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Abstract. Commonly-used memory units enable a processor to load
and store multiple registers in one instruction. We showed in 2003 how
to extend gcc with a stack-location-allocation (SLA) phase that reduces
memory traffic by rearranging the stack and replacing some load/store
instructions with load/store-multiple instructions. While speeding up the
target code, our technique leaves room for improvement because of the
phase ordering of register allocation before SLA. In this paper we present
SARA which combines SLA and register allocation into a single phase.
SARA creates a synergy among register assignment, spill-code genera-
tion, and SLA that makes the combined phase generate faster code than
a sequence of the individual phases. We specify SARA by an integer
linear program generated from the program text. We have implemented
SARA in gcc, replacing gcc’s own implementation of register allocation.
For our benchmarks, our results show that the target code is up to 16%
faster than gcc with a separate SLA phase.

1 Introduction

Background. Processors such as Intel StrongARM together with memory such
as SDRAM enable efficient execution of multiple loads and stores in a single
instruction. We can find such a combination of processor and memory in In-
tel’s IXP-2400 [1], Stargate (http://www.xbow.com/Products/XScale.htm), Sun
MAJC 5200 [24], etc. Multiple loads and stores are particularly useful in con-
nection with register allocation where spill code may need to save and restore
multiple registers.

For example, on the StrongARM, the register size is 32 bits and each basic
load/store operation (called LDR/STR) operates on one register at a time. How-
ever, the SDRAM has a 64 bit bus so if we are using an LDR instruction to load
a 32 bit register, we are wasting half of the bandwidth of the bus. Fortunately,
we can use a load/store-multiple operation (we refer to them as LDM/STM) to
operate on two registers at a time, thereby taking full advantage of the bus and
saving one full LDR/STR instruction (40/50 cycles) [23].

To replace two LDR instructions with one LDM instruction we need the ad-
dresses to be contiguous and the destination registers to be different. To replace

LDR addr1 ri

LDR addr2 rj
by

MOV r addr1
LDM [r] {ri,rj}



int a,b,c,d;

...

1. c = a;

2.

3. d = b;

4.

5. ...

(a)

pseudo line reg stack
gcc SARA

a 1 r3 r1 fp-16
b 3 r3 r2 fp-20
c 1 r3 r1 fp-24
d 3 r3 r2 fp-28

(b)

ldr r3, [fp, #-16] ; load a
str r3, [fp, #-24] ; store into c

ldr r3, [fp, #-20] ; load b
str r3, [fp, #-28] ; store into d

(c)

sub r1, fp, #20 ;
ldmia r1, {r1,r2} ; load a and b

sub r9, fp, #28 ;
stmia r9, {r1,r2} ; store into c and d

(d)

Fig. 1. (a) Fragment of C code, (b) Mappings of pseudos to registers and stack loca-
tions, (c) code generated by gcc, (d) code generated by SARA.

we would need i 6= j and the two base addresses addr1 and addr2 must be
contiguous at 4 byte boundaries: addr2 − addr1 = 4.

We showed in 2003 [20] how to extend gcc with a stack-location-allocation
(SLA) phase that reduces memory traffic by

– moving some load and store instructions such that they occur in pairs,
– rearranging the stack such that the temporaries used in a pair of load/store

instructions have neighboring stack locations, and
– replacing some loads and stores with load/store-multiple instructions.

While speeding up the target code, our technique leaves room for improvement
because of the phase ordering of register allocation before SLA.

For an example of the shortcomings of gcc extended with SLA, consider the
code snippet in Figure 1(a). The code snippet is part of a synthetic benchmark
program in which c and d are needed somewhere after line 3. For the benchmark
program, gcc spills the four pseudos a, b, c, and d to the memory locations
shown in Figure 1(b) and generates the code shown in Figure 1(c); gcc extended
with SLA generates exactly the same code. To see why SLA fails to merge the
two loads and the two stores, notice first that the register allocator has done a
good job using register r3 both when loading a and when loading b. However,
the use of r3 in both load instructions and both store instructions prevents SLA
from moving the instruction for loading b to the program point just before the
instruction for storing into c; the code motion would change the behavior of the
program. Thus, the good register allocation is counterproductive to merging loads
and stores. The compiler can generate better code for the benchmark program by
first doing a worse register allocation which uses different registers when loading
a and when loading b. The reason is that now the SLA phase can safely move the



two load instructions together and also move the two store instructions together,
then replace those instructions with a double-load (ldmia) and a double-store
(stmia), and ultimately generate the code shown in Figure 1(d).

