving for Constraint-Based Points-to Analysis CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

5. Call: For amethod call statement𝑎 = 𝑏.bar(args), if the
call is virtual, we generate a FunctionCall constraint:

- Flow-insensitive: J𝑟 ∈ varPts(𝑏); 𝑆1K
- Flow-sensitive: J𝑟 ∈ varPts(𝑆1, 𝑏); 𝑆1K
6. Return: For a method return statement ’return 𝑎’ in a

method meth, we generate a propagation constraint,
where retVal is a map storing the set of references a
method may return:

- Flow-insensitive: JvarPts(𝑎) ⊆ retVal(meth)K
- Flow-sensitive: JvarPts(𝑆1, 𝑎) ⊆ retVal(meth)K

The constraints described above apply to serial execu-
tion. When analyzing parallel programs, our constraints are
modular enough to integrate concurrency information to
accurately model the effects of concurrent heap operations.
The presence of concurrency requires that heap updates be
propagated to concurrently executing statements, as these
updates can occur in any order at runtime. Therefore, in
the flow-sensitive points-to constraints, if 𝑆1 is a load or
store statement, then besides propagating points-to informa-
tion to its control-flow successors 𝑆2, we also propagate the
points-to maps of heap to all statements that may execute
concurrently with 𝑆1.

We believe that PInter can also be naturally extended to in-
corporate context sensitivity, which we leave as future work.
Context can be added as an extra parameter in a context-
sensitive instantiation of PInter, analogous to the statement
parameter used in flow-sensitive analysis. Our decision to
focus on flow-sensitivity in this work is motivated by the
novel cardinality condition we developed, which naturally
applies to strong updates within the flow-sensitive setting.
Adding context-sensitivity on top of flow-sensitivity would
significantly impact scalability, as is well known [25, 26].
Hence, we limited our approach to flow-sensitive but context-
insensitive analysis.

2.2 Constraint Solving
Wenowpresent our novel constraint solving approach, which
interleaves with the constraint generation, as shown in Fig. 3.
Thus, the constraint solver may be invoked iteratively many
times. In each iteration, it handles all the constraints that are
generated in that iteration.

The solving algorithm that we propose is an extension of
constraint solving algorithm of Oxhøj et al. [20]. Unlike their
constraint solving algorithm, our algorithm needs to handle
parametric conditional constraints. Further, as discussed in
Section 2.1.2, we support a new type of constraint called Func-
tionCall constraint to avoid redundant constraints. These
are specialized constraints that avoid creating redundant
conditional constraints while processing function calls and
instead help generate additional constraints, as and when
required. For example, consider a function call x.foo(...),
where the static type of x is X, and classes Y and Z extend
X, and also override the method foo. If, during the analysis,

initially x points to an object of type Y, then we will add
constraints to propagate the information from the call-site
to the parameters of Y.foo and add Y.foo to a worklist of
methods if Y.foo is not already processed. And while solv-
ing the constraints, if we find that another object of type Z
also flows into x then we generate additional constraints to
propagate the information from the call-site to the parame-
ters of Z.foo, and add Z.foo to worklist if it is not already
processed. (details explained in Section 2.2.3). Consequently,
our constraint generation and solving procedures interleave
(unlike a single pass approach of Oxhøj et al.). We also rep-
resent the flow sets as bit vectors for efficiency; though for
ease of exposition, we use sets in the algorithm discussed in
this section. Our solving algorithm is shown in Fig. 5.

2.2.1 Solving Member and Propagation Constraints.
We use the standard approach in solving the member and
propagation constraints; we store the propagation relations
in a graph propDep (see Lines 3-6 in Fig. 5).

2.2.2 Solving Conditional Constraint. Unlike the tra-
ditional approach [20], since our conditional constraints are
parametric in nature, our handling of these constraints dif-
fer. Consider a membership based conditional constraint
L𝑐𝑜𝑛𝑑𝑟 , 𝐶𝑟 M in which 𝑐𝑜𝑛𝑑𝑟 is a membership condition of the
form 𝑟 ∈ 𝐴. We first store 𝐶𝑟 in condDep(𝐴), which stores
the constraints to be solved when a new member gets added
to 𝐴; For every member𝑀 of the set 𝐴, we instantiate 𝐶𝑟 by
replacing the occurrences of 𝑟 by 𝑀 and then solve it (see
Lines 8-11 in Fig. 5).

Consider a cardinality based conditional constraint of the
form L𝑐𝑜𝑛𝑑, 𝐶, 𝑒𝑙𝑠𝑒𝐶M, we invoke the 𝑠𝑜𝑙𝑣𝑒 function on 𝐶 or
𝑒𝑙𝑠𝑒𝐶 , based on the truth value of 𝑐𝑜𝑛𝑑 (see Lines 13-14 in
Fig. 5).

2.2.3 Solving FunctionCall Constraint. Consider a
FunctionCall constraint 𝑐 of the form J𝑐𝑜𝑛𝑑𝑟 ; 𝑆𝑐K, where 𝑆𝑐
is a statement having a function call and 𝑐𝑜𝑛𝑑𝑟 is of the
form 𝑟 ∈ 𝐴 (assuming 𝐴 is the points-to set of the receiver
in the function call). Similar to the solving of conditional
constraints, we first store 𝑆𝑐 in funcDep(𝐴), which stores the
call-statements that need to be revisited when a newmember
gets added to 𝐴. For each𝑀 in 𝐴, we invoke ℎ𝑎𝑛𝑑𝑙𝑒𝑀𝑒𝑡ℎ𝑜𝑑

(see Lines 15-18).
Theℎ𝑎𝑛𝑑𝑙𝑒𝑀𝑒𝑡ℎ𝑜𝑑 function first identifies the exactmethod

to be called for the receiver of type 𝑀 . It then generates the
following constraints to handle the impact of the call (see
Lines 15-18). We show below the flow-sensitive constraints.
The corresponding flow-insensitive constraints can be intu-
itively derived. Say, 𝑆𝑐 is of the form 𝑘 = 𝑥 .𝑏𝑎𝑟 (...), and 𝐿1
is the first statement in 𝑀 : 𝑏𝑎𝑟 , and func(𝑆𝑐) be foo (call
statement).

1 Copy the arguments: L𝑣 ∈ varPts(𝑆𝑐 , 𝑥), JvarPts(𝑆𝑐 , 𝑎𝑖) ⊆
varPts(𝐿1, 𝑝𝑖)KM, ∀𝑖 ∈ {0, ..., 𝑛}, where {𝑝0, 𝑝2, .., 𝑝𝑛} are the
formal arguments of function 𝑏𝑎𝑟 in𝑀 .

