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Abstract
May happen in Parallel (MHP) analysis is one of the most
foundational analysis in the context of programs written in
parallel languages like Java. The currently known techniques
for doing MHP analysis of Java applications suffer from two
main challenges: (i) scalability to real-world large applica-
tions, (ii) precision in the presence of complex programs. In
this manuscript, we address these two issues with a goal of
making MHP analysis for Java applications a practical option.
We propose a new MHP analysis scheme called GRIP-MHP.
It includes techniques to reduce time taken to perform MHP
analysis significantly; it does so by using novel schemes to
reduce the size of the input graph (representing the original
application). GRIP-MHP also addresses many drawbacks in
existing techniques, thereby improving the applicability and
precision of MHP analysis for real-world Java applications.
We implemented GRIP-MHP in the Soot compiler framework.
Our experiments show that GRIP-MHP runs successfully in
reasonable time on all the tested benchmarks in DaCapo
and Renaissance (geomean 20.18× improvement, over prior
work). We find that GRIP-MHP performs more precise join-
ing of threads significant leading to improvements in pre-
cision of the analysis results: geomean, 1.85× reduction in
MHP pairs, over prior work.

CCS Concepts: • Computing methodologies→ Parallel
programming languages; • Software and its engineering→
Parallel programming languages; • Theory of computation
→ Program analysis.

Keywords: program analysis, parallel/concurrent programs,
compressed representation
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1 Introduction
With multicore systems becoming mainstay, there is a lot
of interest in analysing parallel programs. May Happen in
Parallel (MHP) Analysis forms a core technique in this space.
For each statement in the program, MHP analysis identifies
the statements that run in parallel with that statement.
Taylor [17] showed that, in general, for general purpose

programming languages, calculating the most precise MHP
is undecidable. He also showed that if we assume all con-
trol paths of a thread are executable, then the problem is
NP-complete. This result has led to development of many
conservative MHP analysis techniques.
In the context of Java, there have been three main works

in this space. Naumovich et al. [13] proposed one of the first
MHP analysis for concurrent Java programs. The algorithm
constructs a Program Execution Graph (PEG) which repre-
sents the entire control flow of the threads in the program. Li
and Verbrugge [12] made some practical modifications to this
algorithm to optimize the analysis time and soundness of the
algorithm. Their technique also reduced the size of the PEG
by removing statements which do not affect the data flow
analysis. Barik [3] proposed a non iterative algorithm for a
subset of Java programs, with a better time complexity. How-
ever, these techniques have three fundamental limitations,
making them impractical for real-world use.

(A)Most prior works use a program execution graph (PEG),
or a variation thereof, which is a representation of symbolic
execution of the input program. Two of the requirements
of these techniques are that (i) all the threads are explicitly
modelled by cloning, and (ii) the body of each thread should
have all the function calls inlined. This leads to large sizes of
the PEGs, which in turn significantly increases the analysis
time for MHP analysis (as the time complexity is quadratic
or higher in terms of the size of the PEG).
(B) Prior works may need the explicit enumeration of all

the threads - may not be possible in static analysis. For ex-
ample, in h2, sunflow and xalan benchmarks of DaCapo [5]
threads were created and joined in affine loops; Fig. 1 shows
such a sample. Complete enumeration may also not be pos-
sible in the presence of recursion.

(C) The handling of thread creation inside loops/recursive
functions by these prior works can lead to unsound results,
as they may skip necessary MHP pairs, and their imprecise
handling of synchronization related constructs may fail to
remove pairs of statements that are guaranteed to not run in
parallel. Further, these prior techniques do not handle many
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1 renderThreads = new SmallBucketThread[scene.getThreads()];

2 for (int i = 0; i < renderThreads.length; i++) {

3 renderThreads[i] = new SmallBucketThread();

4 renderThreads[i].start(); }

5 for (int i = 0; i < renderThreads.length; i++) { ...

6 renderThreads[i].join(); ... }

Figure 1. Affine loop from DaCapo-Sunflow benchmark

of popular concurrency constructs of Java, such as Thread
Pool Executors, Fork Join Tasks, Callables, Futures, and so on
that are used in benchmarks like pmd, jme, graphchi, zxing
from DaCapo [5], and fj-kmeans from Renaissance [14].
These restrictions have rendered all of these prior works

unusable for most practical Java applications. To the best of
our knowledge, there is no known MHP analysis for Java
applications, without these limitations. While there have
been other interesting prior works [10, 21] on MHP analysis,
especially in the context of pthreads/C/C++ languages, their
direct applicability/suitability to precisely analyze Java ap-
plications remains unclear. This is because Java additionally
provides and promotes the use of higher level concurrency
primitives. For example, Java provides lexically-scoped exclu-
sion regions through synchronized blocks and allows the use
of notify/wait constructs only within synchronized blocks.
This presents additional opportunities for improved precision
and therefore necessitates the use of a more Java oriented
MHP analysis. Hence, the work of Li and Verbrugge [12]
(which in turn extends the ideas of Naumovich et al. [13]) is
still the most precise MHP analysis technique for Java.
In this manuscript we present two techniques to make

the Java MHP analysis practical; we call our overall scheme
as GRIP-MHP (Graph Reduction and Improved Precision
MHP). We first present techniques to improve the scalability
of MHP analysis by reducing the size of the graph being
analyzed (without losing any precision). Next, we present ex-
tensions to the existing MHP analysis techniques to improve
the precision and applicability. We show that GRIP-MHP is
the first practical MHP analysis for real-world Java applica-
tions. GRIP-MHP can be seen as an extension of the work
of Li and Verbrugge [12] to make it practical and scalable to
derive precise results for large real-world Java applications.

Though we present GRIP-MHP in the context of Java, we
believe that they can be easily applied to MHP analysis of
other general-purpose programming languages.

Our contributions:
• We identify the root causes of the impracticality of the
existingMHP analysis techniques for Java to be the exploding
size of the internal representation of the input programs.
•We present a novel scheme called GRIP-MHP that includes
an effective algorithm to greatly reduce the size of concurrent
program representations. GRIP-MHP provides a scheme to
compute MHP analysis on these reduced representations,
and extrapolating the same to the original program.

•GRIP-MHP also extends the precision and coverage ofMHP
analysis by (i) improving the handling of join and wait state-
ments, (ii) handling of multiple threads created/joined on the
same program point, and (iii) sound handling of affine loops.
• We implemented GRIP-MHP in the Soot [19] compiler
framework.We show that GRIP-MHP is able to analyzemany
Java applications, that were otherwise not possible to ana-
lyze using existing techniques. We show that compared to
prior work, GRIP-MHP leads to significant gains in analysis
time (geometric mean of 20.18× improvement), and precision
(geometric mean of 1.85× improvement).