Another weakness of gcc extended with SLA is that first the register allo-
cator will assign stack locations to all spilled pseudos and then SLA will try to
reorganize the stack as best as it can to enable double-loads and double-stores. If
SLA does not manage to find the best permutation of the stack locations, then
the target code may not contain the highest possible number of double-loads
and double-stores. A better approach may be to let the register allocator know
about double-loads and double-stores and do the spilling of pseudos accordingly.

Our observations about gcc extended with SLA suggest that a compiler can
do better if register allocation and SLA are more tightly integrated.

Question: Can a combined phase be better than a two-phase sequence
of register allocation and SLA?

Our Results. In this paper we present SARA which combines SLA and register
allocation into a single phase. Our technique creates a synergy among register
assignment, spill-code generation, and SLA that makes the combined phase gen-
erate faster code than a sequence of the individual phases. We specify SARA
by an integer linear program (ILP) generated from the program text. Our ILP
formulation uses an objective function which estimates the execution time of the
memory instructions. We have implemented SARA in gcc, replacing gcc’s own
implementation of register allocation. For our benchmarks, our results show that
the target code is up to 16% faster than gcc with a separate SLA phase.

We specify SARA by an ILP because (1) register allocation can be specified
by an ILP [13, 14, 16, 3, 11, 19], (2) SLA can be specified by an ILP [20], and
(3) ILPs are often easy to combine. We speculate that it would be much more
difficult to build a one-phase combination of register allocation and SLA based
on one of the classical non-ILP-based register allocators [8, 7, 6].

While solving ILPs can be slow, we note that all of the following three prob-
lems are NP-complete: (a) register assignment [22], (b) spill code generation [12],
and (c) SLA [20]. The combination of (a)+(b)+(c) is also NP-complete. We view
our ILP formulation of (a)+(b)+(c) as a high-level specification which, as we
demonstrate, leads to good target code. We present a technique that enables us
to contain the state space explosion and allow the solver to terminate in rea-
sonable time limits. Our proposal uses the variable liveness information that is
available to the register allocator in most optimizing compilers. In future work
one might investigate how to implement fast approximation algorithms for our
ILP formulation.

To show that the combined phase SARA works better than the individual
phases performed sequentially, we specify an ILP-based register allocation phase
(RA) without SLA. Our results show that RA leads to faster code than the code
generated by gcc at O2 level of optimization. Next we reconfirm our results in
[20] by showing that RA followed by SLA is better than RA alone. And finally we
show that the combined phase SARA is better than the sequential composition



of ILP-based register allocation and SLA. In slogan form, if P is one of our
benchmark programs, and ET denotes an execution time monitor, we have

ET(SARA(P )) ≤ ET(SLA(RA(P ))).

In related work, Bradlee et al. [5] and Motwani et al. [18] demonstrated how
to combine register allocation and code scheduling to obtain faster code. Lerner
et al. [15] presented a framework for composing dataflow analyses and thereby
overcoming the phase ordering problem. Our approach differs from theirs in that
we use and combine ILPs.

In the following section we specify an ILP-based register allocator. In Section
3 we extend the ILP-based register allocator with facilities for SLA; the result
is SARA. In Section 4 we discuss how we control the state-explosion problem,
and in Section 5 we present our experimental results.

2 ILP-based Register Allocation

Our ILP-based register allocator does register assignment and spill code gen-
eration. We defined our register allocator with inspiration from the ILP-based
register allocators of Goodwin and Wilken [13] and of Appel and George [3]. The
key property of our register-allocator specification is that we can easily add SLA,
as shown in the following section. We will now present the three main phases
of the register allocator: model extraction, constraint generation, and constraint
solving.