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Ramya Kasaraneni and V. Krishna Nandivada

1 Function solve(c) : // Solves the input constraint 𝑐 and any
other constraints generated in the process

2 switch type of c do
3 case Member constraint of the form J𝑀 ∈ 𝐴K do

propagate(𝑀 , 𝐴) ;
4 case Propagation constraint of the form J𝐴 ⊆ 𝐵K do
5 add edge 𝐴 → 𝐵 to propDep;
6 foreach𝑀 ∈ 𝐴 do propagate(𝑀 , 𝐵) ;

7 case Conditional constraint of the form L𝑐𝑜𝑛𝑑𝑟 ,𝐶𝑟 M
do

8 add 𝐶𝑟 into condDep(𝐴);
9 foreach𝑀 ∈ 𝐴 do
10 𝐶′ = 𝐶𝑟 [𝑟/𝑀]; // Replace free

occurrences of 𝑟 with 𝑀

11 solve(𝐶′);

12 case Conditional constraint of the form
L𝑐𝑜𝑛𝑑,𝐶, [𝑒𝑙𝑠𝑒𝐶]M do

13 if 𝑐𝑜𝑛𝑑 evaluates to true then solve(𝐶);
14 else solve(𝑒𝑙𝑠𝑒𝐶) ;

15 case FunctionCall constraint of the form J𝑐𝑜𝑛𝑑𝑟 , 𝑆𝑐K
do

16 Say 𝑐𝑜𝑛𝑑𝑟 is of the form J𝑟 ∈ 𝐴K;
17 Add 𝑆𝑐 to funcDep(𝐴);
18 foreach𝑀 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝑂 𝑓 (𝐴) /*classesOf(X)

returns the types of each object in 𝐴*/ do
ℎ𝑎𝑛𝑑𝑙𝑒𝑀𝑒𝑡ℎ𝑜𝑑(𝑀 , 𝑆𝑐) ;

19 Function ℎ𝑎𝑛𝑑𝑙𝑒𝑀𝑒𝑡ℎ𝑜𝑑(𝑀 , 𝑆𝑐) : //𝑀 is the receiver type
for the function call in 𝑆𝑐

20 Identify the function 𝑓 that is being called at 𝑆𝑐 , based
on𝑀 ;

21 Generate the inter-procedural transfer constraints;
22 if 𝑓 has not already been processed then

workList.add(𝑓) ;

23 Function propagate(𝑀 , 𝑆) :
24 if 𝑀 ∉ 𝑆 then
25 add𝑀 to 𝑆 ;
26 foreach edge 𝑆 → 𝐵 ∈ propDep do
27 propagate(𝑀 , 𝐵); // propagate along the

edge

28 foreach constraint 𝐶𝑟 ∈ condDep(𝑆) do
29 𝐶′ = 𝐶𝑟 [𝑟/𝑀]; // Replace free

occurrences of 𝑟 with 𝑀

30 solve(𝐶′);

31 foreach call-statement 𝑆𝑐 ∈ funcDep(𝑆) do
ℎ𝑎𝑛𝑑𝑙𝑒𝑀𝑒𝑡ℎ𝑜𝑑(𝑀 , 𝑆𝑐) ;

Figure 5. Solve the generated constraints. Grey text
indicates the common part with traditional solving
scheme [20]

Type Statement(s) Constraints

Member

4: A a=new A()

5: A b=new B()

6: A c=new A()

10: a=new A()

13 a=new B()

JO4 ∈ varPts (a)K
JO5 ∈ varPts (b)K
JO6 ∈ varPts (c)K
JO10 ∈ varPts (a)K
JO13 ∈ varPts (a)K

Prop. 15: B r=(B)a JvarPts (a) ⊆ varPts (r)K

Cond. 7: a.f=b

8: c.f=a

L𝑜 ∈ varPts (a), varPts (b) ⊆ fieldPts (𝑜.f)M
L𝑜 ∈ varPts (c), varPts (a) ⊆ fieldPts (𝑜.f)M

FuncCall 16: r.foo() J𝑜 ∈ varPts (r) ; r.foo()K

Figure 6. Generated Constraints for various statements of
main method of code snippet in Fig. 1

2 Copy the return value: L𝑠 ∈ succ(𝑆𝑐), JretVal(𝑀 : 𝑏𝑎𝑟) ⊆
varPts(𝑠, 𝑘)KM. Assume succ(𝑆𝑐) gives the control-flow suc-
cessors of 𝑆𝑐 .

3 Propagate fieldPts from 𝑆𝑐 to 𝐿1 and from the return
statement to the CFG successor of 𝑆𝑐 : constraints skipped
for brevity.

After generating the above constraints, we add the method
to the work-list if it is not already processed. This way, a
method body is processed only once, that too only when
needed. When an already processed method from a different
call site is encountered only the above shown constraints
are generated, but the method is not added to the worklist.

2.2.4 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 function. The 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 function adds
the element𝑀 to the set 𝑆 , if not already present and propa-
gates it through the edges in 𝑝𝑟𝑜𝑝𝐷𝑒𝑝 graph whose source
is 𝑆 . The function also solves the pending constraints (from
conditional constraints), if any for 𝑆 . Similarly, it also han-
dles any call-statements Here, we perform type-based fil-
tering [14]. Before adding a reference 𝑀 to the points-to
set 𝑆 of a variable 𝑣 (at Line 25 of Fig. 5), we check if the
type of𝑀 is compatible with the static type of 𝑣 as per the
class hierarchy information [8]. If the check fails, we return
from the propagate function without performing any of the
computation.

3 Example Run
We use the code snippet shown in Fig. 1 to illustrate the

working of PInterwhile performing a flow-insensitive points-
to analysis. PInter first adds the mainmethod to worklist (see
algorithm in Fig. 2). The main method is picked from work-
list and constraints are generated for the statements in it. For
the allocation statements in Lines 4,5,6,10, and 13, member
constraints will be generated. For the store statements in
Lines 7,8, conditional constraints are generated with condi-
tion on membership of points-to set of base variables a,c
respectively. For the copy statement in Line 15, propagation
constraint is generated, and for the virtual method call in

Compact Representation and Interleaved Solving for Constraint-Based Points-to Analysis CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

Line 16, a FunctionCall constraint is generated. These con-
straints are all shown in Fig. 6. Now, the constraint solving
starts as the worklist is empty. Constraints can be solved in
any order, yielding the same final result. We illustrate the
solving of four specific constraints:
Assume that initially the conditional constraint for the

store statement a.f = b at Line 7 is solved: The dependency
on the membership of a is stored in condDep(varPts(a)).
Since, the varPts(a) is empty, the dependent constraint is
not solved.