2 Background
In this section, we give a brief background of prior techniques
by Li and Verbrugge [12] (who in turn extend the work of
Naumovich et al. [13]) that will be required in Section 4. Con-
sidering space constraints we only focus on those constraints
that we need for explanation, or those that we update. Inter-
ested reader may get the complete set of constraints from the
original manuscripts of Li and Verbrugge [12], Naumovich
et al. [13]. Li and Verbrugge define the equations for MHP
as follows:
Each node 𝑛 in the graph is associated with a set 𝑀 (𝑛)

which contains all the statements running in parallel with
𝑛, and a set OUT (𝑛) which contains MHP information that
needs to be passed to the successors of 𝑛. The set OUT (𝑛)
is calculated using Equation (1), where GEN (𝑛) is the set of
nodes that don’t execute in parallel with 𝑛, but may execute
in parallel with its successors; and KILL(𝑛) is the set of nodes
that execute in parallel with 𝑛, but will not execute in parallel
with its successors.

OUT (𝑛) = (𝑀 (𝑛) ∪ GEN (𝑛)) \ KILL(𝑛) (1)

The 𝑀 (𝑛) set is calculated using Equation (2), if 𝑛 is the
first statement in a thread (begin statement).

𝑀 (𝑛) = 𝑀 (𝑛) ∪ ©­«
⋃

𝑝∈StartPred(𝑛)
OUT (𝑝)ª®¬ \ 𝑁 (thread(𝑛)) (2)

If the node is the beginning node of a thread, all nodes be-
longing to the current thread (represented by 𝑁 (𝑡ℎ𝑟𝑒𝑎𝑑 (𝑛)))
are however removed. Therefore a thread does not run in
parallel with itself. However, this rule can cause unsound-
ness in the results, when the threads may be created in a
loop - discussed in Section 4.3.
For a thread-create statement 𝑛 for creating a thread 𝑡 ,

GEN set is defined using Equation (3), where begin is the
first node of the thread 𝑡 .

GEN (𝑛) = begin (3)

When a thread 𝑡 terminates at a statement join, none of
the nodes of the thread (represented by 𝑁 (𝑡)) will execute
in parallel with the join successors. When a thread enters a
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monitor entry node, the successors of the entry node can-
not run in parallel with other nodes inside the same monitor
object (represented by Monitorobj). The KILL set captures
these cases, as defined in Equation (4)

KILL(𝑛) =


𝑁 (𝑡), if 𝑛 is a join node
Monitorobj, if 𝑛 is a monitor entry node
∅, otherwise

(4)
The first sub-rule of the above rule forKILL, can be applied

only when the static analysis can infer with guarantee the
thread-object on which the join operation is invoked; we call
it as a must-join operation. If must-join cannot be performed,
then the last sub-rule is used.

3 Scaling MHP Analysis
Prior works [12, 13] present the MHP analysis on an program
representation called PEG (program execution graph). We
argue that controlling the size explosion of the PEG, and
constructing a small but precise representation of the PEG
(called compressed symbolic execution graph; CSEG) can be
the key to obtaining precise results in reasonable time. In
this section, we present different techniques to efficiently
generate CSEG for any given input program.

Li and Verbrugge [12] have shown the importance of pre-
cisely identifying different thread objects, synchronization
objects and bodies of different threads; the first two tasks
related to points-to analysis for thread and synchronization
objects, and the last task is related to MHP analysis. Con-
sidering the scalability issues in context-sensitive points-to
analysis, like many prior works, we also stick to context-
insensitive analysis. The prior work also clearly establishes
that inlining function calls helps improving precision in these
tasks. Our first insight is that both points-to analysis and
MHP analyses do not need the same statements that are in-
teresting for each analysis. Consequently, we construct two
CSEGs, each containing subsets of nodes of the original PEG:
• Points-to-stage CSEG: This execution graph contains
statements which are necessary for the MHP analysis, and
those which create, and access thread and monitor objects,
and also objects which contain thread and monitor object
related fields. We obtain more precise points-to information
after we run the analysis on this graph.
• MHP stage CSEG: This execution graph is a reduced
form of the points-to-stage CSEG, wherein only concurrency
related statements are kept. Therefore, the points-to infor-
mation computed on the points-to stage CSEG is applicable
to the MHP stage CSEG as well.

While these two CSEGs lead to smaller graphs (compared
to the PEGs), in the remaining part of this section, we will
present techniques to further reduce these graphs.

3.1 Avoiding Redundant Nodes
Removing statements/nodes which are not necessary for the
analysis is an important optimization for analyzing the pro-
gram in reasonable time. Li and Verbrugge [12] proposed
merging into a single node (i) all the nodes of strongly con-
nected components, (ii) sequence of non-branch nodes, if
they did not contain any important (points-to or MHP analy-
sis related) statements.

However, their scheme persists with a lot of unnecessary
branch nodes. For instance, in the example program Figure 2,
the sequence of nodes D,E and F,G are merged into one node
as shown in Figure 2b. However, since C is not modifying
MHP information, it would be advisable to replace all the
nodes 𝐴 −𝐺 with a single node.
We next present an efficient algorithm for constructing

a compressed symbolic execution graph (CSEG) that only
contains statements that are MHP or points-to important.
A statement is MHP (or points-to) important if the transfer
function of MHP (or points-to) analysis is a non-identity
function for that type of statement.

3.2 Basis for new algorithm
It can be seen that the solution of iterative data-flow analysis,
associate an IN and OUT map with each statement (= node
in the PEG). For example, as discussed in Section 2, for the
MHP algorithms of Li and Verbrugge [12], Naumovich et al.
[13]𝑀 , and OUT , are the IN and OUT maps.

Now we define two sufficient conditions under which the
solution of a node 𝑠 can be represented by the OUT solution
of its predecessor(s). (i) IN (𝑠) = ⊓𝑝∈pred(𝑠 )OUT (𝑝), and (ii) 𝑠
is an identity-transfer-statement, that is, the transfer function
of 𝑠 is the identity function. Note I: if each of the predecessor
𝑝 has the same value ofOUT (𝑝) (say 𝑥 ), then IN (𝑠) = 𝑥 . Note
II: if 𝑠 is an identity-transfer-statement then OUT (𝑠) = IN (𝑠).
For example, in the MHP analysis of Naumovich et al. [13]
we encounter identity-transfer-statements when GEN and
the KILL sets are empty in the definition of the statement.
Similarly the solutions for all the statements of an SCC

can be represented by the OUT solution of its predecessor(s),
if all its statements are identity-transfer-statements, and all
inter-SCC predecessors to the nodes of this SCC have same
OUT .

To identify statements where we do not need to maintain
in the CSEG, we compute a novel dataflow map 𝜇 : 𝐿 ×
{IN ,OUT } → 𝐿, where 𝐿 is the set of nodes of the SCC-
decomposition graph of the PEG. For example, for any node
𝑙 , 𝜇 [𝑙] [IN ] = 𝑙 ′ (or 𝜇 [𝑙] [OUT ] = 𝑙 ′) implies that the IN (or
OUT ) map of node 𝑙 is same as the OUT map of node 𝑙 ′. From
this representation of the solution, we can obtain statements
which have the same solution and condense them into one
representative statement. For any node 𝑙 , if 𝜇 [𝑙] [OUT ] = 𝑙 ,
it will be present in the CSEG; we call such a node as a leader
node. All nodes whose IN andOUT solutions match theOUT
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t1:= newthread() #A

start(t1) #B

if (cond2) { #C

y := y + 1 #D

x := x + 1 #E

} else {

y := y - 1 #F

x := x - 1 #G

}

while (cond3) { #H

t2:= newthread() #I

start(t2) #J

join(t2) #K

}

(a) Program pseudo code
(b) Li and Verbrugge [12]
Compressed PEG

(c) Get-Component-
SCCs (SCC-3)

(d) GRIP-MHP PTS stage
CSEG

(e) GRIP-MHP MHP
stage CSEG

Figure 2. Graph Inlining Example

solution of the leader are known as follower nodes, and will
be condensed into a node as a successor of the leader in the
CSEG. This method ensures that the obtained MHP results
on the CSEG, represents that obtained on the original PEG.