Model extraction. From the input program we extract a model consisting
of sets and parameters.

Insts ⊆ {1..nInsts} Req : Insts × Pseudos → {0, 1}
Pseudos ⊆ {1..nPseudos} Def : Insts × Pseudos → {0, 1}
Regs ⊆ {1..nRegs} prevInst : Insts → Insts ∪ {null}
Loc ⊆ {1..nPseudos} joinInst : Insts × Insts → Insts ∪ {null}

callInst : Insts → {0, 1}

The set of instructions, pseudos, registers, and stack locations for the pseudos is
given by Insts, Pseudos, Regs, Loc, respectively. For the example shown in Fig-
ure 1, Insts = {1,2,3,4}, Pseudos = {a,b,c,d}, Regs = {1,2,3,4,5,6,7,8,9,10}. The
parameter Req(i, p) is set to 1 if instruction i requires pseudo p and hence needs
p to be present in a register. The parameter Def(i, p) is set to 1 if instruction i

sets pseudo p. The control flow of the program is given by three parameter maps.
The parameter prevInst(i) is a singleton set containing the previous instruction
of i if it has only one previous instruction, and null otherwise. The parame-
ter joinInst(i) is the set of previous instructions of i if instruction i is a join
point with multiple previous instructions, and null otherwise. The parameter
callInst(i) has value 1 if the instruction i is a call instruction, and 0 otherwise.

For each instruction i, the parameter freq(i) returns the frequency of exe-
cution of that instruction. In this paper, we use static estimates of freq(i); al-
ternatively one might use a profiling-based approach. The parameters loadCost



and storeCost give the cost of one single load and one single store respectively.
Also a subset of Regs is designated as caller save registers and are represented
by callerSaveRegs For the target environment we have the set of caller save reg-
isters is {0,1,2,3,9,12}. Each function must save and restore any register that is
a callee save register, that is, not a caller save register.

Constraint Generation. From the input program we generate an ILP
whose main purpose is to ensure the following properties: (1) at any instruc-
tion, each pseudo is assigned at most one register, (2) at any instruction, each
register is assigned at most one pseudo, (3) at any instruction, the number of
used registers is bounded by the available number of registers, (4) for every def-
inition and use of a pseudo, the pseudo has a register assigned to it, and (5) a
pseudo keeps its mapping to a register, unless the pseudo is no longer live or the
pseudo is defined, loaded, or stored.

We will use the following maps. Intuitively, the map PsR maps pseudos to
registers for each instruction, the map xDef gives the register map for a pseudo
p at a given instruction defining p, the maps spLoad and spStore represent the
load and store instructions that need to be inserted into the program, and the
map inUse tracks whether a register is used.

PsR : Insts × Pseudos× Regs → {0,1}
xDef : Insts × Pseudos× Regs → {0, 1}
spStore : Insts × Pseudos× Regs → {0, 1}
spLoad : Insts × Pseudos× Regs → {0, 1}
inUse : Regs → {0, 1}

PsR(i, p, r) returns 1 if pseudo p is present in register r at instruction i. xDef(i, p, r)
returns 1 if pseudo p is defined in instruction i, in register r. Pseudo p will be
present in register r in the next instruction. spStore(i, p, r) returns 1 if pseudo p

is spilled after instruction i and is currently mapped to register r. spLoad(i, p, r)
returns 1 if pseudo p is (re)loaded before instruction i into register r. We generate
the following constraints.

Each pseudo is assigned to at most one register and each register is assigned
to at most one pseudo:

∀i ∈ Insts, ∀p ∈ Pseudos :
∑

r∈Regs

PsR(i, p, r) ≤ 1

∀i ∈ Insts, ∀r ∈ Regs :
∑

p∈Pseudos

PsR(i, p, r) ≤ 1

The second of the two constraints above implies that at any program point the
number of pseudos that are available in registers is bounded by the number of
registers available.