Next, solving member constraints for the allocation state-
ments in Lines 4,10,13 results in varPts(a) = {O4, O10, O13}.
Solving of propagation constraint for the copy statement
B r = (B)a at Line 15 includes first storing the propagation
dependency varPts(a) → varPts(r) to 𝑝𝑟𝑜𝑝𝐷𝑒𝑝 and then
adding elements already present in varPts(a) to varPts(r)
after type based filtering. This results in varPts(r) = {O13}
because O4, O10 are not of type B.
Next, we will see solving of functioncall constraint for

r.foo() at Line 16. Here, the dependency is first stored in
funcDep(varPts(r)), and then the ℎ𝑎𝑛𝑑𝑙𝑒𝑀𝑒𝑡ℎ𝑜𝑑 function
is called for already existing elements in varPts(r). Since
varPts(r) = {O13}, it results in the ℎ𝑎𝑛𝑑𝑙𝑒𝑀𝑒𝑡ℎ𝑜𝑑 function
resolving r.foo() to B :: foo, and B :: foo getting added to
worklist. This constraint generation and solving for all meth-
ods in the worklist continues until no more methods are
present in the worklist.

4 Correctness
Our constraint solving algorithm is an adaption of the tra-
ditional constraint solving algorithm of Oxhøj et al. [20].
However, in contrast to Oxhøj et al., we propose and use
a scheme of interleaved constraint generation and solving.
We introduced Conditional and FunctionCall constraints
which are parametric in nature. So it suffices to show the
correctness of Conditional and FunctionCall constraints as
the Member and Propagation constraints are traditional.
It is easy to see that compared to Oxhøj et al., we may

generate fewer conditional constraints (as we generate para-
metric constraints). But during the solving phase of Oxhøj et
al., if the predicate of any conditional constraint is satisfied
and they process any new constraint 𝐶 , then our approach
would also process 𝐶 . A similar argument holds for con-
straints resulting from virtual function calls. We present this
argument as the following two theorems and a lemma to
prove the correctness of cardinality based conditional con-
straints.

Theorem 4.1. Consider a sequence of traditional conditional
constraints of the form 𝑂1 ∈ 𝐴 ⇒ 𝐶𝑂1 , 𝑂2 ∈ 𝐴 ⇒ 𝐶𝑂2 ,
. . .𝑂𝑛 ∈ 𝐴 ⇒ 𝐶𝑂𝑛

, and the corresponding conditional con-
straint generated by us of the form J𝑟 ∈ 𝐴,𝐶𝑟 K. Note the con-
straint 𝐶𝑂𝑖

may refer to 𝑂𝑖 . If the traditional solver evaluates

one of the predicates (say, 𝑂𝑥 ∈ 𝐴) as true and processes 𝐶𝑂𝑥

then 𝐶𝑂𝑥
will also be processed by our solving algorithm.

Proof. (Sketch) The proof is straightforward, as during the
solving phase, when our solver finds that 𝑂𝑥 ∈ 𝐴, then it
will process 𝐶𝑂𝑥

. We now detail the proof.
Say, we have a sequence 𝑆𝑒𝑞 of membership and inclusion

based conditional constraints in the context of traditional
constraints. For ease of explanation, we will only focus on
processing the conditional constraints. We will prove the the-
orem by induction on the number 𝑛 of processed conditional
constraints in 𝑆𝑒𝑞.
Base case. Say, we have processed zero conditional con-

straints (𝑛 = 0), then there is nothing to disagree upon.
Induction hypothesis. Assume that we have processed

𝑛 = 𝑘 number of conditional constraints, and both the solv-
ing schemes have processed the same set of inclusion based
constraints.
Further, say, a constraint 𝐶𝑂1 has been processed by the
traditional solver, as part of processing the conditional con-
straint 𝑂1 ∈ 𝐴 ⇒ 𝐶𝑂1 , when 𝑂1 was found as a member of
𝐴. Then our proposed scheme would have processed 𝐶𝑂1 ,
as part of solving the conditional constraint J𝑟 ∈ 𝐴,𝐶𝑟 K. A
consequence of the induction hypothesis is that the solution
obtained so far is matching between the traditional and our
proposed scheme.
Induction step. We will now show (by contradiction)

that if the induction hypothesis holds, then the theorem
will hold for processing 𝑘 + 1 conditional constraints. Say,
the 𝑘 + 1𝑡ℎ constraint is of the form 𝑂2 ∈ 𝐴 ⇒ 𝐶𝑂2 and
the traditional scheme evaluated the condition (𝑂2 ∈ 𝐴) to
be true and processed the constraint 𝐶𝑂2 . Assume that our
proposed system did not evaluate 𝐶𝑂2 . It implies that our
system evaluated 𝑂2 ∈ 𝐴 to be false, at the end of solving
the first 𝑘 conditional constraints. This is a contradiction to
the induction hypothesis. Hence proved.

□

Theorem 4.2. Consider a set 𝑋 of conditional constraints
generated by the traditional constraint generation scheme, for
a call-site 𝑆𝑐 of the form: x.bar(𝑎𝑟𝑔𝑠). Each of these conditional
constraints are predicated by the possible type of the receiver ob-
ject. Let us consider a conditional constraint𝐶𝑖 ∈ 𝑋 , of the form
𝑐 ⇒ 𝐶 , where 𝑐 is of the form 𝐴 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝑂 𝑓 (varPts(𝑆𝑐 , 𝑥)),
and𝐶 represents a constraint for handling the flow between the
actual/formal parameters and the return value. Assume that
the FunctionCall constraint generated by our scheme is given
by Jo ∈ varPts(𝑆𝑐 , 𝑥); 𝑆𝑐K. If the traditional solver identifies 𝑐
to be true and processes 𝐶 , then our solver will also process 𝐶 .