Consider the example code in Figure 2a. It contains eight
SCCs, namely seven 𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝑆𝐶𝐶𝑠 : 𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹,𝐺 , and
one 𝑆𝐶𝐶𝑙𝑜𝑜𝑝 : {𝐻, 𝐼, 𝐽 , 𝐾}. 𝑆𝐶𝐶𝑙𝑜𝑜𝑝 cannot be represented by
solution of predecessors neither for the MHP stage (since
it contains thread-create and join statements that are not
identity-transfer function statements), nor for the points-to
stage (since it additionally contains a statement which creates
a thread creation object). On the other hand the statements
of𝐶, 𝐷, 𝐸, 𝐹,𝐺 are considered as follower nodes of 𝐵, as they
are identity-transfer-statements, and their IN and OUT sets
match the OUT of 𝐵. Therefore, they get condensed as a
successor node of 𝐵 in the CSEG. Figure 2d (CSEG for the
points-to stage) and Figure 2e (CSEG for the MHP stage).

3.3 Proposed Algorithm to Compute the Final CSEG
We now present our proposed algorithm to compute the 𝜇
map in the process to identify the nodes in the final CSEG.
Algorithm 1 shows the driver algorithm for the same.

We go over each procedure (CFG) in the program and
then invoke the function CSEG-Shortlist, which returns a
pair: (𝑆𝑥 ,𝐶𝑡𝑜_𝑝𝑟𝑜𝑐 ), where 𝑆𝑥 is the set of statements to be
retained, and 𝐶𝑡𝑜_𝑝𝑟𝑜𝑐 returns the set of SCCs to be further
processed. We now explain the working of the functions
CSEG-Shortlist, and Get-Component-SCCs.
For each root (entry) node ℎ CSEG-Shortlist (see Algo-

rithm 2) starts by initializing themaps 𝜇 [IN ] [ℎ] and 𝜇 [OUT ] [ℎ]
to ℎ (line 2) – to indicate that ℎ is a leader node.

It then starts processing the nodes of the SCC-decomposition
graph in a topological order. For any SCC𝐶𝑥 , if all inter-SCC
predecessors have the same OUT state, and all statements of

Algorithm 1: Driver Program
Data: Input Program P
Result: S𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 - set of statements retained in graph

1 W𝑝 ← set of graphs representing each procedure in P;
2 S𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← {} // Set of selected statements

3 whileW𝑝 ≠ ∅ do
4 𝑃𝑥 ← select and remove an element fromW𝑝 ;
5 (𝑆𝑥 ,𝐶𝑡𝑜_𝑝𝑟𝑜𝑐 ) ← CSEG-Shortlist(𝑃𝑥 );
6 S𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← S𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ∪ 𝑆𝑥
7 for 𝑐 ∈ 𝐶𝑡𝑜_𝑝𝑟𝑜𝑐 do
8 𝑃𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑑 ← Get-Component-SCCs (P, 𝑐);
9 W𝑝 ←W𝑝 ∪ {𝑃𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑑 }; // Add to worklist

10 return S𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

𝐶𝑥 are identity-transfer-statements then the statements of
𝐶𝑥 will inherit the OUT map of its inter-SCC predecessors
(line 10).

Otherwise, we tentaively mark all the statements of 𝐶𝑥

as leaders (line 14). Finally, among these SCCs, those that
contain more than one statement, are stored for further pro-
cessing (line 16),
For each SCC 𝑃𝑥 that is kept for further processing, we

identify the component SCCs using Get-Component-SCCs
(Algorithm 3). We collect the entry (root) nodes P (line 3)
and exclude the incoming edges to the entry (root) nodes
(line 4). The deleted edges are shown in Figure 2c marked in
(dashed) red. Deleting the edges makes the entry nodes with
in-degree zero, thereby breaking the SCC. Since all entry
nodes are conservatively marked as leaders in the shortlist
algorithm, we can safely continue processing.
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Algorithm 2: CSEG-Shortlist
Data: P: Input Procedure
Result: S𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 : set of retained statements in the graph,

C𝑡𝑜_𝑝𝑟𝑜𝑐 : set of SCCs for further processing
1 (G,C) ← ComputeSCCGraph(P); // SCC

decomposition-graph G, SCCs C

2 R← Roots of P ;
3 for ℎ ∈ R do // For each root node

4 𝜇 [ℎ] [IN ] ← 𝜇 [ℎ] [OUT ] ← ℎ; // Root nodes cannot

share state from other nodes

5 for 𝐶𝑥 ∈ C in topologically sorted order do
6 𝑝𝑟𝑒𝑑𝑆𝐶𝐶 ← SCC predecessors of 𝐶𝑥 ;
7 if ∀(𝑎, 𝑏) ∈ Edges(P) where 𝑎 ∈ 𝑝𝑟𝑒𝑑𝑆𝐶𝐶 and 𝑏 ∈ 𝐶𝑥

have the same 𝜇 [𝑎] [OUT ]
8 and All statements in𝐶𝑥 are identity-transfer-statements

then // All inter-SCC predecessors have the same

OUT state, and all statements of 𝐶𝑥 are

identity-transfer-statements

9 Let 𝑎 be any inter-SCC predecessor of 𝐶𝑥 ;
10 for 𝑠 ∈ 𝐶𝑥 do
11 𝜇 [𝑠] [IN ] ← 𝜇 [𝑠] [OUT ] ← 𝜇 [𝑎] [OUT ];

// same as preds

12 else
13 for 𝑠 ∈ 𝐶𝑥 do
14 𝜇 [𝑠] [IN ] ← 𝜇 [𝑠] [OUT ] ← 𝑠 ;// can’t share

from preds

15 if |𝐶𝑥 | = 1 then Add 𝐶𝑥 to 𝑆𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ;
16 else Add 𝐶𝑥 to 𝐶𝑡𝑜_𝑝𝑟𝑜𝑐 ;

17 return S𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ,C𝑡𝑜_𝑝𝑟𝑜𝑐 ;

Algorithm 3: Get-Component-SCCs
Data: P: Input CFG, C: SCC to extract subgraph for
Result: P𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑑 : Subprogram CFG prepared for

processing, R: Roots of CFG
1 Function Get-Component-SCCs(P,C)
2 P𝑠𝑢𝑏 ← Subgraph of P with nodes and edges of C;
3 R← statements of P𝑠𝑢𝑏 that have external incoming

edges (from statements ∈ (P − P𝑠𝑢𝑏 ))
4 P𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑑 ← P𝑠𝑢𝑏 with incoming edges to R removed;
5 return P𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑑

3.4 Soundness
Theorem 1. Assume that, for each node 𝑛 in the input (SCC-
decomposition) graph, 𝐶𝑆𝐸𝐺 (𝑛) gives the corresponding rep-
resentative node in the compressed graph. Let𝑀 be the MHP
map for the input program and 𝑀 ′ be the MHP map for the
compressed program. Given any pair of nodes 𝑥 and 𝑦 in the
input graph, 𝑦 ∈ 𝑀 (𝑥) ⇔ 𝐶𝑆𝐸𝐺 (𝑦) ∈ 𝑀 ′ (𝐶𝑆𝐸𝐺 (𝑥)).
Proof details omitted for space.