A pseudo that is used in an instruction has to be present in a register at that
point:

∀i ∈ Insts, ∀p ∈ Pseudos :
∑

r∈Regs

PsR(i, p, r) ≥ Req(i, p)



A pseudo being defined needs a register:

∀i ∈ Insts, p ∈ Pseudos :
∑

r∈Regs

xDef(i, p, r) = Def(i, p)

A pseudo p retains its mapping to a register unless it is spilled or another pseudo
is mapped to that register. If the instruction has only one previous instruction:

∀i ∈ Insts, p ∈ Pseudos, r ∈ Regs, pr ∈ prevInst(i) :

PsR(i, p, r) = (spLoad(i, p, r) ∨ PsR(pr, p, r) ∨ xDef(pr, p, r)) ∧ ¬spStore(pr, p, r)

If the instruction is next to a join point and hence have multiple predecessors:

∀i ∈ Insts, p ∈ Pseudos, r ∈ Regs :

PsR(i, p, r) = (
∧

pr∈joinInst(i)

PsR(pr, p, r) ∧ ¬spStore(pr, p, r)) ∨ spLoad(i, p, r)

A pseudo mapped to a caller save register loses its mapping after a call:

∀i ∈ Insts, ∀p ∈ Pseudos ∀r ∈ callerSaveRegs : callInst(i) ⇒ PsR(i, p, r) = 0

A register is used if it is mapped to a pseudo:

∀i ∈ Insts, ∀p ∈ Pseudos ∀r ∈ Regs : inUse(r) ≥ PsR(i, p, r)

Objective function. Our objective function estimates the execution time of
the inserted loads and stores for spilling and for storing and restoring the callee
save registers at the beginning and end of a function. The objective of our ILP
solver is to minimize SpillCost + CalleeSaveCost where

SpillCost =
∑

i∈Insts

freq(i) ×
∑

p∈Pseudos, r∈Regs

(

(spLoad(i, p, r) × loadCost)
+

(spStore(i, p, r) × storeCost)

)

CalleeSaveCost =
1

2
×

∑

r∈Regs−callerSaveRegs

inUse(r) × (loadCost + storeCost)

The callee save registers are loaded and stored using load/store-multiple in-
structions, hence the cost is reduced by a factor of two.

Constraint Solving. We use AMPL [9] to generate the ILP, and CPLEX
(www.cplex.com) to solve it. The gcc compiler invokes the constraint generator
by providing the data in a file. Once constraints are generated the constraint
generator calls the solver, which returns the resulting solution to gcc in a file.

The result of solving the constraints for the running example in Figure 1 is
shown in the following table. (Only tuples with non-zero values are shown.)

PsR = {(1,a,r3),(2,c,r3),(3,b,r3),(4,d,r3)}
spLoad = {(1,a,r3),(3,b,r3)}
spStore = {(2,c,r3),(4,d,r3)}
xDef = {(1,c,r3),(3,d,r3)}
inUse = {r3}
SpillCost = 2 × loadCost + 2 × storeCost = 184
CalleeSaveCost = 0



3 SARA

The advantage of using an ILP-based framework for combining multiple phases
is that each phase can be added as a module on top of an already existing ILP.
SARA, the combined phase of SLA and RA, is built upon the set of parameters
and constraints given for the ILP-based RA in section 2. We now present the
additional parameters, variables and constraints required for SARA over RA.
The new phase SARA requires three additional variables:

loadPair : Insts × Pseudos × Pseudos → {0, 1}
storePair : Insts × Pseudos × Pseudos → {0, 1}
f : Pseudos× Loc → {0, 1}

For a given instruction i, and two pseudos p1 and p2 (p1 6= p2), the map
loadPair(i, p1, p2) returns 1 if we can replace the two spill loads by a pair, and 0
otherwise. The map f maps a pseudo to its location: f(p, l) returns 1 if pseudo
p is placed in location l. Note that not all pseudos would need a location.

A pseudo can have at most one location and a location can have at most one
pseudo mapped to it.