Proof. The proof is again straightforward, as during the solv-
ing phase, when our solver finds that 𝐴 is a member of
𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝑂 𝑓 (varPts(𝑆𝑐 , 𝑥)) (Line 18, Fig. 5), then it will gen-
erate and process all the constraints relevant for the function

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Ramya Kasaraneni and V. Krishna Nandivada

call (see the method ℎ𝑎𝑛𝑑𝑙𝑒𝑀𝑒𝑡ℎ𝑜𝑑 , in Fig. 5); these will in-
clude 𝐶 . The proof logic for this theorem follows that of
Theorem 4.1 and is skipped for brevity. □

Lemma 4.3. Consider a cardinality based conditional con-
straint of the form L𝑐𝑜𝑛𝑑,𝐶, 𝑒𝑙𝑠𝑒𝐶M. Say, the target set updated
by 𝐶 and 𝑒𝑙𝑠𝑒𝐶 is 𝑌 . There is a guarantee that the computed
value of 𝑌 will be consistent with value of 𝑐𝑜𝑛𝑑 in the final
solution. That is, say in the final solution the value of 𝑐𝑜𝑛𝑑 is
true. Then the computed value of 𝑌 is same as that obtained
after evaluating 𝐶 (without having to evaluate 𝑒𝑙𝑠𝑒𝐶). Say, in
the final solution the value of 𝑐𝑜𝑛𝑑 is false. Then the computed
value of 𝑌 is same as that obtained after evaluating 𝑒𝑙𝑠𝑒𝐶

(without having to evaluate 𝐶).

Proof. (Sketch)
Our design ensures that 𝑐𝑜𝑛𝑑 may only be of the form |𝑆

== 1|. During the solving phase, depending on the order of
evaluation of constraints, the predicate value of 𝑐𝑜𝑛𝑑 may
change, and hence both the constraints may be evaluated.
During the solving phase of PInter it is possible that the

solver may first observe 𝑐𝑜𝑛𝑑 to be true, and later observe
it to be false; but never the other way around. Thus, it is
possible that the solver evaluates 𝐶 , followed by 𝑒𝑙𝑠𝑒𝐶 , or
only 𝑒𝑙𝑠𝑒𝐶; but never 𝑒𝑙𝑠𝑒𝐶 , followed by 𝐶 . Also, note that
both update the same target set as they follow the monotonic
discipline(see Section 2.1.2).
We see two cases based on the initial value of 𝑐𝑜𝑛𝑑 :
1. 𝑐𝑜𝑛𝑑 first evaluates to false: 𝑌 will be computed based

on 𝑒𝑙𝑠𝑒𝐶 . Since 𝑐𝑜𝑛𝑑 can never become true, 𝐶 will
never be evaluated. And hence the set of elements of
𝑌 are consistent with the final value of 𝑐𝑜𝑛𝑑 .

2. 𝑐𝑜𝑛𝑑 first evaluates to true. 𝑌 will be computed based
on 𝐶 . Now two subcases can occur:
a. 𝑐𝑜𝑛𝑑 remains true till the end: set of elements of 𝑌

are consistent with the final value of 𝑐𝑜𝑛𝑑 .
b. 𝑐𝑜𝑛𝑑’s values changes to false: 𝑌 will be updated

based on 𝑒𝑙𝑠𝑒𝐶 . But since 𝐶 and 𝑒𝑙𝑠𝑒𝐶 follow mono-
tonic discipline (see Section 2.1.2), the evaluation of
𝑒𝑙𝑠𝑒𝐶 will add all the elements added by 𝐶 and may
be more. Thus, the set of elements of 𝑌 are consis-
tent with the final value of 𝑐𝑜𝑛𝑑 . Note that the value
of 𝑐𝑜𝑛𝑑 cannot turn back to true.

□

5 Implementation and Evaluation
We implemented different points-to analyses using the PInter
constraint system within the Soot framework [28]. To evalu-
ate different facets of our approach, we developed four vari-
ants of points-to analyses: (i) fiPoA, a flow-insensitive points-
to analysis; (ii) nfiPoA, which extends fiPoA with traditional
non-interleaved constraint solving [20]; (iii) fsPoA, a flow-
sensitive points-to analysis; and (iv) nfsPoA, a flow-sensitive
analysis employing non-interleaved constraint solving. To

obtain non-interleaved solving, we modified the 𝑠𝑜𝑙𝑣𝑒 algo-
rithm (Fig. 5) to use traditional non-parametric constraints
in place of parametric Conditional and FunctionCall con-
straints. For example, a FunctionCall constraint is added for
each callable method at a call-site based on the static type in-
formation of the receiver. Additionally, since the benchmarks
used exhibit parallelism, we incorporate pre-computed con-
currency information to perform flow-sensitive heap up-
dates in both fsPoA and nfsPoA analyses. In addition to the
constraints shown in Section 2.1.3, we also model arrays,
exceptions in our implementation.

Our implementation consists of approximately 3K lines of
Java code. We conducted an evaluation on a system equipped
with an Intel Xeon Gold 5218 processor running at 2.3 GHz,
100 GB of memory, and Ubuntu 22.04.1 LTS. The benchmark
set includes 12 programs selected from the DaCapo bench-
mark suite, specifically versions 9.12 (DaCapo-bach) and
23.11 (DaCapo-chopin) [4]. These benchmarks are listed in
Fig. 7, along with some static characteristics.
Consistent with prior work [12, 27], we employed Tami-

Flex [5] to manage reflection in the benchmarks. Since, we
use Tamiflex in our implementation, although our proposed
method is sound, the reported results may be considered
soundy [16], consistent with common practice in the litera-
ture. For both versions of the DaCapo suites, we excluded
any benchmark that failed to execute properly with Tami-
Flex or Soot due to errors occurring at various points. We
also compare our fiPoA results with the equivalent flow- and
context-insensitive points-to analyses from Spark [14] in the
Soot framework and Doop [6]. We analyzed only application
methods and ran Spark and Doop in application-only mode
to ensure fair comparison.
We conduct an evaluation aimed at addressing three key

research questions.
RQ1: What is the impact of the proposed interleaved gen-

eration and solving of constraints? RQ2: How does PInter
compare against the flow, context-insensitive points-to anal-
ysis Spark in Soot framework? RQ3: How does PInter com-
pare against the flow, context-insensitive points-to analysis
implemented in Doop, a state-of-the-art declarative points-to
analysis framework?