3.5 Space Explosion Due to Method Inlining
It is well known that inlining can improve the precision of
MHP analysis. However, fully inlining all the methods may

startTask(...){

ct = new Thread(...);

ct.start();

return ct;

}

completeTask(Thread ct){

ct.join();

}

doTask(...){

thread = startTask(...);

completeTask(thread);

}

main(){

doTask(...);

doTask(...);

}

(a) Program (b) targeted-Inlined CSEG

Figure 3. Example of targeted-inlining

not be feasible (due to recursion etc), and may not scale well
(due to space explosion). We now describe how we address
the space explosion issue by selectively inlining methods;
we call this scheme as targeted-inlining.

We use a heuristic which tries to inline functions such
that all the concurrency constructs a thread (thread object
creation, thread start, join operations and so on) all appear in
the same function. All other functions will not be inlined and
therefore will be processed in a context-insensitive manner.
To handle recursion, we use the scheme of von Praun and
Gross [20].
This targeted-inlining enables more precision and helps

differentiate runtime instances of thread objects, thereby im-
proving the precision of results in MHP analysis, without ex-
cessive bloating of the input graph. As discussed in Section 1,
we have observed the existence of thread-factory functions
(functions which create, initialize and return a thread object),
in the real world applications. Without targeted-inlining
strategy defined above, points-to-analysis cannot differenti-
ate between instances of the thread object created at different
locations in the program. This also is useful when the thread
starts and joins are executed through utility functions like
the example in Figure 3.
Note that a limitation of the targeted-inlining method

is that shared method bodies introduce unintentional con-
trol flow. This can lead to imprecise MHP analysis results.
However the result remains sound. Improving the selection
criteria for inlining can help mitigate this issue.
In our method we switch to targeted-inlining automati-

cally. We monitor if the fully-inlined graph size reaches a
threshold of 100000 units and fallback to targeted-inlined
graph in that case.
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class TA extends Thread{

void run (){s1;}}

main_function (){

TB mt = new TB();

mt.start ();

mt.join ();

s2; }

class TB extends Thread{

void run(){

TA ta = new TA();

ta.start ();

ta.join (); } }

Figure 4. Example illustrating the limitation of the prior
works by Li and Verbrugge [12], Naumovich et al. [13]

4 Improving the Precision of MHP Analysis
In this section, we present techniques to improve the preci-
sion of prior work on MHP analysis, by handling common
programming patterns not handled precisely by the prior
work, fixing soundness related issues in the prior work, and
handling additional concurrency related constructs.

4.1 Improving Conditions for Must-Joins I
Consider the example (shown in Fig. 4) where, the main
thread creates and later joins a thread stored in a variable
mt. Assume that this thread also creates and joins another
thread ta. When the main thread joins mt, it should ensure
that ta is also joined. Otherwise, MHP analysis results will
show that the nodes of ta will continue running in parallel
with statements in the main thread, after the call to the join
mt (for example, s2) – leading to imprecision.
We now propose a scheme to improve the precision of

iterative dataflow based MHP algorithms and elaborate this
scheme in the framework of Naumovich et al. [13].

4.1.1 New Condition identifying Joining threads. Let
T𝑟 be the set of threads that continue to run in parallel with
the joining thread after the join of 𝑡 𝑗 . Due to the transitive
nature of Happens Before constraints like thread joins, any
ordering that prevents a statement𝑚 of the threads of T𝑟 to
run in parallel with the last statement of 𝑡 𝑗 , the ordering must
be transitively carried over during the join of 𝑡 𝑗 . Therefore, if
a thread 𝑡𝑎 is not running in parallel with the last statement
of the joined thread 𝑡 𝑗 , the join statement for can be assumed
to be a join for 𝑡𝑎 , as well.
We can extend the prior work of Li and Verbrugge [12],

Naumovich et al. [13], by considering the following: As per
the prior work (see Section 2), for a join statement 𝑛 of a
thread 𝑡 , KILL(𝑛) = 𝑁 (𝑡), where 𝑁 (𝑡) returns all the state-
ments of the thread. For each such 𝑛, we update the rule to
compute the OUT map.

OUT (𝑛) = ((𝑀 (𝑛) ∪ GEN (𝑛))\KILL(𝑛)) ∩𝑀 (𝑥) (5)

where 𝑥 is the last statement of the thread that is being
joined1. The terms (𝑀 (𝑛) ∪GEN (𝑛))\KILL(𝑛) (the previous
OUT set) and 𝑀 (𝑥) are monotonic and their intersection

1Last statement of every thread is a thread-end statement whose transfer
function is an identity function.

is also monotonic. Therefore the updated expression still
ensures that the term remains monotonic, and the analysis
terminates. OUT being bound by the 𝑀 (𝑥) helps join all
transitively joined threads.

4.2 Improving Conditions for Must-Joins II
A must-join (see Section 2) at a join-statement can be per-
formed only if the points-to analysis can identify with guar-
antee the thread instance that is being joined. Previous works
use very conservative conditions to ensure that the created
and joined thread instances are the same. Given a thread
creation statement 𝑎, and join statement 𝑏, Li and Verbrugge
[12] use the following conditions:
• The thread objects of 𝑎 and 𝑏 point to the same singleton
set of object,
• The allocation site of the thread object of 𝑎 and 𝑏 is guar-
anteed to be executed only once at runtime.

This condition is too restrictive as most real world pro-
grams do not guarantee that the allocation site runs only
once. There are also cases where the allocation and other
thread operations are inside a loop.
We propose a more general approach using the Global

Value Numbering (GVN) method[15]. While running the
MHP analysis, flow sensitive GVN algorithm is run on the
Points-To-Stage CSEG to test if 𝑎 and 𝑏 point to the same
Global Value Number. If 𝑎 and 𝑏 points to the same Global
Value Number, then they are guaranteed to hold the same
value and therefore point to the same runtime instance of
the object. This improvement is made possible due to the
relationship between the Points-To and MHP stage CSEGs.