∀p ∈ Pseudos :
∑

l∈Loc

f(p, l) ≤ 1 ∀p ∈ Loc :
∑

l∈Pseudos

f(p, l) ≤ 1

A pseudo needs a location if it is spilled and/or reloaded.
∀i ∈ Insts, p ∈ Pseudos :

2 ×
∑

l∈Loc

f(p, l) ≥
∑

r∈Regs

(spLoad(i, p, r) + spStore(i, p, r))

Two consecutive loads or stores can be replaced by an LDM or STM instruction.
∀i ∈ Insts, ∀p1, p2 ∈ Pseudos :

2 × loadPair(i, p1, p2) ≤
∑

r∈Regs

(spLoad(i, p1, r) + spLoad(i, p2, r))

2 × storePair(i, p1, p2) ≤
∑

r∈Regs

(spStore(i, p1, r) + spStore(i, p2, r))

LDM and STM require that the memory locations are consecutive.
∀i ∈ Insts, ∀p1, p2 ∈ localPseudos :

diff(p1, p2) 6= 1 ⇒ loadPair(i, p1, p2) = 0
diff(p1, p2) 6= 1 ⇒ storePair(i, p1, p2) = 0

diff(p1, p2) = ((
∑

l∈Loc l × f(p1, l)) − (
∑

l∈Loc l × f(p2, l)))

It may be noted that we do not need to check for the absolute value of diff.
This is because the optimizing solver will consider both the options (p1, p2) and
(p2, p1) and can pick the best one.



Objective function. The objective function used in SARA is similar to the
one used by our ILP-based RA given in section 2. The new twist is that SpillCost
takes pairs into account.
SpillCost =

∑

i∈insts

freq(i) ×



















∑

p∈Pseudos,r∈Regs spLoad(i, p, r) × loadCost −
∑

p1,p2∈Pseudos(loadPair(i, p1, p2) × loadPairSave)

∑

p∈Pseudos,r∈Regs spStore(i, p, r) × storeCost −
∑

p1,p2∈Pseudos(storePair(i, p1, p2) × storePairSave)



















Here loadPairSave is the savings that one gets because of replacing two loads by
a load-pair and storePairSave is the savings that one gets by replacing two stores
by a store-pair. If loadPairCost is the cost of executing one load-pair instruction
(this will include the cost of setting the base register) then loadPairSave is given
by (2 × loadCost − loadPairCost). Similarly storePairSave is calculated as (2 ×
storeCost−storePairCost). In the model generated by the compiler loadPairCost
and storePairCost are given as parameters.

The result of solving the above constraints for the running example shown in
Figure 1 is shown below. As can be seen the cost has gone down by nearly 50% as
compared to the ILP-based RA in section 2. This is because of the introduction
of the load-pair and store-pair instructions in the code.

PsR = {(1,a,r1),(2,c,r1),(3,b,r2),(4,d,r2)}
spLoad = {(1,a,r1),(3,b,r2)}
loadPair = {(1,a,b)}
storePair = {(4,c,d)}
xDef = {(1,c,r1),(3,d,r2)}
inUse = {r1,r2}
SpillCost = loadPairCost + storePairCost = 94
CalleeSaveCost = 0

Our implementation of SARA uses a superset of the constraints presented
in this paper. The additional constraints take care of (1) pre-colored pseudos
(pseudos that require a certain register, as required, for example, in connec-
tion with parameter passing), (2) non-spill memory instructions (generated in
the presence of pointer based accesses in the code), and (3) inversions [20]. A
practical register allocator has to take care of these issues to be able to gener-
ate executable code. The reader can obtain the full set of constraints from our
webpage, http://compilers.cs.ucla.edu/nvk/sara.mod.

4 SARA Improvements

In this section we will explain three techniques that are used in SARA, namely
two techniques for reducing the size of the ILP state space and one technique
for improving the quality of the generated code.



