
Compare Less, Defer More
Scaling Value-Contexts Based Whole-Program Heap Analyses

Manas Thakur

Dept of CSE, IIT Madras

Chennai, TN, India

manas@cse.iitm.ac.in

V. Krishna Nandivada

Dept of CSE, IIT Madras

Chennai, TN, India

nvk@iitm.ac.in

ABSTRACT
The precision of heap analyses determines the precision of several

associated optimizations, and has been a prominent area in compiler

research. It has been shown that context-sensitive heap analyses

are more precise than the insensitive ones, but their scalability

continues to be a cause of concern. Though the value-contexts ap-

proach improves the scalability of classical call-string based context-

sensitive analyses, it still does not scale well for several popular

whole-program heap analyses. In this paper, we propose a three-

stage analysis approach that lets us scale complex whole-program

value-contexts based heap analyses for large programs, without

losing their precision.

Our approach is based on a novel idea of level-summarized rel-

evant value-contexts (LSRV-contexts), which take into account an

important observation that we do not need to compare the com-

plete value-contexts at each call-site. Our overall approach consists

of three stages: (i) a fast pre-analysis stage that finds the portion

of the caller-context which is actually needed in the callee; (ii) a

main-analysis stage which uses LSRV-contexts to defer the anal-

ysis of methods that do not impact the callers’ heap and analyze

the rest efficiently; and (iii) a post-analysis stage that analyzes the

deferred methods separately. We demonstrate the usefulness of our

approach by using it to perform whole-program context-, flow- and

field-sensitive thread-escape analysis and control-flow analysis of

Java programs. Our evaluation of the two analyses against their

traditional value-contexts based versions shows that we not only

reduce the analysis time and memory consumption significantly,

but also succeed in analyzing otherwise unanalyzable programs in

less than 40 minutes.

CCS CONCEPTS
• Theory of computation → Program analysis; • Software
and its engineering→ Compilers; Object oriented languages.

KEYWORDS
Static program analysis, Context-sensitivity, Value-contexts, LSRV-

contexts

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor or affiliate of a national government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow others

to do so, for Government purposes only.

CC ’19, February 16–17, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6277-1/19/02. . . $15.00

https://doi.org/10.1145/3302516.3307359

ACM Reference Format:
Manas Thakur and V. Krishna Nandivada. 2019. Compare Less, Defer More:

Scaling Value-Contexts Based Whole-Program Heap Analyses. In Proceed-
ings of the 28th International Conference on Compiler Construction (CC ’19),
February 16–17, 2019, Washington, DC, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3302516.3307359

1 INTRODUCTION
Heap analysis refers to a broad category of program analyses that

statically approximate the information about the runtime heap of

a program. For example, thread-escape analysis [2, 4] identifies

objects that do not escape the thread of their allocation, interproce-

dural control-flow analysis [21, 25] identifies the potential targets of

method calls, and so on. The precision of heap analyses determines

the precision of several analyses and optimizations, and has been a

prominent area in compiler research [14, 17, 27, 31, 33, 35].

The precision and scalability of interprocedural heap analyses

vary based on whether the analysis is context-sensitive or not [23].

A context-insensitive analysis does not differentiate among the

various calls to a method, and generates a single summary that

can be used at all of its call-sites. A context-sensitive analysis,

on the other hand, distinguishes between the “contexts” in which

a method is called, and generates a summary for the method in

each distinct context. Though the results generated by context-

sensitive analyses have been shown to be more precise than context-

insensitive analyses [14], the scalability of the former in analyzing

large programs continues to be a cause of concern.

The classical call-strings approach [24, 25], which identifies con-

texts based on the call-string formed by its callers, is one of the

oldest and widely-used approaches of defining the context abstrac-

tion. For example, consider the snippet of Java code shown in Fig-

ure 1a. A call-string based context-sensitive analysis would analyze

the method bar in two contexts (created at lines 4 and 5), and

the method fb in four contexts (two contexts for each context of

bar). A major drawback of the call-string based approach is that

in the presence of recursion and deep nesting of multiple calls, the

length of the call-strings, and hence the number of contexts, may

grow combinatorially. This makes the analysis unscalable to large

real-world programs. Consequently, the call-string based analyses

usually impose a limit on the call-string length, and treat the con-

texts of greater lengths conservatively. While such an approach

improves the scalability of the analysis, it compromises on the

resulting precision.

The clever value-contexts approach [10, 20] addresses the scal-

ability challenges in the call-strings approach by using dataflow

values to restrict the potentially unbounded growth of call-strings,

without sacrificing precision. For the code shown in Figure 1a,

https://doi.org/10.1145/3302516.3307359
https://doi.org/10.1145/3302516.3307359

CC ’19, February 16–17, 2019, Washington, DC, USA Manas Thakur and V. Krishna Nandivada

1 class A {

2 A f1,f2;

3 void foo(){ ...

4 c.bar(a);

5 d.bar(b);

6 } /*foo*/

7 void bar(A p){

8 A x = new A();

9 p.f1.f2 = x;

10 p.fb();

11 p.fb();

12 } /*bar*/

13 void fb(){

14 /*Doesn't read/affect

15 the caller's heap*/

16 } /*fb*/

17 }

(a)

Oa

Oi

Ok

Oj

Oc Ol

a

c

f1

f1

f1

f1

Obb
f1

d

Om...
f2

f2

(b)

Oa

Oi

Oj

Oc Ol

p

this

f1

f1

f1

f1 Om...

(d)

Oa

Oi

Ok

Oj

Oc Ol

a

c

f1

f1

f1

f1

Obb
f1

d

O8

f2

f2

f2

f2
Om...

(c)

Ok
f1Obp

this

f2

f2Ol

f1 Om...

(e)

Oa

Oi

Oj

p
f1

f1

(f)

Ob

Ok

Ol

p
f1

f1

(g)

f1ODp OD

(h)

Figure 1: (a) A Java code snippet. (b) The assumed points-to graph at line 4. (c) The points-to graph at line 5. (d) The value-
context for bar at line 4. (e) The value-context for bar at line 5. (f) The relevant value-context for bar at line 4. (g) The
relevant value-context for bar at line 5. (h) The LSRV-context for bar at lines 4 and 5 (for escape analysis), assuming Oa , Ob ,
Oi , O j , Ok and Ol do not escape; OD represents a universal non-escaping object.

if Figure 1b and Figure 1c depict the points-to graphs at lines 4

and 5 respectively, then the value-contexts approach would analyze

(i) bar in two contexts, as the value-contexts (points-to graphs

reachable from formal parameters) at lines 4 and 5, shown in Fig-

ures 1d and 1e, respectively, are different; (ii) fb in only one context

for each context of bar, as the points-to graphs at lines 10 and 11

match. Though the value-contexts approach is a breakthrough in

performing precise context-sensitive analyses, it still does not scale

for various popular heap analyses. We studied many such heap

analyses and identified two main reasons for the lack of scalability:

(i) time overheads involved in comparing the value-contexts and in

redundantly analyzing many methods; and (ii) memory overheads

due to a large number of contexts. For example, for the call to bar
at line 5, the whole points-to graphs shown in Figures 1d and 1e

are compared; in practice, depending on the size of the graphs and

the number of existing contexts, this could be expensive.