(RQ1)What is the impact of the proposed interleaved
generation and solving of constraints?We evaluated the
execution times of fiPoA and fsPoA against their traditional
non-interleaved counterparts nfiPoA and nfsPoA. The com-
parative plots are shown in Fig. 8, 9. Each bar in the plots
further illustrates the breakdown of the total time into con-
straint generation and constraint solving components. We
found that for fiPoA and nfiPoA, constraint generation ac-
counts for 47% and 19% (geomean) of total time, respectively.
The nfsPoA analysis did not terminate (given a timeout of 2
hours) for all benchmarks except avrora, sunflow, graphchi,
zxing, jme. As illustrated in Fig. 8 and Fig. 9, nfiPoA and
nfsPoA required substantially more time, whereas fiPoA and

Compact Representation and Interleaved Solving for Constraint-Based Points-to Analysis CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

S.No. Benchmark No. of Constraints Memory (MB)

Name Source #Stmts nfiPoA fiPoA nfsPoA fsPoA nfiPoA fiPoA nfsPoA fsPoA

1 avrora chopin 21,682 2,563,609 44,292 11,493,295 1,485,072 375 142 2754 558
2 xalan chopin 44,859 10,143,700 12,316 - 141,017 912 210 - 244
3 sunflow chopin 10,754 403,786 45,687 1,959,927 1,384,498 174 144 599 479
4 batik chopin 37,057 3,994,959 35,884 - 607,658 699 280 - 416
5 graphchi chopin 7972 447,470 23,134 851,003 714,566 160 124 263 240
6 zxing chopin 17,137 785,033 21,340 2,077,367 316,083 221 206 720 298
7 jme chopin 6294 175,043 22,188 341,781 292,102 245 240 312 305
8 lusearch bach 10,777 790,798 39,695 - 790,593 174 109 - 304
9 luindex bach 15,607 2,077,854 49,670 - 3,413,560 266 121 - 602
10 pmd bach 31,091 3,183,130 20,829 - 339,377 513 163 - 259
11 fop bach 80,204 30,395,639 25,670 - 275,642 2458 413 - 356
12 h2 bach 38,436 6,112,416 17,546 - 209,472 677 144 - 201

Figure 7. Comparison of number of generated constraints and memory for nfiPoA, fiPoA, nfsPoA, fsPoA. The "-" indicates the
analysis did not terminate (timeout of 2 hours). "bach": DaCapo-bach, "chopin": DaCapo-chopin benchmark suites. #Stmts:
total points-to related statements in reachable application methods of benchmark.

av
ror
a
xa
lan

sun
flo
w
ba
tik

gra
ph
ch
i
zxi
ng jm

e

lus
ear
ch

lui
nd
ex pm

d fop h2

100

1,000

10,000

100,000

72
0

39
1

89
3 11
31

77
0

35
7 57

9

58
7 97

2

38
7 54
4

26
6

36
58

20
15
4

98
3

23
41
5

87
2

30
56
1

59
1 10

96 20
94

67
56

34
26
62

21
38
5

Ti
m
e
ta
ke
n
in

m
ill
is
ec

(lo
g
sc
al
e)

fiPoA solve time fiPoA gen time
nfiPoA solve time nfiPoA gen Time

Figure 8. Time comparison of nfiPoA and fiPoA, showing
the breakdown of time spent on constraint generation and
constraint solving. Lower the better.

fsPoA achieved notable speedups—43% and 78% (geomean)
reductions in runtime, respectively. These improvements
stem primarily from two factors: (i) reduced execution time
due to the generation of fewer constraints and (ii) lower pro-
cessing overhead from handling fewer constraints. Since the
contribution of the second factor is harder to quantify, our
discussion focuses on the first.

av
ror
a
xa
lan

sun
flo
w
ba
tik

gra
ph
ch
i
zxi
ng jm

e

lus
ear
ch

lui
nd
ex pm

d fop h2

1,000

10,000

100,000

1,000,000
13
40
4

60
6

49
97

40
55

24
33

12
10 18
55

40
75

97
56

26
33

10
49 12
61

27
51
65
2

71
92
4

67
92

15
51
26

37
99

Ti
m
e
ta
ke
n
in

m
ill
is
ec

(lo
g
sc
al
e)

fsPoA solve time fsPoA gen time
nfsPoA solve time nfsPoA gen Time

Figure 9. Time comparison of nfsPoA and fsPoA, showing
the breakdown of time spent on constraint generation and
constraint solving. Lower the better

In Fig. 7, we list the number of generated constraints and
the memory consumed by nfiPoA, fiPoA, nfsPoA, fsPoA. Over-
all, even though the number of constraints have some re-
lation to the number of statements (column 4), the actual
correspondence is difficult to establish. The number of con-
straints depend on the number of points-to analysis related
statements, and their interactions in the input program.

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Ramya Kasaraneni and V. Krishna Nandivada

av
ror
a

xa
lan

sun
flo
w

ba
tik

gra
ph
ch
i

zxi
ng jm

e

lus
ear
ch

lui
nd
ex pm

d fop h2

251

398

631

1,000

1,580

2,510

3,980

6,310

72
0

39
1

89
3 11

31

77
0

35
7

57
9

58
7

97
2

38
7

54
4

26
6

10
99
.0

21
30
.0

10
57
.0

21
48
.0

10
61
.0

10
90
.0

51
86
.0

10
56
.0

10
64
.0

21
16
.0

61
82
.0

20
95
.0

45
41

39
22

60
28

61
18

44
19 53

54 57
37

43
99 52

95

44
90

68
42

33
56

Ti
m
e
ta
ke
n
in

m
ill
is
ec

(lo
g
sc
al
e)

fiPoA
Doop
Spark

Figure 10. Time comparison of fiPoA, Spark and Doop; lower the better.

av
ror
a

xa
lan

sun
flo
w

ba
tik

gra
ph
ch
i

zxi
ng jm

e

lus
ear
ch

lui
nd
ex pm

d fop h2
100

158

251

398

14
2

21
0

14
4

28
0

12
4

20
6

24
0

10
9 12

1

16
3

41
3

14
4

31
9.
0

21
3.
0

27
4.
0

32
8.
0

21
5.
0

21
7.
0 23
7.
0

16
3.
0

31
9.
0

22
9.
0

31
5.
0

22
6.
0

20
5

20
5

31
7

50
0

19
9

33
5

39
7

18
2 19
5 20
2

38
5

19
5

M
em

or
y
co
ns
um

pt
io
n
in

M
B
(lo

g
sc
al
e)

fiPoA
Doop
Spark

Figure 11.Memory comparison of fiPoA, Spark and Doop; lower the better.

Fig. 7 reveals that fiPoA produces significantly fewer con-
straints (96% less geomean) than nfiPoA, while fsPoA gen-
erates 35% (geomean) fewer constraints than nfsPoA. This
reduction is particularly evident for the larger of the bench-
marks such as fop, xalan, h2, pmd, and batik.
(RQ2) How does PInter compare against the Spark

tool in Soot framework?
To show the impact of the proposed scheme PInter, in Fig. 10,
we additionally provide a comparison between fiPoA and
the flow-insensitive, context-insensitive points-to analysis

Spark (with on-the-fly call graph, field-sensitive, type-based
filtering enabled). As shown in Fig. 10, in terms of execu-
tion time, we find that fiPoA performs better than Spark for
all benchmarks. Across all the benchmarks, the geomean of
improvement was 87%. This attests to the benefit of our pro-
posed interleaved constraint generation and solving scheme.