Reducing the size of the ILP state space. Our first technique uses live-
ness information. Notice first that the domain of the pseudo-to-register map PsR
is Insts × Pseudos × Regs. However, for a pseudo to be assigned a register, the
pseudo has to be live, that is, the map PsR is valid only at those instructions
where the pseudo is live. For our benchmarks, most of the pseudos are live in only
small parts of the program. So we define PsR only for live pseudos. Similarly,
we define spLoad, spStore, loadPair, and storePair only for live pseudos. By the
same token, we define constraints only for defined ILP variables. Our focus on
live pseudos let us reduce the number of variables and constraints by a big factor.
We have tried a version of SARA without this optimization on our benchmark
programs, and in many case the preprocessor that translates the constraints
specified in high level language (AMPL) to a format that is understood by the
solver (CPLEX) runs out of memory and fails. With the liveness-based optimiza-
tion in place, SARA does not run out of space when handling our benchmark
programs.

Our second technique manages the number of ILP variables needed to repre-
sent the generated load and store instructions. Our technique inserts a dummy
instruction after each instruction, generates load instructions only before real
instructions, and generates store instructions only after dummy instructions. A
dummy instruction does not use any pseudos nor define any; we use dummy
instructions as place holders for spill instructions. Let us now explain the de-
tails and merits of dummy instructions in more detail. We are trying to track
the mapping of pseudos to registers at each instruction. However, sometimes it
is not sufficient to know the mapping of a pseudo just at each instruction! For
example, in the code fragment without dummy instructions:

i1 : x = y + p ; // p dies after i1
i2 : y = y + z ;

let us assume pseudo x has to be spilled (because of register pressure) to memory
after the instruction labeled i1 but before i2, and let us assume pseudo z has to
be loaded before i2. In the case where we do not have any more free registers,
we could use the same register (say r1) for p, x and z. Notice that because x is
being set, x needs a register. But since x will be spilled that register will be free
immediately afterwards and can be used for loading z. So we have a mapping of
x to r1 between i1 and i2. But at i1, p is mapped to r1, and at i2, z is mapped
to r1. This leads to the situation that x does not have a mapping to r1 in PsR.
To avoid such situations, we inserted a dummy instruction after each instruction
before generating the ILP:

i1 : x = y + p ; // p dies after i1
d1 :
i2 : y = y + z ;
d2 :

The register allocator can assign register r1 to pseudo x at the dummy instruc-
tion d1. Additionally, the register allocator can emit an instruction to spill x



after d1, and an instruction to load z before i2, thereby establishing the de-
sired pseudo-to-register mapping. The introduction of dummy instructions also
overcomes the need to introduce dummy basic blocks as additional place hold-
ers for spill code. Our notion of dummy instructions is related to the notion of
points between instructions that was used by Appel and George [3]. Instead of
using dummy instructions or points between instructions, one might find a way
to allow the generation of loads and stores before and after every instruction,
although we believe such an approach is more awkward.

Improving the quality of the generated code. SARA can benefit from
having freedom to move the spill and reload instructions around. Perhaps sur-
prisingly, the use of strict (exact) liveness information can lead to the generation
of inefficient code. For example, in code for copying structures, we come across
patterns like:

// x1, x2, y1, y2 are dead

i1: y1 = x1; // live x1

i2: // x1 and y1 are dead

i3: y2 = x2; // live x2

i4: // x2 and y2 are dead

Here x1, x2, y1, y2 could be globals or be accessed by globals. We must load
x1 before instruction i1 and x2 before i3. Recall that a load/store requires that
the pseudo is live. Forcing such liveness constraints would constrain SARA so
much that it cannot move these two loads together. The same logic holds for
the spill of pseudo y1 and y2 after instructions i1 and i3. Assuming that we have
an additional register for the duration of these instructions, and the liveness
constraints were a bit relaxed, we would give SARA a bit more breathing room
to pair up more loads and stores. For example, if we deliberately make the
liveness information a bit more conservative and convey to SARA that x2 is live
at i1 as well, then SARA could generate a load-pair for x1 and x2. A similar
argument can be given for y1 and y2 as well. This leads to an interesting trade
off: strict liveness reduces the search space and state space but might result in
inefficient code.