In this paper, we propose several novel techniques that together

let us perform complex top-down whole-program value-contexts

based heap analyses for large programs in less than 40 minutes.

Our scheme comprises of three analysis stages: pre, main, and post.
The pre-analysis is a lightweight stage that gains insights about the

context-dependency of all the methods of a program. It computes

the portion of the caller contexts that is actually needed in the

callee and stores this information as parameter-wise access-depth.
The main-analysis uses the access-depths to not only reduce the

comparison performed (compares “relevant” parts of contexts) in

identifying whether two value-contexts are equal, but also in defer-

ring the analysis of caller-ignorable methods that do not impact the

callers’ heap. Deferring reduces the overheads of analyzing those

methods multiple times and in merging the results with the callers’

heap, during the costly main-analysis. The main-analysis also uses

a novel analysis-specific abstraction called level-summarization to

improve the precision of identifying two contexts as equivalent.

Finally, the post-analysis analyzes the deferredmethods without los-

ing precision. For the code in Figure 1a, an escape analysis based on

our approach identifies that both bar and fb are invoked only in a

single level-summarized relevant value-context each. Consequently,

bar is analyzed only once in the main-analysis, and fb (deferred

in the main-analysis) is analyzed only once in the post-analysis.

We demonstrate the effects of our proposed techniques by using

them to perform fully context- and flow-sensitive thread-escape

analysis and interprocedural control-flow analysis of Java programs

(along with the JDK). We evaluated the analyses against their cor-

responding traditional value-context versions on a multitude of

benchmarks. We find that our techniques not only reduce the anal-

ysis time and memory consumption of the presented analyses sig-

nificantly, but also help analyze previously unanalyzable large pro-

grams in a reasonable time. To the best of our knowledge, this is

the first work that scales these heap analyses while realizing the

precision of unbounded call-strings, especially using the practical

value-contexts approach. Further, the proposed techniques are gen-

eral enough to scale other context-sensitive heap analyses, even

for programs written in other OO languages.

Contributions:
• We present the novel idea of level-summarized relevant value-

contexts (LSRV-contexts), which take into account an important

observation that we do not need to compare the complete value-

contexts while performing top-down context-sensitive heap analy-

ses. This also helps classify more value-contexts as equivalent.

•We devise a lightweight pre-analysis stage that gathers insights

about the impact of a method on the callers’ heap. The results of

the pre-analysis are used to (i) further reduce the comparison of

Compare Less, Defer More CC ’19, February 16–17, 2019, Washington, DC, USA

contexts in the “main-analysis” stage, and (ii) defer the analysis of

“caller-ignorable” methods.

•We analyze the caller-ignorable methods in a “post-analysis”

stage, again in a context-sensitive manner (that is, without loss of

precision). Our three-stage approach achieves the precision of a

fully context-sensitive analysis for the whole program (including

the JDK).

• We present an elaborate evaluation of the proposed approach

on two nontrivial heap analyses (escape analysis and control-flow

analysis), for a range of DaCapo and JGF benchmarks. We find that

we (i) succeed in analyzing previously unanalyzable benchmarks

in less than 40 minutes; and (ii) significantly reduce the memory

requirements.

• We also compare our control-flow analysis implementation

with object-sensitive analyses for two popular clients. We find that

our approach leads to comparable precision, while consumingmuch

less time and memory.

2 BACKGROUND
We now give a brief description of thread-escape analysis, control-

flow analysis, and value-contexts based approach of performing

heap analyses.

1. Thread-escape analysis [2], hereafter called escape analy-

sis, identifies objects that can be accessed by other threads (that

is, escape). An object may escape to other threads if it is reachable

(possibly via a sequence of field dereferences) from a static (global)

variable, or from a thread object. Escape analysis has many appli-

cations, such as synchronization elimination [2, 4, 22], data-race

detection [5], efficient garbage-collection [7], and so on. A common

way to perform escape analysis is to propagate the escape-status
from the nodes reachable from global variables (and thread objects)

in the points-to graph. The lattice of dataflow values for escape

analysis has two elements: DoesNotEscape (D) and Escapes (E). The
meet (⊓) operation is defined as: D ⊓ D = D, and D ⊓ E = E ⊓ D =

E ⊓ E = E.
2. Interprocedural control-flow analysis [21, 25], used to

determine the targets of a method call in dynamically-dispatched

languages, is a prerequisite to, and controls the precision of, several

interprocedural analyses (for example, call-graph construction [8],

points-to analysis, escape analysis, and so on). A common way to

perform control-flow analysis is by maintaining a points-to graph

and using a dataflow lattice whose elements (indicating the possible

type of each object) are the set of all the classes in the input program;

the meet operation is simply the set-union operation.

3. Value-contexts, proposed by Khedker and Karkare [10], were
used by Padhye and Khedker [20] to perform top-down context-,

flow-, and field-sensitive points-to analysis for constructing a call-

graph. The analysis starts from the main method, and maintains a

points-to graph [34] at each statement. On reaching a call-statement

for a methodm, the method is (re-)analyzed, if the current value-

context is different from the prior value-contexts (if any) in whichm
was analyzed. Here, the value-context is the points-to (sub) graph

passed tom – referred to as the parameter-reachable graph ofm.

For example, for the code shown in Figure 1a, say Figures 1b and 1c

represent the points-to graphs at lines 4 and 5, respectively. The

corresponding value-contexts are shown in Figures 1d and 1e.

3 SCALABLE CONTEXT-SENSITIVE
ANALYSES

Traditional value-contexts use dataflow values to restrict the combi-

natorial explosion of contexts in classical call-string based context-

sensitive analysis. However, they do not scale well, both in terms

of analysis time and memory usage, for performing common top-

down context-sensitive heap-based analyses (such as escape anal-

ysis, control-flow analysis, and so on). In this section, we first

illustrate the underlying problems and then describe our scalable

precise solutions.

3.1 Challenges
Problem 1: Too much comparison. In value-contexts based analyses,

when a previously analyzed method is called from a new site, the

value-context at the new call-site is compared with those at the pre-

vious call-site(s). For heap-based analyses, this involves comparing

the whole parameter-reachable points-to graphs. Comparing such

potentially large graphs for exact equality can be costly and may

lead to significant overheads.