As an academic study, we used GC logs to get an approx-
imate understanding of the memory usage and show the
plot in Fig. 11. Since this measurement is not precise, we
can only draw conclusions confidently where the difference

Compact Representation and Interleaved Solving for Constraint-Based Points-to Analysis CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

is significant. We find that fiPoA clearly takes less memory
than Spark for all the benchmarks except fop, xalan. For
these benchmarks, the memory usage is comparable.
(RQ3) How does PInter compare against the flow-

insensitive, points-to analysis implemented in Doop?
Fig. 10 also shows the comparison of execution times of fiPoA
and Doop’s flow-, and context-insensitive points-to analysis.

As observed,fiPoA consistently outperformsDoop in terms
of execution time. Across all the benchmarks, the geomean of
improvement was 47%. We believe that the performance gap
arises because Doop generates many facts eagerly upfront
during preprocessing, before beginning its iterative solving
phase.
Similar to RQ2, here also we did a study of the memory

usage. We find that while PInter took clearly less memory
for eight out of 12 benchmarks, Doop is a clear winner for
one (fop).
Note that we included this additional comparison with

Doop only to indicate how our approach positions itself
relative to a state-of-the-art framework. It would be an in-
teresting future work to perform a user study that aims to
implement a wide set of analyses (already available in Doop)
in PInter, and assess the programmability and performance
trade-offs between the two.

Summary: PInter significantly enhances the efficiency of
points-to analysis. The interleaved analyses (fiPoA, fsPoA)
achieve geometric mean speedups of 43% and 78%; gener-
ate 96% and 35% less number of constraints over their non-
interleaved counterparts. The fiPoA analysis consistently
outperforms established frameworks Spark (by 87%) and
Doop (by 47%) in execution time (geometric means) and uses
less memory across most benchmarks.

6 Related work
Constraint-based analyses form the basis for many points-
to and type inference analysis in languages like C, Java,
and JavaScript. Andersen [1] introduced flow-insensitive,
context-sensitive points-to analysis for C using inclusion
constraints. Oxhøj et al. [20] proposed a type inference al-
gorithm for untyped object-oriented programs, modeling
type flows as inclusion constraints solved incrementally, in-
spiring our constraint solving scheme. For Java, Spark [14]—
integrated into Soot [28]—constructs a Points-to Analysis
Graph (PAG) with constraints for all potential method targets
upfront, but its variable-based heap edges require reprocess-
ing load/store constraints, increasing overhead. Paddle [15],
another points-to analysis [28] in Soot, employs binary deci-
sion diagrams (BDDs) to represent points-to sets compactly,
excelling in scalable, context-sensitive analyses for large pro-
grams. While it generates fully on-the-fly call-graph, the
efficiency of BDD solving is very sensitive to optimizations
like variable ordering. Rountev et al. [22] extend Andersen’s
analysis with annotated inclusion constraints, generating

constraints for reachable methods, yet use fresh variables
for heap operations that enlarge the graph and apply type-
based filtering post-analysis, yielding larger points-to sets.
Doop [6] a declarative Datalog-based framework, does eager
fact generation during preprocessing and has heavy join-
based evaluation (using optimized engines like Soufflé [2]
or LogicBlox [3]) during resolution. Although the frame-
work is built for generality and extensibility it incurs higher
upfront costs and can be resource-intensive for lightweight
points-to analysis tasks. For JavaScript, Hackett and Guo [10]
use subset constraints with runtime type barriers to address
polymorphism, achieving up to 50% performance gains in
Firefox’s JIT compiler, but rely on dynamic checks, unlike our
static approach. Other popular optimizations in inclusion-
based points-to analysis for C – by Hardekopf and Lin [11],
Pereira and Berlin [21], and Heintze and Tardieu [13] – in-
clude lazy cycle detection, wave propagation, and online cy-
cle elimination. These orthogonal techniques could further
enhance the efficiency of our constraint-solving approach.

7 Conclusion
In this work, we introduced several improvements to make
constraint-based analyses for performing points-to analysis
of object-oriented languages more efficient and scalable. Our
compact representation of Andersen-style conditional con-
straints helps cut down onmemory usage and speeds up solv-
ing. To better handle the complexity of virtual method calls,
we proposed a new "FunctionCall" constraint that avoids the
usual explosion of redundant constraints caused by method
overriding. Our interleaved constraint generation and solv-
ing approach, PInter, ensures that only essential constraints
are generated and resolved, leading to more efficient anal-
ysis. We implemented two Java points-to analyses using
PInter within the Soot framework and evaluated them on
applications from the DaCapo benchmark suite. As is stan-
dard, we used Tamiflex to handle dynamic features of Java
benchmarks to perform a soundy evaluation. Finally, our
evaluation demonstrates that our approach not only reduces
the number of constraints and analysis time significantly but
also offers a viable and practical alternative to existing tools
like Spark.

Acknowledgments
This work is partially supported by the SERB CRG grant
(sanction number CRG/2022/006971).

References
[1] Lars Ole Andersen. 1994. Program analysis and specialization for the

C programming language. Ph. D. Dissertation. Datalogisk Institut,
Københavns Universitet.

[2] Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis.
2017. Porting doop to Soufflé: a tale of inter-engine portability for
Datalog-based analyses. In Proceedings of the 6th ACM SIGPLAN Inter-
national Workshop on State Of the Art in Program Analysis (Barcelona,

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Ramya Kasaraneni and V. Krishna Nandivada

Spain) (SOAP 2017). Association for Computing Machinery, New York,
NY, USA, 25–30. doi:10.1145/3088515.3088522

[3] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan
Olteanu, Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn.
2015. Design and Implementation of the LogicBlox System. In Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management
of Data. ACM, 1371–1382. doi:10.1145/2723372.2742796

[4] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M.
Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (Portland, Oregon, USA) (OOPSLA ’06). As-
sociation for Computing Machinery, New York, NY, USA, 169–190.
doi:10.1145/1167473.1167488

[5] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira
Mezini. 2011. Taming Reflection: Aiding Static Analysis in the Presence
of Reflection and Custom Class Loaders. In Proceedings of the 33rd
International Conference on Software Engineering (Waikiki, Honolulu,
HI, USA) (ICSE ’11). Association for Computing Machinery, New York,
NY, USA, 241–250. doi:10.1145/1985793.1985827

[6] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative
specification of sophisticated points-to analyses. In Proceedings of the
24th ACM SIGPLAN Conference on Object Oriented Programming Sys-
tems Languages and Applications (Orlando, Florida, USA) (OOPSLA ’09).
Association for Computing Machinery, New York, NY, USA, 243–262.
doi:10.1145/1640089.1640108

[7] Yingxia Cui, Longshu Li, and Sheng Yao. 2009. Inclusion-Based Multi-
level Pointer Analysis. In 2009 International Conference on Artificial
Intelligence and Computational Intelligence, Vol. 2. 204–208. doi:10.
1109/AICI.2009.157

[8] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization
of Object-Oriented Programs Using Static Class Hierarchy Analysis. In
ECOOP’95 — Object-Oriented Programming, 9th European Conference,
Åarhus, Denmark, August 7–11, 1995, Mario Tokoro and Remo Pareschi
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 77–101.