We have experimented with relaxing the liveness information by different
amounts: (a) strict liveness, (b) liveness extended to basic blocks—each pseudo
is live from the beginning of the basic block until the end; unless it dies in
between, (c) liveness relaxed by three instructions. Let us consider (c) in more
detail. If a pseudo is live starting at instruction i1, then the pseudo is assumed
to be live starting at i1 − 2 × 3 (multiplied by 2, to take care of the dummy
instructions) unless i1 is one of the first three instructions in the basic block.
And if it is, then the pseudo is assumed to be live starting from the beginning
of the basic block until its death or end of basic block. We arrived at the magic
number three from our experience with the benchmarks code. Our experience
confirmed our belief that most of the need for code motion arises in code that
does copying of structures, etc. In such cases, relaxing the liveness by three
instructions is effective.



Benchmark LoC #RTLs #Funcs

sieve 39 134 3
matmul 56 254 6
perm 34 112 3
queen 58 144 4

route 2246 4672 23
url 790 1264 12

yacr2 3979 10838 58
ft 2155 3218 35

c4 885 3388 21
mm 647 2884 14

gcc+SLA RA+SLA SARA

Mem Pair CSR Mem Pair CSR Mem Pair CSR

0 0 9 0 0 9 0 0 9
9 2 22 9 0 20 7 6 19
5 0 14 5 0 12 4 2 12
11 0 14 12 1 11 8 5 11

519 4 110 506 6 116 546 19 107
115 8 62 120 5 56 120 8 58

1060 8 123 1003 6 123 1109 24 142
219 5 92 225 9 87 230 14 106

189 3 289 190 7 305 184 18 320
386 9 130 375 4 116 380 23 92

Fig. 2. Benchmark characteristics and compile time statistics

From our experience, we found that case (b) above, even though it gives more
flexibility to the solver to move the spill code, often resulted in large data sets
that causes the ILP solver to return no feasible solution even after a lengthy
execution. We present in this paper our experience with cases (a) and (c). We
refer to the case (c) as SARA and case (a) as SARAs (the subscript denoting
strict liveness).

5 Experimental Results

We have implemented SARA in gcc-2.95.2, replacing gcc’s own implementation
of register allocation, and we have tested the target code from the new compiler
on a Stargate platform. Stargate has a StrongArm/XScale processor and 64MB
SDRAM and no cache. The impact of SARA may be different for systems with
cache. We have drawn our benchmark programs from a variety of sources:

– Stanford Benchmark suite: The first four benchmarks are small and simple,
but typical of the subroutines of many other benchmarks.

– NetBench: Route and url are network related benchmarks from the Net-
Bench [17] suite. Route is an implementation of IPv4 routing according to
RFC 1812, and url is a switching protocol that implements url based switch-
ing.

– Pointer-intensive benchmark: This benchmark suite is a collection of pointer-
intensive benchmarks [4]. Yacr2 is an implementation of a channel router and
Ft is an implementation of a minimum spanning tree algorithm [10].

– The last two benchmarks are taken from the comp.benchmarks FAQ at
http://www.cs.wisc.edu/~thomas/comp.benchmarks.FAQ.html. The c4 bench-
mark is an implementation of the connect-4 [2] game and mm is an imple-
mentation of nine different matrix multiplication algorithms.

The static characteristics and compile time statistics of these benchmarks are
presented in Figure 2. The static characteristics we present here include the



Benchmark Exec Time(seconds)
gcc-O2 RA gcc+SLA RA+SLA SARAs SARA

sieve 9.26 9.26 9.26 9.26 9.26 9.26
matmul 71.59 68.19 67.49 67.02 66.45 66.28
perm 154.45 151.26 146.90 143.24 140.10 140.10
queen 27.33 24.39 26.80 23.39 22.90 22.24

route 20.9 18.91 18.82 18.10 17.8 17.18
url 10.85 10.36 10.55 10.36 9.86 9.86

yacr2 4.40 4.21 4.30 4.11 3.99 3.95
ft 46.25 45.26 46.15 45.26 45.26 43.21

c4 42.3 41.1 42.19 40.53 40.23 39.65
mm 330.02 326.2 326.5 324.21 322.60 311.32

Fig. 3. Execution time numbers

number of lines of C code, the number of instructions seen by the ILP solver
(which depends on the number of RTL instructions in the intermediate represen-
tation of the program), and the number of functions. Due to space constraints,
we limit ourselves to presenting compile time statistics for three different register
allocators: gcc’s default register allocator followed by SLA, our ILP-based RA
followed by SLA, and SARA (with the liveness information extended to three
instructions, see section 4). For each of these combinations we present an esti-
mate of the number of memory accesses; the number of loads and stores (Mem),
the number of load-pair/store-pair instructions (Pair) inserted, and the number
of callee save registers (CSR) used.