Insight 1. The whole of the points-to graph reachable from the

parameters is usually not relevant for the callee. For example, for

the method bar in Figure 1a, the relevant part of the points-to

graph (value-context) at its entry, for escape analysis, consists only

of the objects pointed-to by p and p.f1. Hence, the relevant value-
contexts for bar for the calls at lines 4 and 5 (shown in Figures 1f

and 1g, respectively) are much smaller than the complete value-

contexts (shown in Figures 1d and 1e, respectively).

Proposal: Identify/use relevant value-contexts for comparison.

Problem 2: Too many contexts. An important challenge that any

context-sensitive analysis throws up for scalability is the number

of contexts created during the analysis. As the number of con-

texts keeps increasing during the analysis, the associated method

needs to be analyzed again and again in each new context. Each re-

analysis consumes time (more so, if the analysis is flow-sensitive),

and the generated summary increases the memory usage of the

analysis, thus leading to scalability problems while performing pre-

cise analyses for large programs. Analyzing a method in a large

number of contexts also implies more context-comparisons to be

performed at subsequent call-sites for the method, thus aggravating

the scalability issues further. This problem is pertinent even in case

of the value-contexts based approaches [10, 20], where the number

of contexts is bound by the size of the lattice of the points-to graph,

though they improve the scalability compared to the traditional

call-string based approaches [24, 25] (where the number of contexts

can be unbounded).

Insight 2a. A major reason leading to a blow-up in the number

of contexts is the failure to detect the equality of two contexts. For

example, for performing escape analysis, consider the two relevant

value-contexts (at lines 4 and 5) for the method bar in Figures 1f

and 1g. Even though the relevant value-contexts are different, if the

objects Oi , O j , Ok and Ol do not escape, the escape-status of the

object O8 remains the same (DoesNotEscape) in both the contexts.

Hence, once bar has been analyzed for the value-context at line 4,

it need not be analyzed again at line 5, as the “level-wise” summary

for the objects pointed to by p and p.f1 match (see Figure 1h).

Proposal: Use level-summarized relevant value-contexts.

CC ’19, February 16–17, 2019, Washington, DC, USA Manas Thakur and V. Krishna Nandivada

Pre-
analysis

Java
program

Main-
analysis

Post-
analysis

Deferred
methods
+Partial
results

Access
depths

Final
results

Figure 2: Block diagram of the proposed approach.

Insight 2b. Not all the methods of a program modify the heap of

its callers (for example, the method fb in Figure 1a). The analysis

of such methods does not affect the heap of their callers. When we

encounter a call to such methods (caller-ignorable), we can defer the

analysis of that method and simply proceed to the next statement.

These deferred methods can be analyzed in a post-analysis pass
after the main-analysis is over, without losing any precision. The

advantage of such deferring is that we can save the time and mem-

ory spent in analyzing them (in multiple contexts), and merging

their points-to graphs with those of the callers, while performing

the costly main-analysis.

Proposal: Identify/defer caller-ignorable methods.

3.2 Proposed Approach
We now use the insights discussed above and describe our proposed

three-stage approach (Figure 2 shows the block diagram) to scale

value-contexts based top-down context-sensitive heap analyses.

The three proposed stages are:

1. A fast flow-insensitive interprocedural pre-analysis that esti-
mates, for each methodm, the maximum depth of the parameter-

reachable points-to graph till which the effects ofm may be visible

in its caller.

2. A flow- and context-sensitive main-analysis that takes advan-
tage of the information gathered by the pre-analysis to (i) reduce the

amount of comparison performed while checking value-contexts

for equality (using the notion of relevant value-contexts), and (ii)

identify and defer the analysis of caller-ignorable methods (meth-

ods with zero parameter-depth for all the parameters). Further, for

comparing the relevant value-contexts for equality, we propose a

novel abstraction called level-summarization that leads to fewer

and more compact relevant value-contexts.

3. A flow- and context-sensitive post-analysis that analyzes the
deferred methods, without compromising on precision.

3.2.1 Pre-analysis. For each parameter pi of a methodm, the goal

of the pre-analysis is to conservatively approximate its access-depth,
which is the maximum depth of the caller-allocated portion of the

points-to graph reachable from pi that is accessed in m. We use

mInfom (i) to give the access-depth ofpi inm. Intuitively, mInfom (i)
is k , if there exists a maximal list of k fields such that either a

caller-allocated object Ox pointed-to by pi . f1. f2... fk is read inm,

or pi . f1. f2... fk−1 points-to a caller-allocated object andm stores an

object to pi . f1. f2... fk . We obtain this information by performing a

lightweight bottom-up analysis on the call-graph. We assume the

program to be in 3-address code [18]. For ease of presentation, we

list the names used in this section in Figure 3.

The pre-analysis maintains a flow-insensitive points-to graph

for each method m. The analysis begins by making each of the

non-primitive parameters ofm point to a dummy object. The fact

that these dummy objects are created in one of the callers ofm is

Name Meaning

Gm Points-to map for methodm.

retm Set of objects returned by methodm.

mInfom Pre-analysis summary of methodm.

deferredMethods Map from deferred methods to context.

Ox .accDpth Access-depth of object Ox .

Ox .callerNode Indicates if Ox is passed from the caller.

Figure 3: Some names used in the proposed approach.

noted by setting a special boolean field callerNode that is associ-

ated with the corresponding object node. We also maintain a field

accDpth with each object, whose initial value is set to zero. For

brevity, we skip the standard rules to update the points-to graphs,

and show the extra processing required to obtain the depth infor-

mation on processing load, return, method-exit and method-call

statements, using the proc*Pre methods (Figure 4) described below.