4.3 Threads Running in Parallel with Themselves
Consider the example of threads started inside an unbounded
loop at line 5 in Figure 1. Prior works [12, 13] do not discuss
techniques to detect the existence of unbounded loops and
change the number of abstract threads created at such sites.
Therefore the thread start at line 5 will be represented by one
symbolic thread 𝑡𝑎 . Consider the equation for calculating𝑀
set for the begin node of the thread, as shown in Section 2.
This definition of the𝑀 map makes sure that statements of
𝑡𝑎 do not run in parallel with itself. But the threads started
in the loop run in parallel with each other, implying that
statements of 𝑡𝑎 should run in parallel with itself.

Thus, the results of these prior works are sound only when
each instance of the thread is explicitly represented by an
abstract thread in the PEG, which can be difficult. For in-
stance, when the number of iterations are unbounded or not
easy to find statically, this technique of modelling threads
becomes impossible. Similarly, if the number of iterations
are very large, enumerating all the abstract threads can be
very expensive.

To address these issues, we present a general approach
to handle threads started in unbounded loops, by fixing the
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MHP calculation presented in prior work Naumovich et al.
[13] to return the correct MHP solution - even when all
threads created at the site are represented by a single abstract
thread. We do so by modifying the equation for computing
the OUT and𝑀 maps for begin nodes:

𝑂𝑈𝑇 (𝑛) = 𝑀 (𝑛) (6)

𝑀 (𝑛) = 𝑀 (𝑛) ∪ ©­«
⋃

𝑝∈StartPred(𝑛)
M(𝑝)ª®¬ (7)

This ensures that if the start node (∗, 𝑠𝑡𝑎𝑟𝑡, ∗) is running
in parallel with a previous instance of 𝑡𝑎 , the nodes of 𝑡𝑎 will
also run in parallel with itself. However if there is no such
statement, 𝑡𝑎 will not be running in parallel with itself. This
modification ensures that the MHP information is sound and
precise.

4.4 Threads Started and Joined in Affine Loops
Starting and joining of array of threads inside affine loops
is a commonly observed pattern in concurrent programs.
Prior works such as Li and Verbrugge [12], Naumovich et al.
[13] simply treated such abstract thread objects as summary
objects and hence conservatively ignored the effect of join
statements. Works such as Di et al. [10], Zhou et al. [21] mark
these threads as multi-fork-join threads and handle them in
a more specific manner.
Using the improvements to threads started in loops (Sec-

tion 4.3), and more precise methods for determining the
runtime instance of thread objects (Section 4.2), we present a
general condition to handle affine loops that does not require
a separate abstract thread model.
We first note that the range of an affine loop can be rep-

resented using a three tuple (initVal, finalVal, step), and this
can be used to track the runtime instances of array of threads
started in a loop, and the runtime instances joined in the
loop. For simplicity, we can assume that ‘initVal’, ‘finalVal’
and ‘step’ are all variables in the program. Consider an ar-
ray of thread-objects ThArr1 started in an affine loop L1,
an array of thread-objects ThArr2 joined in an affine loop
L2. We say that the join operations in L2, will join all the
thread started in L1, only if (i) ThArr1 and ThArr2 point to
the same object instance 𝑂𝑡ℎ in both the loops – established
using the method described in Section 4.2, (ii) there are no
writes to the elements of the array object 𝑂𝑡ℎ between L1
and L2, and (iii) the loops have the same range. To compare
two ranges (𝑖1, 𝑓1, 𝑠1), and (𝑖2, 𝑓2, 𝑠2), we check that the global
value number [15] of 𝑖1, 𝑓1, and 𝑠1, matches that of 𝑖2, 𝑓2, and
𝑠2, respectively.

Only after the completion of the last iteration of L2, can
all the started threads be considered to have joined.

4.5 Better MHP for newer concurrency constructs
We now briefly explain how we handle the concurrency
constructs beyond thread creations/joining/wait/notify op-
erations.
As per the Java manual [1], for all types of executors, if

the executor.execute() function is used to start a task, a
future is not returned. Therefore it is not possible to mark
the end of the task execution. The task maybe considered
done only when the executor is shutdown. On the other
hand executor.submit(<Runnable or Callable> b) re-
turns a future. When future.get() is called, the execution
is blocked till the task completes. Therefore future.get()
serves as the join for the task.

The above constructs can be modelled as follows for MHP
• Each executor.execute() or executor.submit() state-
ment can be seen as equivalent to a Thread.start() state-
ment where the body is given by the Runnable or Callable
passed as the argument
•When future = executor.submit() is used, the future
object is represents the executing task. This is equivalent to
a thread object.
• future.join() is equivalent to a thread join.
Handling Fork Join Tasks. A statement of the form

output = executor.invoke(task) is a blocking call used
to execute Fork-Join Tasks. The executor forks multiple
threads, where each thread processes some of the tasks. Be-
fore executing the successor to the invoke() statement, all
the threads must complete and join. Thus, this parallelism
construct is similar to an affine loop and hence are handled
using the scheme discussed earlier in this section.

4.6 Examples
Thread running in parallel with itself. Consider the
example code in Figure 1, where threads that are started
in an unbounded affine loop. Using the scheme of prior
work [12, 13], we will not get sound results, as using Equa-
tion (2) all statements of the current thread are removed from
the set of statements that may run in parallel with the begin
statement of the thread. In contrast, using the new transfer
function shown in Equation (7) for the begin statement, the
𝑀 set of its start predecessor - containing the begin state-
ment is added. The MHP solution therefore correctly shows
that the begin statement runs in parallel with itself.

Further, our improved handling of affine loops (discussed
Section 4.4) ensures that in scenarios like the ones shown in
Figure 1 all the threads are joined at the end of the second
loop. Thereby improving the MHP results involving state-
ments after the second loop. We have found such cases in
two of the benchmarks we have studied (h2, sunflow).

Transitive joins. Consider the example code in Figure 4
where Thread TB starts and joins Thread TA. At the join
statement for Thread TA, based on the rule for KILL in Equa-
tion (4), all statements of thread TA are added to the KILL set.
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Therefore no statement of thread TA will be present in the𝑀
set of the last statement of Thread TB. When the join state-
ment for TB is processed in the main thread, the OUT set is
calculated according to the improved rule for join statement
shown in Equation (5). Due to the intersection term with the
𝑀 set of the last statement of the joining thread TB, the𝑂𝑈𝑇
set of the join statement will not contain any statements of
thread TA. Thus, our proposed new rule achieves the effect
of transitive join of thread TA in the main thread.

5 Implementation and Evaluation
We implemented our proposed GRIP-MHP analysis in the
Soot [19] Java framework. It spanned around 8000 lines of
code. To evaluate the impact of GRIP-MHP, we ran it on
ten popular benchmarks drawn from two suites: DaCapo
Chopin [4] and Renaissance [14]. We excluded 13 bench-
marks from DaCapo and Renaissance due to Soot’s limited
Scala support, call graph generation failures, or a lack of
concurrency constructs. We also used three hand written
programs which cover cases that are otherwise not covered
by the benchmarks.
We use Tamiflex [6] to handle reflection in benchmarks.