All these benchmarks have the common characteristic that they are non-
floating point benchmarks. (We had to edit a few of them to remove some code
that uses floating point operations; we did so only after ensuring that the code
with floating point operations is not critical to the behavior of the program.)

Studying the compile time characteristics gives a good insight into the way
SARA works. We can see that in the compile time statistics, SARA outperforms
both gcc+SLA and RA+SLA by a big margin in terms of the number of pairs
generated. Notice, though, that SARA sometimes uses more callee save registers.
because of the added register pressure that comes from pairing up loads and
stores. Another point that can be easily noticed is that in some cases, such as
c4, SARA and RA+SLA are generating more memory instructions than gcc. This
is because the constraints use the frequency of the instruction as a parameter
to compute the cost of the objective function. And in such cases, generating
loads/stores outside the loop is a better option. One final point to note here is
that, for benchmarks route, yacr2, ft and mm, SARA generates more loads/stores
than our ILP-based register allocator. The reason is that by generating more
loads and stores in non-loop code and generating load-pairs in the loops SARA
is able to reduce the overall cost.

We do not give detailed compilation times; our solver sometimes took more
than 30 minutes and we had to terminate CPLEX and work with a perhaps
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.

nonoptimal solution. The total compilation time for all the benchmarks is in the
order of hours.

We now present the execution time numbers for the benchmarks. In Figure 3
we present the time each benchmark took to run when compiled with different
compilers. Each of these is compiled at the -O2 level of optimization.

To get an overall comparison of the different register allocators, we present
the normalized execution time numbers in Figure 4. Our experience can be rep-
resented in a lattice as shown in Figure 5. We use the notation A ≤ B to denote
that time taken to execute code when compiled with A less than or equal to the
time taken to execute the same when compiled with B.

Let us now analyze the results in more detail. Sieve is one benchmark where
no spill code was needed and gcc’s register allocator and our register allocator
both perform in the same way. For benchmarks matmul and route, gcc+SLA
performs better than RA, indicating that SLA in itself is fairly powerful. For
other benchmarks RA is doing better than gcc+SLA, showing that our ILP-
based register allocation is giving better results than gcc’s default module run
followed by SLA. For ft, RA + SLA does not give any improvement over RA.
That is because SLA could not introduce many pairs in the frequently executed
code. Also SARAs is not giving much improvement either. That’s because the
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Fig. 5. A comparison of different register allocator schemes

ILP solver could not generate many pairs with the strict liveness constraints.
However SARA does show an improvement which is due to the relaxed bounds.
Theoretically one can imagine cases where RA+SLA could be doing better than
SARAs or even SARA, but we did not find any such cases in our benchmarks.
Further experimentation may reveal such cases.

A general point to note about the numbers is that there is a appreciable
amount of tension between the number of callee save registers used, the number
of normal loads and stores, and the pairs inserted. As a result, SARA shows a
significant but not earthshaking improvement over the other register allocators.
Overall, we see that SARA yields improvements up to 16% compared to the gcc
compiler’s own register allocator extended with SLA, and up to 8% compared
to our own ILP-based register allocator followed by SLA. On average (excluding
the numbers for sieve), the improvements are 7.4% and 4.1% respectively.

6 Conclusion and Future work

We have presented an ILP-based approach to combining register allocation and
stack location allocation. We have shown that doing these optimizations together
gives better results than doing them separately in sequence.

In future work, one might implement SARA using fast heuristics and compare
the results to the results of solving the ILPs using CPLEX. One might also add
register coalescing, register rematerialization, etc. to SARA and study the effect
on code quality and compilation time.
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