Note that copy (of the form a=b), store (of the form a. f =b) and
other statements do not impact the access-depth.

procLoadPre: At a load statement L: a=b . f , if b is a parameter,

and say the object pointed-to by b is Ob , then the points-to set of

Ob . f would be empty (as we started with dummy nodes for the

parameters). To handle such loads, we add to the points-to graphGm
a nodeOL representing the object(s) obtained from the dereference

at statement L, and add OL to the points-to set of Ob . f . As the
object OL actually flows from the caller of the current method, we

set the field OL .callerNode to true. If the accDpth of Ob is zero,

we set it to one to indicate a dereference. Next, we update the value

ofOL .accDpth based on whether or not L is inside a loop: if not, we

set OL .accDpth using Ob .accDpth; else, we update OL .accDpth
to ∞ (to conservatively imply that we do not know how much

access-depth does OL .accDpth represent).
procRetPre: At a return statement return r , if r is a non-primitive

variable, we add the pointees of r to a set retm that contains the

objects returned by the methodm.

procCallPre: At a call statement L: r=m′(b1, ...,bk), for each ob-

ject Oi pointed-to by each bi , we update its accDpth using the

access-depth information of the corresponding parameter of the

methodm′
(using the summary mInfom′ (i); line 15). Next, we add

a new object OL representing the objects returned bym′
, and set

OL .accDpth (line 19) to the maximum accDpth of the objects re-

turned bym′
. If the information aboutm′

is not available (possible

in the context of recursion), we conservatively set the accDpth
fields ofOi andOL to∞ (to keep the analysis light; lines 16 and 20).

procExitPre: Once all the statements of a methodm have been

processed, we invoke the function procExitPre, which stores in

mInfom (i) the access-depth of the parameter pi . For each object

pointed-to by each parameter pi , procExitPre invokes the recursive
function findLvl (line 23), which returns the maximum access-depth

of the argument object, by performing a depth-first search; the

pseudo-code is not shown for brevity. For any object Ox that may

be obtained from the caller (identified using Ox .callerNode), its
access-depth is computed as the maximum of Ox .accDpth and 1 +

the maximum access-depth of its children nodes.

If an object in the points-to graph is reachable from a static

(global) field, then that object might be accessed by a parallel thread.

Compare Less, Defer More CC ’19, February 16–17, 2019, Washington, DC, USA

1 Function procLoadPre(st:load-stmt) // st is "L: a=b . f "
2 foreach Ob ∈ Gm (b) do
3 if Gm (Ob . f) , ∅ then continue;

4 Gm (Ob . f) = OL ;

5 OL .callerNode = true;

6 Ob .accDpth = max(Ob .accDpth, 1);

7 if L is inside a loop then OL .accDpth =∞;

8 else OL .accDpth = max(OL .accDpth, Ob .accDpth);

9 Function procRetPre(st:return-stmt) // st is "return r "
10 retm .add(Gm (r));

11 Function procCallPre(st:call-stmt) //st is "L: r=m′(b1, ...,bk)"
12 foreach bi ∈ b1, ...,bk do
13 foreach Oi ∈ Gm (bi) do
14 if mInfom′ has been populated then
15 Oi .accDpth = max(Oi .accDpth, mInfom′ (i));

16 else Oi .accDpth =∞; // possible due to recursion.

17 Gm (r) = OL ;

18 if mInfom′ has been populated then
19 OL .accDpth = max(∀Or ∈ retm′ Or .accDpth);

20 else OL .accDpth =∞; // possible due to recursion.

21 Function procExitPre()
22 foreach parameter pi (at index i) of m do
23 mInfom (i) = max(∀Ox ∈ Gm (pi) findLvl(Ox));

Figure 4: Obtaining access-depths in the pre-analysis.

We handle this case (not shown in Figure 4) by setting the value of

the accDpth field of all such objects to ∞, before performing the

depth-first search.

Example. For Figure 1a, as the method bar does not access

parameter# 0 (this) and stores to p.f1.f2 (p is parameter# 1),

mInfobar would be {⟨0, 0⟩, ⟨1, 2⟩}. Similarly, as the method fb takes

no explicit arguments and does not affect the heap of its callers,

mInfofb would be {⟨0, 0⟩}.

After pre-analyzing all the methods of the input program, the

computed mInfo is made available to the main-analysis. We next

describe how we scale the main value-contexts based analysis using

the information in mInfo.

3.2.2 Main-analysis. We now describe our changes to existing

points-to graph based context-, flow-, and field-sensitive analyses

that use value-contexts (in terms of the points-to graphs reachable

from actual arguments at call-sites). We assume that the underlying

analyses maintain flow-sensitivity in the standard way, that is, as

“in” and “out” points-to graphs, before and after each statement,

respectively. We now highlight how we scale such context-sensitive

analyses (using the results of the pre-analysis), by focusing on the

method-call statements. The handling of all other statements is

standard [4, 34], and skipped for brevity.

The function procCallMain in Figure 5 shows the handling of

a call-statement st , with Hin as the points-to graph, in the main-

analysis stage. For a methodm, the entry points-to graph He is a

copy of the points-to graph reachable from the formal parameters

ofm, obtained by invoking getEntryPTG (code not shown). If the

access-depth for every parameter ofm is zero (based on mInfom
computed in the pre-analysis), we say that m is caller-ignorable,
that is, m does not affect the heap of its caller(s). If so, we defer

the analysis ofm at st , and use Hin as the points-to graph after st
(stored inHout ′ ; line 4). We use the map deferredMethods to store
the fact that the analysis ofm was deferred in the value-context He .

If m is not caller-ignorable, we invoke the function getSum-
mary. For each context c in which m was previously analyzed,

we compare He with the entry points-to graph Hc at c . To avoid

the overheads of comparing the whole of He and Hc , we use two

important optimizations: (i) For each considered parameter, we

compare the value-contexts only till the access-depth for that pa-

rameter (obtained from mInfom , populated in the pre-analysis) –

relevant value-contexts. (ii) We use an efficient analysis-specific

technique, which we call level-summarization, to summarize the

contexts level-wise, and compare the level-summarized relevant

value-contexts (LSRV-contexts) level by level. We describe the details

of level-summarization for two analyses, thread-escape analysis

and control-flow analysis, in Section 4. These two optimizations

compact the points-to graphs representing the heaps being com-

pared into smaller subgraphs, and importantly the comparison of

just those subgraphs is sufficient to conclude about the equality of

the heaps under consideration.

Say the LSRV-contexts for He and Hc are curSumm and oldSumm,
respectively. We conclude that the current context does not match c
(line 20) and analyzem afresh in the context He , if curSumm and

oldSumm do not match, or if the recursive comparison of the next

levels of the LSRV-contexts (done by calling the function eqDown)
fails; see line 19.

The function eqDown performs a level-wise comparison for each

field of the objects being compared. The function is recursive; and

it returns true (implying that the level-wise comparison for both

the graphs is equal) under one of the following conditions: (i) the

maximum relevance level (that is, the access-depth) for the current

parameter (as computed by the pre-analysis) is less than the current

level (line 24); or (ii) the objects at the current level for both the

graphs have already been compared (line 25) – a situation possible

in points-to graphs with cycles. The function eqDown returns false
if at any level it finds that the level-summary for the two points-to

graphs does not match (line 32).