Since previous works do not handle exceptions, we also ig-
nore them in our experiments. Table 1 shows different static
properties of the benchmarks we used for the experiments.
Table 1 lists the number of join statements encountered

in each of the benchmarks. In four of the benchmarks our
technique fell back to targeted-inlining, due to crossing of
the threshold (see Section 3.5). In Tables 3 and 5, these bench-
marks carry an additional annotation (TI) to indicate the use
of the targeted-inlined graph for results. The last column
lists some interesting remarks about the benchmarks.
To present an evaluation, we compared our results with

that of Li and Verbrugge [12], which can handle a reasonable
subset of Java constructs including synchronized blocks and
notify-wait. Note that as discussed in Section 1, none of the
other prior techniques meet these criteria. To make the work
of Li and Verbrugge handle real-world large applications, we
extended the original implementation of Li and Verbrugge in
Soot to handle method calls that cannot be inlined, using the
techniques described by von Praun and Gross [20]; hereafter,
we refer to this extension as LV, and use it as our baseline.

To evaluate our proposed approach we answer six research
questions, spanning over four dimensions: (A) Analysis time:
(RQ1) How fast is GRIP-MHP compared to LV? (RQ2) What
is the overhead due to the graph compression technique? (B)
Precision of Results: (RQ3) What is the improvement in pre-
cision of GRIP-MHP compared to LV, in terms of MHP pairs?
(RQ4) How effective is GRIP-MHP in reasoning about must-
join conditions? (C) Impact of the efficient representation:
(RQ5) What is the impact of the proposed graph compres-
sion technique? (RQ6) What is the impact of the proposed
targeted-inlining scheme?

Benchmark NJ FI Remarks
DaCapo

graphchi 1 ✓ Uses Callables and Executor
h2 2 ✓ Threads are started and joined

in affine loops
jme 1 ✓ Task is submitted to Executor

and waits on Future for result
luindex - ✗ No join call found.
lusearch - ✗ No join call found.
pmd 1 ✓ Tasks are executed, futures

stored in Java collections
sunflow 3 ✗ Threads are started and joined

in affine loops
xalan 1 ✓ Threads are created, tasks are

executed in affine loops
zxing 1 ✗ Tasks are executed, futures

stored in Java collection
renaissance

fj-kmeans 2 ✓ Uses Fork Join Tasks
example programs

indirect
thread-join

6 ✓ Contains 3 indirect thread
joins

dining-
philosophers

5 ✓ Uses Thread Factory function

executor-
future

1 ✓ Tasks are executed, futures are
awaited in affine loops

Table 1. Static Properties of Benchmarks; abbreviation:
[NI]: Number of joins; [FI:] Ability to Fully Iinline

5.1 Analysis Time
(RQ1) How fast is GRIP-MHP compared to LV?. Table 3
presents the total time (in seconds) taken by GRIP-MHP
and LV, along with a breakdown in different stages of each
method. For reference, the table also shows the time taken
by the in-built SPARK points-to analysis of Soot. The table
(column k = column e / column j) shows that GRIP-MHP
results in significant speedups compared to LV, up to 526×
(geomean 20.18×). We don’t show the gains for luindex, as
LV ran out of memory and terminated abruptly.
Recall that the four important stages of GRIP-MHP are

(i) creation of inlined CSEG for Points to Analysis (see Sec-
tion 3.3), (ii) Flow insensitive points to analysis run on the in-
lined CSEG, (iii) A second round of graph compression run on
the inlined CSEG for the MHP analysis (iv) MHP analysis on
the final CSEG. Comparing the different stages of GRIP-MHP
and LV, while GRIP-MHP spends slightly more time in CSEG
construction, the gains coming from the MHP analysis stage
more than offsets the graph construction times. We see that
the actual gains depend on the amount of parallelism in the
application, and the number of nodes in the CSEG; these can
be seen in the large gains in lusearch, sunflow, and zxing.
An important point to note is that the time gains in MHP
analysis time are more impressive, as GRIP-MHP realizes the
gains while being more precise (see the discussion in RQ3).
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(RQ2) What is the overhead due to the graph compres-
sion technique? Table 3 shows the time taken to inline
and compress graph using techniques of LV (Column c), and
using GRIP-MHP (Columns f, g, and h). It can be seen that
overhead of GRIP-MHP (sum of columns f, g, and h) is very
small, and is comparable to that of LV. This shows that our
techniques are able to reduce large graphs quickly. The ad-
ditional time required for this pass is offset by a significant
improvement in the runtime of the MHP analysis.

5.2 Precision Results
(RQ3)What is the improvement in precision ofGRIP-MHP
compared to LV, in terms of MHP pairs? To compare
the precision of GRIP-MHP and LV, we counted the number
of MHP pairs (like prior works). Table 5 shows the num-
ber of MHP pairs as computed by both the techniques. It
can be seen that in benchmarks fj-kmeans, jme, h2, and
sunflow there is a significant reduction in the number of
spurious MHP pairs. The spurious pairs are due to the joined
thread previously running in parallel beyond the join state-
ments. We observe a reduction in number of MHP pairs by a
geomean 1.85× (up to 7.4×). This directly correlates to the
improved handling of must-join conditions by GRIP-MHP
(see RQ4). Further, comparing the MHP analysis times in Ta-
ble 3 (columns i and l), we observe that improved joins also
enable GRIP-MHP to converge faster in the MHP analysis.

(RQ4) How effective is GRIP-MHP in reasoning about
must-join conditions? Table 4 shows the number of thread
joins detected by GRIP-MHP(column a) and the number of
thread joins detected by LV (column c). It can be seen that
while LV is unable to detect most of the available thread
joins, GRIP-MHP is able detect several thread joins. Further,
GRIP-MHP is also able to identify joins inside affine loops.
We manually studied the benchmarks and found that all sites
of thread creation and join are run multiple times. Conse-
quently, LV could not join any thread objects.

Column b of Table 4 shows our estimated joins (based on
manual study) in these benchmarks. It shows that GRIP-MHP
is able to identify most of the joins accurately. We found in
pmd, xalan and zxing, our analysis could not precisely match
the join statement with the thread creation statements. We
believe that GRIP-MHP can be extendedwith amore complex
analysis in Soot to calculate the equivalences of contents in
Java Collections, and the equivalence of integer fields at
different points in the program. We leave it as a future work.

5.3 Impact of the Efficient Representation
(RQ5) What is the impact of the proposed graph com-
pression technique? Table 2 shows sizes of different CSEGs
to show the effect of our proposed graph compression tech-
niques: For reference we provide in column b sizes of the
input in the original input program (JU: Jimple Units) and
in column c sizes of the CSEG of LV, with naive inlinling

(NI), Comparing for targeted-inlining method, column g con-
taining sizes of MHP-analysis-stage CSEG of GRIP-MHP
(MTI) vs column d containing sizes of the MHP-analysis-
stage CSEG of LV (MLVTI) we observe that our compression
technique reduces the number of nodes by a geomean of
6.99× (up to 14.17×). Comparing for full inlining method,
column i containing sizes of MHP-analysis-stage CSEG of
GRIP-MHP (MFI) vs column e containing sizes of the MHP-
analysis-stage CSEG of LV (MLVFI) we observe that our
compression technique reduces the number of nodes by a
geomean of 7.5× (up to 22.46×). The impact of the reduced
CSEG sizes can be easily seen in the gains in the analysis
time as reported in Table 3; MHP Analysis being a flow sen-
sitive analysis with higher time complexity, is sensitive to
the graph size. We also report the impact of the graph com-
pression on the analysis times of LV (in column k, Table 3). It
clearly shows that compared to column d, the improvements
in analysis time is significant. This attests to the generality
of our proposed techniques.