[9] Xiaokang Fan, Yulei Sui, Xiangke Liao, and Jingling Xue. 2017. Boosting
the precision of virtual call integrity protection with partial pointer
analysis for C++. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis (Santa Barbara, CA, USA)
(ISSTA 2017). Association for Computing Machinery, New York, NY,
USA, 329–340. doi:10.1145/3092703.3092729

[10] Brian Hackett and Shu yu Guo. 2012. Fast and Precise Hybrid Type
Inference for JavaScript. Proceedings of the 33rd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, 239–250.
doi:10.1145/2254064.2254094

[11] Ben Hardekopf and Calvin Lin. 2007. The Ant and the Grasshopper:
Fast and Accurate Pointer Analysis for Millions of Lines of Code.
Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 290–299. doi:10.1145/1250734.
1250767

[12] Dongjie He, Jingbo Lu, Yaoqing Gao, and Jingling Xue. 2023. Select-
ing Context-Sensitivity Modularly for Accelerating Object-Sensitive
Pointer Analysis. IEEE Transactions on Software Engineering 49, 2 (Feb
2023), 719–742. doi:10.1109/TSE.2022.3162236

[13] Nevin Heintze and Olivier Tardieu. 2001. Ultra-fast Aliasing Analysis
Using CLA: A Million Lines of Code in a Second. In Proceedings of the
ACM SIGPLAN 2001 Conference on Programming Language Design and
Implementation. Association for Computing Machinery, New York, NY,
USA, 254–263. doi:10.1145/378795.378851

[14] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java Points-to
Analysis Using Spark. In Compiler Construction, Görel Hedin (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 153–169.

[15] Ondřej Lhoták and Laurie Hendren. 2008. Evaluating the benefits of
context-sensitive points-to analysis using a BDD-based implementa-
tion. ACM Trans. Softw. Eng. Methodol. 18, 1, Article 3 (Oct. 2008),
53 pages. doi:10.1145/1391984.1391987

[16] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej
Lhoták, J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer,
Uday P. Khedker, Anders Møller, and Dimitrios Vardoulakis. 2015. In
defense of soundiness: a manifesto. Commun. ACM 58, 2 (Jan. 2015),
44–46. doi:10.1145/2644805

[17] V. Benjamin Livshits and Monica S. Lam. 2003. Tracking pointers with
path and context sensitivity for bug detection in C programs. SIGSOFT
Softw. Eng. Notes 28, 5 (Sept. 2003), 317–326. doi:10.1145/949952.940114

[18] RavichandhranMadhavan and Raghavan Komondoor. 2011. Null deref-
erence verification via over-approximatedweakest pre-conditions anal-
ysis. In Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications (Portland,
Oregon, USA) (OOPSLA ’11). Association for Computing Machinery,
New York, NY, USA, 1033–1052. doi:10.1145/2048066.2048144

[19] Steven S. Muchnick. 1998. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[20] Nicholas Oxhøj, Jens Palsberg, and Michael I. Schwartzbach. 1992.
Making type inference practical. In ECOOP ’92 European Conference on
Object-Oriented Programming, Ole Lehrmann Madsen (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 329–349.

[21] Fernando Magno Quintao Pereira and Daniel Berlin. 2009. Wave
Propagation and Deep Propagation for Pointer Analysis. 2009 Inter-
national Symposium on Code Generation and Optimization, 126–135.
doi:10.1109/CGO.2009.9

[22] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. 2001. Points-
to Analysis for Java Using Annotated Constraints. In Proceedings of
the 16th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (Tampa Bay, FL, USA) (OOPSLA
’01). Association for Computing Machinery, New York, NY, USA, 43–55.
doi:10.1145/504282.504286

[23] Erik Ruf. 2000. Effective synchronization removal for Java. In Proceed-
ings of the ACM SIGPLAN 2000 Conference on Programming Language
Design and Implementation (Vancouver, British Columbia, Canada)
(PLDI ’00). Association for Computing Machinery, New York, NY, USA,
208–218. doi:10.1145/349299.349327

[24] Radu Rugina and Martin Rinard. 1999. Pointer Analysis for Multi-
threaded Programs. In Proceedings of the ACM SIGPLAN 1999 Confer-
ence on Programming Language Design and Implementation (Atlanta,
Georgia, USA) (PLDI ’99). Association for Computing Machinery, New
York, NY, USA, 77–90. doi:10.1145/301618.301645

[25] Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analy-
sis. Found. Trends Program. Lang. 2, 1 (apr 2015), 1–69. doi:10.1561/
2500000014

[26] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick
your contexts well: understanding object-sensitivity. In Proceedings of
the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (Austin, Texas, USA) (POPL ’11). Association
for Computing Machinery, New York, NY, USA, 17–30. doi:10.1145/
1926385.1926390

[27] Manas Thakur and V. Krishna Nandivada. 2020. Mix Your Con-
texts Well: Opportunities Unleashed by Recent Advances in Scal-
ing Context-Sensitivity. In Proceedings of the 29th International Con-
ference on Compiler Construction (San Diego, CA, USA) (CC 2020).
Association for Computing Machinery, New York, NY, USA, 27–38.
doi:10.1145/3377555.3377902

https://doi.org/10.1145/3088515.3088522
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1109/AICI.2009.157
https://doi.org/10.1109/AICI.2009.157
https://doi.org/10.1145/3092703.3092729
https://doi.org/10.1145/2254064.2254094
https://doi.org/10.1145/1250734.1250767
https://doi.org/10.1145/1250734.1250767
https://doi.org/10.1109/TSE.2022.3162236
https://doi.org/10.1145/378795.378851
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1145/2644805
https://doi.org/10.1145/949952.940114
https://doi.org/10.1145/2048066.2048144
https://doi.org/10.1109/CGO.2009.9
https://doi.org/10.1145/504282.504286
https://doi.org/10.1145/349299.349327
https://doi.org/10.1145/301618.301645
https://doi.org/10.1561/2500000014
https://doi.org/10.1561/2500000014
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/3377555.3377902

Compact Representation and Interleaved Solving for Constraint-Based Points-to Analysis CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

[28] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimiza-
tion Framework. In Proceedings of the 1999 Conference of the Centre
for Advanced Studies on Collaborative Research (Mississauga, Ontario,
Canada) (CASCON ’99). IBM Press, 13.