If the value of the variable matched remains true, that is, the
entry points-to graph He for the methodm at statement st matches

a previous value-context (say prevContext), then we need not

analyze m at st . In such a case, we can simply use the points-to

graph at the exit of the analysis performed in prevContext as

the summary of m at st (line 21). Note that using the summary

computed in prevContext is sound as prevContext is equivalent
to the current context for the analysis under consideration. If He
does not match any of the previously analyzed value-contexts, or

if m was not analyzed earlier, the variable matched is false, and
we (re-)analyzem in the new context He (line 22). In all the cases,

after obtaining the summary Hout ′ , we merge Hout ′ with the non-

parameter reachable portions of Hin (line 8) to obtain the points-to

graph Hout after st (using standard merging rules [34]).

CC ’19, February 16–17, 2019, Washington, DC, USA Manas Thakur and V. Krishna Nandivada

1 Function procCallMain(st : call-stmt,m: method, Hin : ptg)
2 ptg He = getEntryPTG(Hin , st); ptg Hout ′ ;

3 if m is caller-ignorable then
4 Hout ′ = Hin ;

5 deferredMethods.put(m, He);

6 else Hout ′ = getSummary(m, He);

7 putSummary(m, He , Hout ′);

8 // Hout = Hout ′ combined with relevant parts of Hin .

9 Function getSummary(m: method, He : ptg)
10 let prevContext = null; matched = false;
11 outer: foreach context c in whichm was analyzed do
12 prevContext = c; matched = true;
13 let Hc be the entry-ptg at c;

14 foreach non-primitive parameter pi ofm do
15 maxLvl = mInfom (i);

16 if maxLvl == 0 then continue; //pi has no impact

17 curSumm = level-summary(He (pi), maxLvl);

18 oldSumm = level-summary(Hc (pi), maxLvl);

19 if curSumm , oldSumm OR
¬eqDown(He ,Hc ,He (pi),Hc (pi),1,maxLvl) then

20 matched = false; break outer;

21 if matched then return exit-ptg at prevContext;
22 else return analyze(m, He);

23 Function eqDown(He : ptg, Hc : ptg, curPts: set, oldPts:
set, curLvl: int, maxLvl: int)

24 if maxLvl < curLvl then return true;
25 if curPts and oldPts have been visited then

return true;
26 Mark curPts and oldPts as visited;

27 foreach field f do
28 curPts = ∪∀O ∈curPtsHe (O . f);

29 oldPts = ∪∀O ∈oldPtsHc (O . f);

30 curSumm = level-summary(curPts, maxLvl);
31 oldSumm = level-summary(oldPts, maxLvl);
32 if curSumm , oldSumm then return false;

33 return
eqDown(He ,Hc ,curPts,oldPts,1+curLvl,maxLvl);

Figure 5: Handling call-stmts in the main-analysis.
Abbreviation: ptg: points-to graph. The function
putSummary stores the summary; details skipped.

Example. The method bar in Figure 1a does not affect any

object(s) reachable from the receiver (this). Further, the access-
depth of the parameter p of bar is 2. Thus, the relevant value-

contexts for bar, for the calls made at lines 4 and 5, are shown

in Figures 1f and 1g, respectively. Similarly, the method fb does

not affect any object(s) reachable from the receiver, and hence,

the relevant value-context for fb is empty. Thus, fb is a caller-

ignorable method and need not be analyzed at any of its call-sites

during the main-analysis.

3.2.3 Post-analysis. The main-analysis generates a summary for

each method in the program in each value-context in which it was

called, except for the deferred methods. The deferred methods do

not affect the heap reachable from the parameters of their callers.

However, their own summary may depend on the heap of the

caller. For example, say we are performing an analysis to determine

which of the dereferences in a program are guaranteed to be made

on concrete (non-null) objects. Say the methodm being analyzed

has a statement L: p.foobar(), where p is a parameter of m and

foobar() is a caller-ignorablemethod. The pre-analysis (Section 3.2.1)

would infer thatm is caller-ignorable as it does not affect the heap

reachable from the parameter p, and hence for each value-context,

the main-analysis would defer the analysis ofm. However, whether

the dereference performed at statement L is done on a concrete

object or not, depends on the points-to information of the actual

argument in the points-to graph of m’s caller(s). Thus, in each

skipped value-context, we still need to analyzem. We perform this

task in the post-analysis stage by iterating over the entries in the

deferredMethods map and invoking getSummary(m, He) for

each (m, He) in the map, to generate the corresponding context-

sensitive summary. Thus, by the end of the post-analysis, we obtain

context-sensitive summaries for all the methods in the program.

There are two clear advantages of deferring the analysis of caller-

ignorable methods and performing the post-analysis stage as a

separate pass. First, as the deferred methods are guaranteed not

to affect the caller’s heap, we need not spend time in merging the

heap of the callee with that of the caller, after each call statement (a

potentially costly operation). Second, top-down context-sensitive

heap analyses in general may consume a large amount of memory,

as the points-to graphs reachable from the callers keep flowing

towards the leaves of the call-graph till the points-to graphs of the

callees are merged back. Deferring the analysis of certain methods

may avoid the traversal of certain long branches of the call-graphs

and thus save the memory required to propagate the points-to

graphs therein, during the costly main-analysis.

4 INSTANTIATIONS
In this section, using the techniques proposed in Section 3, we

present two popular context, flow-, and field-sensitive points-to

graph based analyses: (i) thread-escape analysis; and (ii) control-

flow analysis. Though both these analyses are based on points-

to information, the corresponding lattices of dataflow values are

quite different (see Section 2 for an overview), and hence they

offer a wide illustration of our proposed techniques. For both the

analyses, we mainly highlight how the level-summary functions

(see Figure 5) are defined and computed. Note that apart from the

function level-summary, the rest of the handling of a method-call

statement remains the same as in Figure 5.

4.1 Thread-escape Analysis
Consider a methodm that is being analyzed. Say p is one of the

parameters of m, and He is the value-context (points-to graph

at the entry of m). Say the graph-front induced by the edge se-

quence f1, f2, ..., fk in He is given by the set S = {O1,O2, ...,On }.

For escape analysis, we claim that the relevant information rep-

resented by the objects in S is the set of escape-statuses of the

Compare Less, Defer More CC ’19, February 16–17, 2019, Washington, DC, USA

objects O1,O2, ...,On . For example, if a variable q is set to the ob-

ject obtained by dereferencing p using an expression of the form

p. f1. f2... fk−1, then for a sound escape-analysis technique, the fol-

lowing two observations hold: (i) If none of the objects in S escapes,

then any object stored into any field fi of q will not escape. (ii) If

any of the objects in S is marked as escaping, then any object stored

into q. fi will also be marked as escaping. Hence for escape analysis,

we define the level-summary of a set S of objects as the meet of the

escape-statuses of the objects in S .
The level-summary function for escape analysis takes two ar-

guments: H and k , where H is a points-to graph (value-context)

and k is the access-depth (see Section 3.2.2). It computes the level-

summaries for each possible edge-sequence of size at most k and

then returns a graph, which includes a unique node for each unique

edge sequence and if s1 and s2 are the nodes (level-summaries) corre-

sponding to the edge sequences f1, f2, · · · fk1 and f1, f2, · · · fk1 , fk ,
respectively, then there is an edge between s1 and s2, labeled k .