(RQ6) What is the impact of the proposed targeted-
inlining scheme? Table 2 also shows sizes of different
CSEGs to show the effect of targeted-inlining, by showing
the graph sizes in the context of full-inlinig: in column e
sizes of the CSEG of LV, using the graph compression tech-
niques discussed in the current paper but with full inlining
(MLVFI), in column f sizes of points-to-analysis-stage graph
of GRIP-MHP using full inlining (PFI), in column h sizes of
MHP-analysis-stage graph of GRIP-MHP using full inlining
(MFI). Table 2 shows that our proposed graph compression
techniques with targeted-inlining (MLVTI) leads to signifi-
cant reduction in graph sizes even for LV. The table shows
that targeted-inlining leads to significant reduction in graph
size and its impact is especially visible for large programs
such as luindex, lusearch, sunflow and zxing, which other-
wise cannot be analyzed.

An interesting point to see is the following: Table 4 also
shows that we are able to detect and join all the available
joins in the sunflow benchmark despite being only targeted-
inlined. This selective inlining preserves the join semantics
of large program while enabling a manageable CSEG size.

6 Related Works
MHP analysis has been studied for a long time. For example,
[7] used interprocedural precedence graph for anomaly de-
tection in concurrent programs. [17] proved that for general-
purpose programming languages without any constraints,
precise MHP is undecidable and NP-complete. [18] describes
an algorithm to calculate MHP in Ada.

There have been many prior works [11], [2], [16] that de-
scribe MHP analysis on X10 [8]. General-purpose languages
like Java which allow low-level concurrency constructs are
challenging to analyze compared to task-parallel languages
like X10 due to lack of a well defined structure.
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LV GRIP-MHP
(a)

Benchmark
(b)

Sum JU
(c)
NI

(d)
MLVTI

(e)
MLVFI

(f)
PTI

(g)
MTI

(h)
PFI

(i)
MFI

fj-kmeans 449 465 165 167 201 24 203 23
graphchi 3721 8312 1273 2874 1493 279 2583 392

h2 1313 1426 452 529 278 64 345 82
jme 1704 1466 559 562 367 61 373 61

luindex 23785 >100000 28986 >100000 43927 6807 >100000 -
lusearch 6294 >100000 3096 >100000 2440 422 >100000 -
pmd 3050 4227 454 584 190 41 240 26

sunflow 17575 >100000 21759 >100000 24068 1839 >100000 -
xalan 780 910 356 368 274 150 285 147
zxing 8053 >100000 3614 >100000 2086 255 >100000 -

Table 2. Number of nodes in CSEG. Details of columns: (a) Sum JU: Sum of JimpleUnits (Java program representation
used by Soot) of functions that need to be inlined; (b) NI: Baseline Naive Inlining - where all functions are inlined and
unimportant statements are not removed; (c) MLVTI:MHP stage CSEG created using graph compression technique from
LV and Targetted Inlining from Section 3.5; (d) MLVFI: MHP stage CSEG created using graph compression technique
from LV and Full Inlining; (e) PTI: Points-To-Analysis stage CSEG of GRIP-MHP, created using graph compression
technique from Section 3.3 and Targetted Inlining Section 3.5; (f) MTI: MHP stage CSEG of GRIP-MHP, created using
graph compression technique from Section 3.3 and Tartgetted Inlining from Section 3.5; (g) PFI: Points-To-Analysis
stage CSEG of GRIP-MHP, created using graph compression technique from Section 3.3 and Full Inlining; (h) MFI:
MHP stage CSEG of GRIP-MHP, created using graph compression technique from Section 3.3 and Full Inlining.

LV GRIP-MHP
(a)

Benchmark
(b)

Spark
(c)

MHP
CSEG

(d)
MHP
Anly

(e)
Total

(f)
PTS
CSEG

(g)
PTS
Anly

(h)
MHP
CSEG

(i)
MHP
Anly

(j)
Total

(k)
Time
Impr.

(l)
LV-
Sim

fj-kmeans 1.48 0.14 0.05 0.18 0.14 0.01 0.01 0.02 0.18 1× 0.02
graphchi 2.35 0.66 102.77 103.43 0.7 0.02 1.43 2.45 4.59 22.53× 2.51

h2 1.91 0.27 1.26 1.52 0.28 0.01 0.07 0.08 0.44 3.48× 0.09
jme 2.89 0.35 8.4 8.75 0.35 0.01 0.05 0.07 0.48 18.2× 0.07

luindex (TI) 3.2 2.05 >7200 >7200 3.54 0.66 14.04 916.34 934.58 >7.70× 925.33
lusearch (TI) 2.66 0.71 439.04 439.74 0.73 0.03 0.2 1.79 2.75 159.66× 1.79

pmd 2.15 0.39 0.49 0.88 0.35 0.01 0.03 0.03 0.41 2.13× 0.03
sunflow (TI) 2.76 2.52 >7200 >7200 3.23 0.09 4.36 5.99 13.67 >526× 39.8

xalan 1.53 0.2 0.55 0.74 0.21 0.01 0.09 0.2 0.5 1.48× 0.19
zxing (TI) 2.2 0.88 225.11 225.99 0.86 0.01 0.1 0.21 1.19 190.55× 0.17

Table 3. Benchmarks result in seconds. Contains the results of Spark analysis and that of Li and Verbrugge [12] for
comparison. Abbreviations: LV-Sim: MHP algorithm from LV is run on more optimized MHP CSEG of GRIP-MHP

Naumovich [13] showed MHP analysis on Java Programs
using data-flow analysis. Program Execution Graph (PEG)
was used to model abstract threads in concurrent programs.
Lin and Verbrugge [12] improved scalability of [13] by in-
troducing techniques to reduce the size of PEG. Barik [3]
modelled abstract threads as a Thread Creation Tree (TCT)
based on thread starts and joins. Chen et al. [9] improves
the node processing order of iterative data-flow analysis and
made the analysis faster than non-iterative data-flow analysis
methods. The structure of the tree was analyzed to provide a
conservativeMHP. Di et al. [10], Zhou et al. [21] present their

works in the context of C/pthreads. Di et al. [10] runs a flow-
sensitive happens-before analysis to partitions the graph into
multiple regions based concurrency properties. This reduces
the effective graph size and therefore solves MHP analysis
faster. It uses a post-dominator analysis to identify transi-
tive join locations. However it does not solve for the general
case. In comparison to all these works, we propose schemes
to make the MHP analysis for Java more scalable and pre-
cise. Prior works [10, 21] provide a conservative solution for
affine loops/ multi-forked threads. Zhou et al. [21] encode
concurrency information in static vector clocks instead of
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Benchmark Must-joins Remarks
MJ EJ LJ

fj-kmeans 2 2 0 handles fork/join tasks
graphchi 0 0 0 FutureTask object cannot

be analyzed well in Soot
h2 2 2 0 handles affine loops
jme 1 1 0 executors and futures

luindex 0 0 0 no join calls found
lusearch 0 0 0 no join calls found
pmd 0 1 0 tasks stored in collections

sunflow 3 3 0 handles affine loops.
xalan 0 1 0 affine loop range defined

by object’s integer field
zxing 0 1 0 tasks stored in collections
indirect

thread-join
6 6 3 GRIP-MHP handles indi-

rect thread joins
dining-

philosphers
5 5 0 Points-to on inlined CSEG

improves precision
executor-
futures

1 1 0 GRIP-MHP handles execu-
tors and futures

Table 4. Number of must-joins identified. Abbreviations:
MJMust Joins identified in GRIP-MHP, EJ Estimated Joins
identified, LJ must joins observed by LV.