A Artifact Appendix
A.1 Abstract
This artifact accompanies the paper Compact Representation
and Interleaved Solving for Scalable Constraint-Based Points-to
Analysis. It includes the full implementation of the pointer
analyses fiPoA, nfiPoA, fsPoA, and nfsPoA using the proposed
PInter technique within the Soot framework, as well as code
to run Spark and Doop pointer analyses. It also provides
scripts to reproduce all experimental results, and instruc-
tions (in README.md) to regenerate the figures reported in
the evaluation section.

A.2 Artifact check-list (meta-information)
• Algorithm: Constraint-based points-to analysis using PInter
constraint system (fiPoA, nfiPoA, fsPoA, and nfsPoA)

• Program: Java code (analysis written in Soot framework)
• Compilation: Java 8 (javac)
• Binary: Included for Linux (Ubuntu 22.04 recommended).
Source code and scripts included to regenerate binaries

• Data set: Java benchmark programs from DaCapo bench-
mark suite

• Run-time environment: Ubuntu 22.04 (native or Docker)
• Hardware: x86-64 CPU, ≥ 8 GB RAM
• Execution: Command-line scripts
• Metrics: Analysis time, memory usage, number of con-
straints

• Output: CSV files, PDF figures, text logs
• Experiments: Reproduction of Figures 6–10
• How much disk space required (approximately)?: Up
to 6 GB

• How much time is needed to prepare workflow (ap-
proximately)?: 15–30 minutes (Docker build)

• How much time is needed to complete experiments
(approximately)?: Several hours (timeouts up to 2h per
analysis)

• Publicly available?: Yes
• Workflow automation framework used?: Shell scripts

A.3 Description
A.3.1 How to access. The artifact has been uploaded to
FigShare, and the DOI is,
https://doi.org/10.6084/m9.figshare.30925898
After downloading, extract the archive and navigate to the
root directory artifactsCC2026/.

A.3.2 Hardware dependencies. A standardmachinewith
at least 8 GB RAM is required. For full reproduction of all
experiments, 6 GB of free disk space is recommended.

A.3.3 Software dependencies.
• Ubuntu Linux (preferably 22.04)

• Java 8 (required by Soot)
• pdflatex (for figure generation)
• souffleprof (for Doop-related profiling)
• Docker (optional, recommended)

A Docker image with all dependencies pre-installed is pro-
vided.

A.3.4 Data sets. The artifact uses the same Java bench-
mark programs as reported in the paper. No additional pre-
processing is required. The benchmarks files are provided
inside pintercode/runscriptgencsv/benchfiles.

A.4 Installation
The recommended installation method is via Docker.
1. Build Docker image: From the artifactsCC2026 direc-

tory, build the Docker image using the following com-
mand. Note that this requires internet connection to ini-
tially pull the image.
docker build -t ubuntu-custom .

2. Verify: Verify that the image was built successfully. The
following command should list ubuntu-custom:
docker images

3. Start the container: Run the container with the artifact
directory mounted:
cd pintercode
docker run --rm -it \
-v .:/app -w /app ubuntu-custom bash

Alternatively, users may install the listed software dependen-
cies onUbuntu 22.04. In such a case, navigate to artifactsCC2026/
pintercode i.e; make it the current working directory.
Quick Check:

1. Verify that the required tools are available using the
following:
java -version
pdflatex --version
souffleprof -h

2. Run the following script and ensure it is working:
bash runverify.sh

A.5 Experiment workflow
All experiments are driven by shell scripts located in pintercode/.
Scripts runforfig678.sh and runforfig910.sh reproduce
the results for Figures 6–8 and Figures 9–10, respectively.
Run the following script:

bash runforfig678.sh

Inside the pintercode/runscriptgencsv/genfigures di-
rectory, the generated figures are saved as PDF files, with
the names fig6.pdf, fig7.pdf, fig8.pdf.
Run the following script:

https://doi.org/10.6084/m9.figshare.30925898

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Ramya Kasaraneni and V. Krishna Nandivada

bash runforfig910.sh

The generated figures are saved in the same pintercode/
runscriptgencsv/genfigures directory as fig9.pdf and
fig10.pdf.

A.6 Evaluation and expected results
Running the provided scripts generates PDF figures corre-
sponding to those in the paper. The figures should visually
match the published results. Absolute runtimes and memory
usage and number of constraints may vary slightly across
machines, but relative performance trends among PInter vari-
ants, Spark, and Doop are expected to remain consistent. Mi-
nor variations in the memory and time consumption trends
may occur when the differences between techniques are
small

A.7 Experiment customization
Users can analyze additional Java programs using anyrun.sh.
The script accepts the analysis type, main class, and class-
path as arguments, enabling easy extension of the evaluation
to new benchmarks. This artifact can be reused or extended

for additional experiments To analyze a different benchmark
or code using PInter, it can done in the following way:
• Use the script anyrun.sh inside the directory pintercode/
runscriptgencsv that takes some arguments and ana-
lyzes the given code.

• To analyze a code three arguments needs to be provided
to the anyrun.sh
1. The type of analysis: fiPoA, nfiPoA, fsPoA, nfsPoA, spark
2. The main class (entry point) of code
3. The class path of the code

• Example usage:To analyze a codewithmainclass ‘code.Main‘
and the class path ‘classes‘ using fsPoA, run the following

bash anyrun.sh fsPoA code.Main classes

The result can be viewed in the corresponding result file
fsPoAresult.txt inside pintercode/runscriptgencsv/
results. For an analysis A, the corresponding result file
name is Aresult.txt.

A.8 Notes
Some analyses (notably nfsPoA) may exceed the default 2-
hour timeout on some benchmarks. The scripts are designed
to tolerate missing results and still generate figures.

	Abstract
	1 Introduction
	2 The Interleaved generation and solving algorithm
	2.1 Constraint Generation
	2.2 Constraint Solving

	3 Example Run
	4 Correctness
	5 Implementation and Evaluation
	6 Related work
	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Notes