Example. Consider the calls to the method bar in Figure 1a,

with the respective relevant value-contexts as shown in Figures 1f

and 1g. As none of the objects Oi , O j , Ok and Ol escape (implying

that Oa and Ob also must not escape), Figure 1h represents the

LSRV-context for both Figures 1f and 1g. As a result, with LSRV-

contexts, we need not analyze bar for the call made at line 5, and

can use the analysis-results obtained for the call at line 4 itself.

4.2 Control-flow Analysis
Consider a methodm that is being analyzed. Say p is one of the

parameters ofm, and He is the value-context (points-to graph at

the entry ofm). Say the graph-front induced by the edge sequence

f1, f2, ..., fk in He is given by the set S = {O1,O2, ...,On }. For

control-flow analysis, we claim that the relevant information rep-

resented by the objects in S is the set of types represented by the

objectsO1,O2, ...,On . For example, if a variable q is set to the object
obtained using an expression of the form p. f1. f2... fk−1, and ifm
consists of a statement L: q.foo(), then the set of possible callees at L
depends only on the types of the objects in S . Hence for control-
flow analysis, we define the level-summary of a set S of objects as

the union of the types of the objects in S .
Example. Consider the calls to the method bar in Figure 1a,

with the respective relevant value-contexts as shown in Figures 1f

and 1g. Here, if the types of Oa and Ob are same, then the two

LSRV-contexts at level 1 from the parameter p would be the same.

Similarly, if the set of types for {Oi ,O j } and {Ok ,Ol } are same,

then the LSRV-contexts at level 2 would also be the same. In such a

case, we need not analyze bar for the call made at line 5.

In Section 6, we show that LSRV-contexts not only lead to a

significant reduction in the escape and control-flow analysis time

and memory of several benchmarks, but also facilitate the analysis

of previously unanalyzable benchmarks.

5 DISCUSSION
1. Scope. In this paper, in order to scale context-sensitive heap

analyses that use value-contexts, we have presented three main

ideas: relevant value-contexts, level-summarization, and deferred

methods. While the second idea is analysis-specific and needs to be

customized for each analysis, the other two are general in nature

and can be used directly for any heap analysis.

2. Cost. It can be argued that an approach using LSRV-contexts

is likely to never increase the cost compared to that using tradi-

tional value-contexts. The relevant value-contexts, as discussed in

Section 3.2, are always a subset of the points-to graphs, and level-

summarization is analysis-specific but usually leads to a smaller

lattice of dataflow values (as shown in Section 4). For the analyses

under consideration, we show in Section 6 that LSRV-contexts are

much cheaper (in terms of time as well as memory) than traditional

value-contexts.

3. Special treatment of methods. In the JDK library, the methods

equals and toString are overridden heavily, and often call

other equals and toString methods. For these methods, we

found that the Spark tool [13], which we use to build our base call-

graph, led to huge strongly-connected components (clique with up

to 356 JDK methods), which blew up the analysis time and memory.

Hence, just for theseequals andtoStringmethods, we suggest

using the approach of Smaragdakis et al. [28] and analyzing them

conservatively (intra-procedural). We believe it to be a reasonable

design decision, as based on our analysis of the complete JDK library

(version 8), these methods do not explicitly modify their callers’

heap. To be consistent, we handle these methods uniformly, in all

the implementations evaluated in Section 6. Note: we do analyze

their implementations in the applications like any other method.

4. Correctness. As described in Section 3, in order to determine

whether two value-contexts for a method are equivalent, we com-

pare only the LSRV-contexts. Further, we defer the analysis of caller-

ignorable methods, and analyze them in a separate pass. We now

sketch the correctness argument of our design (proofs omitted).

Lemma 5.1. For a given value-contexts based analysis A, say the

LSRV-contexts variant be represented by A ′
. During the analysis,

at a certain call-site, if A re-analyzes a target method m, then

either A ′
also re-analyzes m, or there exists a prior instance of

A ′
analyzing m such that: (i) the abstract heap obtained by A

on re-analyzing m matches the one obtained by A ′
in the prior

analysis-instance; and (ii) inA, during the re-analysis ofm, for each

accessed abstract heap-location, the abstract value read/written

matches that of A ′
in the prior analysis-instance.

This lemma ensures that for a particular analysis under consider-

ation, compared to the complete value-contexts, the LSRV-contexts

do not lose any relevant information. Consequently, instead of

comparing the complete value-contexts, it is sufficient to check

the equality of the level-summaries of the corresponding relevant

value-contexts.

Lemma5.2. For each caller-ignorable (and hence deferred)method

m, if H is the reachable abstract heap present before analyzing the

call tom, and H ′
is the reachable abstract heap after analyzing the

call-statement, then H = H ′
.

This lemma, alongwith the fact that the caller-ignorable methods

are analyzed in a post-analysis in all the contexts in which they

are called, ensures that analyzing a deferred methodm in the post-

analysis does not affect the precision of its callers, andm.

Lemmas 5.1 and 5.2 ensure that the precision of an analysis

using our proposed approach is the same as that using traditional

value-contexts.

CC ’19, February 16–17, 2019, Washington, DC, USA Manas Thakur and V. Krishna Nandivada

1 2 3 4

Bench- Application #Referred
mark #classes size (MB) JDK classes∗

avrora 527 2.7 1588

batik 1038 6.0 3700

eclipse 1608 14.0 2589

luindex 199 1.3 1485

lusearch 198 1.3 1481

pmd 697 4.1 1607

sunflow 225 1.7 3509

moldyn 13 0.15 1555

montecarlo 19 0.67 1555

raytracer 19 0.21 1555

Figure 6: Details of the benchmarks used. App: Application.
∗Referred classes computed using Spark’s [13] call graph.

6 IMPLEMENTATION AND EVALUATION
We have implemented both of our proposed instantiations of thread-

escape analysis and control-flow analysis, in the Soot framework [32].

The implementation spans 3967 lines of Java code for the escape

analysis, and 3899 lines of Java code for the control-flow analysis.

We have performed our experiments using the OpenJDK HotSpot

JVM (version 8), on a 2.3 GHz AMD systemwith 64 cores and 512 GB

of memory.