Benchmark LV-sim GRIP-MHP Improvement
fj-kmeans 84 27 3.11×
graphchi 24208 24208 1×
h2 1320 283 4.66×
jme 1680 368 4.57×
luindex (TI) 15869268 15869268 1×
lusearch (TI) 87492 87492 1×
pmd 46 46 1×
sunflow (TI) 714046 96486 7.4×
xalan 2700 2700 1×
zxing (TI) 7546 7546 1×

Table 5. Number of MHP pairs. LV-sim: LV is run
on MHP graph of GRIP-MHP

MHP pairs and run a flow-sensitive happens-before analysis.
But due to the conservative modeling of the thread creation
objects, these works do not handle thread-join precisely. In
contrast, we handle threads created/joined in affine loops
precisely.

7 Conclusion
In this manuscript, we propose a new MHP analysis scheme
calledGRIP-MHP. It includes techniques to reduce time taken
for performing MHP analysis significantly; it does so by us-
ing novel schemes to reduce the size of the input graph
(representing the original application). GRIP-MHP also ad-
dresses many drawbacks in existing techniques, thereby im-
proving the applicability and precision of MHP analysis for
real-world Java applications. We show that GRIP-MHP leads

to significant improvements in terms of analysis time (ge-
omean, 20.18×), and precision (geomean, 1.85× reduction in
MHP pairs), compared to prior work.
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A Artifact Appendix
A.1 Abstract
This artifact enables evaluators to reproduce the main ex-
perimental results from Practical MHP Analysis for Java.
It bundles the pre-built bytecode for MHP analysis, bench-
marks used in the evaluation and the Docker environments
to build and run the artifact. Automation is done via GNU
Make and a Python orchestration script. The recommended
hardware is a x86_64 Linux machine with at least 16GB RAM,
four CPU cores, Docker & GNU Make.

The artifact outputs all the metrics used in precision, per-
formance, and scalability results reported in the paper. To

validate the results, the benchmarks are run with different
configurations and output metrics are compared against ex-
pected values.

A.2 Artifact check-list
• Algorithm: Building Compressed Symbolic ExecutionGraph,
MHP analysis for Java
• Program: Java analysis written in Soot framework
• Compilation: Maven build using Eclipse Temurin 8 JDK
inside Docker
• Binary: self-contained JARs containing all dependencies
• Data set: DaCapo materialized, Renaissance fj-kmeans, cus-
tom microbenchmarks
• Run-time environment: Eclipse Temurin 8 JRE within
Docker
• Hardware: >= 16GB RAM, 4+ cores recommended
• Metrics: per-benchmark CSVs recording precision, runtime,
memory, graph size, number of joins
• Output: docker-logs/ directory containing logs and met-
rics
• Experiments: reproduce precision, scalability, and perfor-
mance tables and compare multiple MHP methods
• Disk space: 5GB (image + datasets + logs)
• Time to prepare workflow: 15 minutes (pull image, make
build)
• Time to complete experiments: Most experiments com-
plete within 40 minutes
• Publicly available: Yes
• Workflow automation framework used: GNU Make +
Python orchestration inside Docker

A.2.1 How to access. Download the artifact tarball from
10.6084/m9.figshare.30928775. The artifact tarball contains
the code, benchmarks, and Docker environments to build
and run the artifact. All commands are executed from the
root of the extracted directory.

A.2.2 Hardware dependencies. It is recommended to use
an x86 machine with at least 16GB RAM and four or more
physical cores

A.2.3 Software dependencies. Docker and GNU Make
are required on the host system. Other dependencies are
captured within the Docker image built from the provided
Dockerfile.

A.2.4 Data sets. All datasets reside under Data/. DaCapo
& Renaissance benchmarks are boosted/materialized with
TamiFlex to handle reflection. The benchmarks are located
under Data/DaCapo/ and Data/Renaissance/ respectively.
Custom microbenchmarks live under Data/SelfWritten/.

A.3 Installation
Extract the artifact tarball to a local directory. Run make
build from the root of the extracted directory. This step in-
stalls the exact JVM toolchain and builds the analysis binaries
inside the container image.

https://doi.org/10.1145/1837853.1693459
https://doi.org/10.1145/318774.319252
https://doi.org/10.1145/3359061.3362778
https://api.semanticscholar.org/CorpusID:9876007
https://api.semanticscholar.org/CorpusID:9876007
https://doi.org/10.1145/2892208.2897144
https://doi.org/10.1007/bf00263928
https://doi.org/10.1145/69586.69587
https://doi.org/10.1145/69586.69587
https://doi.org/10.1145/780822.781145
https://doi.org/10.1145/3168813
10.6084/m9.figshare.30928775


Practical MHP Analysis for Java CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

A.4 Experiment workflow
Run make shell. This mounts Data/, docker-logs/ and
drops you into a shell prompt inside the Docker container.
Run the orchestration script ./run_benchmarks.py in-

side the shell. ./run_benchmarks.py –help displays all
available options.

Some example invocations are listed below:
• List available methods and benchmarks:
./run_benchmarks.py −−list
• Run a built-in DaCapo benchmark:
./run_benchmarks.py −−mhp_method GRIP_MHP
−−benchmark h2 −−inlining-mode full
• Execute the LV baseline on sunflow with targeted in-
lining:
./run_benchmarks.py −−mhp_method LV
−−benchmark sunflow −−inlining-mode targeted

• Launch a custom benchmark rooted under Data/:
./run_benchmarks.py −−mhp_method GRIP_MHP
−−data-path Data/CustomTest/ −−entry-class
CustomTest.Main −−inlining-mode full

To accommodate longer runs if needed edit the timeout
variable TIMEOUT_MINUTES in the Makefile before spawning
the shell (Default is 60 minutes).

A.5 Evaluation and expected results
Each invocation emits logs and metrics CSV files under
docker-logs on the host. The logs are organized by MHP
method and then log type (RunLog or Metrics). The name
of the files is the benchmark name appended with the times-
tamp.

Running the full suite reproduces the original data within
expected measurement noise.
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