We have evaluated our techniques on seven benchmarks from

the DaCapo-9.12 suite [1], and the three multithreaded benchmarks

from Section C of the JGF suite [6] (listed in Figure 6). We used

the extremely helpful tool TamiFlex [3] to resolve reflective calls in

the original DaCapo benchmarks, so that they could be analyzed

by Soot. The benchmarks excluded from the DaCapo suite are the

ones which either could not be translated by TamiFlex, or could

not be analyzed by Soot (using OpenJDK8) after the TamiFlex pass.

Figure 6 shows some static characteristics of the used bench-

marks. The sizes of the benchmarks (excluding the JDK library) var-

ied from 150 KB (small programs) to 14 MB (large applications), and

the number of application classes varied from 13 to 1.6K. Figure 6

also shows the number of JDK classes referred by each benchmark

(gives the total number of analyzed classes), computed using the

call-graph generated by the Spark [13] tool (our default call-graph).

We now present an evaluation to study the impact of our pro-

posed techniques on the scalability of context-, flow- and field-

sensitive escape and control-flow analyses. For both the analyses,

we compare four different versions: (i) Base: a standard value-

contexts based implementation, where the points-to graphs at

method entries are considered as the contexts. (ii) OM: a version

where only the main analysis (as proposed in Sections 3 and 4) is

performed. Thus, the level-wise summaries are used as contexts,

but no pre-analysis (that is, trimming) and post-analysis (that is,

deferring) are performed. (iii) PM: both the pre and the main anal-

yses are performed. Thus, the level-wise summaries are trimmed

based on the access-depths computed by the pre-analysis. (iv) PMP:

the full proposed version where all the three analyses (pre, main,

and post) are performed. We compare these versions on three pa-

rameters: (i) analysis time, (ii) average number of created contexts,

1 2 3 4 5 6 7 8

Analysis time Average Memory

Bench- (seconds) contexts (GB)
mark Be Pre Post PM PMP PMP PMP

avrora - 1.0 0.4 603 225 1.4 21

batik - 2.2 1.8 3483 1722 1.4 45

eclipse - 2.7 6.0 - 2275 1.9 57

luindex - 1.1 0.4 204 70 1.3 6

lusearch - 1.0 0.5 343 87 1.3 10

pmd - 1.3 0.4 531 157 1.3 11

sunflow - 2.1 1.6 1477 486 1.3 21

moldyn - 0.9 0.4 178 55 1.3 6

montecarlo - 0.9 0.4 183 57 1.3 6

raytracer - 0.9 0.4 183 54 1.3 6

geomean - 1.3 0.7 444 192 1.4 13

Figure 7: Evaluation results for escape analysis. Abbrevia-
tions: Be : Basee ; PM: Pre andMain; PMP: Pre, Main and Post.
A ‘-’ implies that the analysis did not terminate in 3 hours.

and (iii) peak memory consumption. In Section 6.4, we further com-

pare the scalability and precision of LSRV-contexts with k-object
sensitivity based approaches, for the control-flow analysis. As prior

works [10, 20] have already shown that the classical call-string

based approach does not scale well compared to the value-contexts

based approach, we omit a comparison against the same.

6.1 Analysis Time
Figures 7 and 8 show the time taken for performing the escape

analysis and the control-flow analysis, respectively, by the different

versions. Basee implements the (Base) thread-escape analysis of

Whaley and Rinard [34], and Basec implements the (Base) control-

flow analysis of Padhye and Khedker [20]; both Basee and Basec
use value-contexts based context-sensitivity. We found that Basec
did not terminate within 3 hours (our set cutoff) for three large

DaCapo benchmarks, and Basee did not terminate in 3 hours for

any of the benchmarks. It clearly shows the scalability issues with

the Base variations, which simply use the parameter-reachable

points-to graph at the entry of a method as the value-context.

Columns 3-4 in Figures 7 and 8 show the times taken by the

pre and the post analyses while performing the escape and the

control-flow analyses, respectively. As the proposed pre-analysis is

agnostic to the heap analysis being performed, it takes the same

time (on average, 1.3 seconds) for both the analyses. We observe

that together the pre and the post analyses take very less time – just

2.0 seconds for escape analysis, and 2.2 seconds for control-flow

analysis, on average.

Column 6 in Figure 7 and column 7 in Figure 8 (labeled PMP)

show the full analysis time of our proposed technique, which in-

cludes the pre, the main, and the post-analysis times. Not only is

our proposed technique able to analyze all the benchmarks within

the set cutoff, the average required time is just 192 seconds for es-

cape analysis, and 130 seconds for control-flow analysis (the largest

value being less than 40 minutes, for eclipse). It can be seen that the

time required depends mostly on the size of the benchmark. Note

that though sunflow appears to be a relatively small benchmark

Compare Less, Defer More CC ’19, February 16–17, 2019, Washington, DC, USA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Analysis time Average Memory
Benchmark (seconds) contexts (GB)

Bc Pre Post OM PM PMP 2obj1h Bc OM PMP 2obj1h Bc PMP 2obj1h
avrora 1322 1.0 0.5 231 71 55 592 9.5 2.6 1.2 13.0 54 11 29

batik - 2.2 2.4 - 1033 946 - - - 1.3 - - 64 -

eclipse - 2.7 6.1 - 1312 988 - - - 1.4 - - 49 -

luindex 1175 1.1 0.7 507 60 46 485 10.6 2.9 1.2 14.6 58 11 23

lusearch 1215 1.0 0.9 561 58 57 611 10.5 3.6 1.2 15.0 54 11 29

pmd 5769 1.3 0.7 1243 130 108 1112 11.9 4.5 1.2 15.1 127 13 45

sunflow - 2.1 2.2 - 692 684 - - - 1.2 - - 53 -

moldyn 929 0.9 0.6 222 54 53 412 9.5 2.5 1.3 13.1 29 11 22

montecarlo 925 0.9 0.3 238 60 53 413 9.4 2.6 1.2 13.3 29 9 23

raytracer 940 0.9 0.3 211 61 53 415 9.4 2.6 1.2 13.2 29 10 23

geomean 1364 1.3 0.9 351 151 130 542 10.1 3.0 1.2 13.9 47 18 27

Figure 8: Evaluation results for control-flow analysis. Abbreviations: Bc : Basec ; OM: Only Main; PM: Pre and Main; PMP: Pre,
Main and Post. A ‘-’ implies that the analysis did not terminate in 3 hours; the geomean was computed by excluding non-
terminating benchmarks.

(see column 3, Figure 6), the corresponding analysis time is high,

as sunflow references a large number of the JDK library classes

(see column 4, Figure 6).

In order to individually estimate the effects of the pre and the

post analyses (that is, the insights presented in Section 3.1) on the

scalability, we studied the analysis times of the OM and the PM

versions (see column 5 in Figure 7 and columns 5-6 in Figure 8). For

escape analysis, the OM version did not terminate in 3 hours for any

benchmark (hence not shown), while for control-flow analysis, it did

not terminate for three large DaCapo benchmarks (batik, eclipse

and sunflow). This indicates that only level-wise summarization

(done in OM version, Insight 2a) is not sufficient to scale all the

analyses under consideration. We can see that though the time

savings due to the pre-analysis alone (PM version, Insights 1+2a)
are significant (except for the escape analysis of eclipse, where

it did not terminate), the post-analysis improves it further. The

PMP version (Insights 1+2a+2b) runs faster than the PM version by

about 56% and 14% for the escape and the control-flow analyses,

respectively. Thus, by spending just ∼2 seconds for the pre and the

post analyses over the OM version, the PMP version successfully

scales both the analyses.

Overall, we see that the combination of the pre, the main, and

the post analyses helps us perform previously non-terminating

analyses in less than 40 minutes, for all the benchmarks under

consideration.

6.2 Number of Contexts
Columns 7 in Figure 7 and 9-11 in Figure 8 show the average num-

ber of contexts created during escape analysis and control-flow

analysis, respectively, over all the methods. The numbers for the

PM version are not shown separately; they match the ones for the

PMP version, as the deferred methods in PMP are later analyzed

in all the deferred contexts. For escape analysis, on average, PMP

creates 1.4 contexts per method (Basee and OM did not terminate,

and hence average contexts not reported). For control-flow analysis,

for the cases where Basec terminated, we can see that the average

number of contexts created per method is about 10.1. On the other

hand, the number is around 3.0 for the OM version (for control-flow

analysis), and just 1.2 for the PMP version. This implies that our

proposed techniques significantly reduce the number of times a

method is analyzed (∼8×, on average).

To further visualize the difference in the number of contexts

created, we have plotted two histograms for the benchmark pmd

for control-flow analysis; see Figure 9. The charts show the num-

ber of contexts created per method in Basec (Figure 9a) and PMP

(Figure 9b) versions, respectively. The methods (in the x-axis) are

arranged in alphabetical order, and the number of contexts (y-axis)

is shown growing logarithmically. The high density of the bars

for Basec clearly shows the large number of contexts created for

a large number of methods. For instance, the maximum number

of contexts created in the Basec version was 7324 for the method

java.lang.Object: void <init>, for which there was only one context

created in the PMP version. We observed a similar trend for all the

benchmarks.

Overall, we see that our proposed techniques were able to signif-

icantly reduce the number of contexts created per method, which

in turn led to a significant reduction in the resources spent in ana-

lyzing those methods, thus making the analyses scalable.

6.3 Peak Memory Usage
Figure 7 and 8 also show the peak memory consumption of the

Base and the PMP versions for the escape and the control-flow

analyses, respectively. As Basee did not terminate within the cutoff

of 3 hours, the corresponding statistic is not shown. However, as a

point of indication, the usage at the end of 3 hours for the smallest

benchmark moldyn was about 373 GB, which indicates that for

larger benchmarks the analysis may run out of memory, if run for a

longer time. The high memory usage is due to the large number of

contexts created during the analysis and the resultant flow-sensitive

points-to graphs maintained therein.

In comparison, thememory usage in the PMP versionwas several

magnitudes lesser, and was just 13 GB and 18 GB respectively, on

CC ’19, February 16–17, 2019, Washington, DC, USA Manas Thakur and V. Krishna Nandivada

1

10

100

1000

10000

#
C

on
te

xt
s

Methods

(a) Basec version.

1

10

100

#
C

on
te

xt
s

Methods

(b) PMP version of LSRV-contexts.

Figure 9: Number of contexts created per method during the
control-flow analysis of the benchmark pmd.

average, for the two analyses. We argue that given the range and

size of the benchmarks under consideration, this is quite reasonable.

We also observe that the memory usage varied mostly with the

size of the benchmark: lower for the JGF benchmarks (smaller) and

higher for batik, eclipse and sunflow (larger), for both escape

and control-flow analysis.

Overall, we note that our proposed techniques allow performing

precise whole-program heap analyses, which earlier did not scale

even with a large amount of memory (∼512 GB), now on systems

with much less memory (∼32-64 GB).

6.4 Comparison with Object-sensitive Analyses
It is well understood [15, 17] that as the contexts created in the call-

site-sensitive and object-sensitive approaches are different, these

approaches are in-principle incomparable. However, there have

been works that approximate a comparison by averaging some

precision-indicating metrics (for example, the number of calls that

could not be resolved to a single method) over all the contexts

created in each approach [15]. We next use a similar approach to

compare LSRV-contexts with the state-of-the-art two-level object-

sensitive control-flow analysis, with one level of heap-cloning (ab-

breviated as 2obj1h). Our implementation of 2obj1h (in Soot) is

based on full-object-sensitivity as defined by Smaragdakis et al. [27].

For the comparison, we use two popular [15, 27] clients: (i) #poly-
Call: the number of call-sites that could not be resolved to a single

method (Figure 10a); and (ii) #callEdge: the number of edges in

the on-the-fly call-graph (Figure 10b). For the benchmarks batik,

eclipse and sunflow, 2obj1h did not terminate in 3 hours (hence

not shown in Figure 10). We can see that LSRV-contexts were able to

resolve up to 1.38% more call-sites as “monomorphic” over 2obj1h,

on average. That is, the methods called at these many call-sites

can be inlined and/or statically linked, possibly enabling several

16
59

15
30

15
49

15
05

15
05

19
51

15
05

15
94

15
88

14
62

14
60

14
87

14
85

21
26

14
88

15
72

0

500

1000

1500

2000

2500

avr
ora

luin
dex

lus
ear

ch

mold
yn

mont
eca

rlo pm
d

ray
tra

cer

geo
mean

#
po

ly
C

al
l

2obj1h PMP

(a) Number of polymorphic calls.

66
55

1

62
39

3

64
42

7

58
13

5

58
38

1

74
85

8

58
29

7

63
05

3

64
31

4

59
72

1

61
00

6

58
44

7

58
58

2

77
31

4

58
50

9

62
26

7

0

15000

30000

45000

60000

75000

90000

avr
ora

luin
dex

lus
ear

ch

mold
yn

mont
eca

rlo pm
d

ray
tra

cer

geo
mean

#
ca

llE
dg

e

2obj1h PMP

(b) Number of edges in the call-graph.

Figure 10: Precision of LSRV-contexts versus 2obj1h (lower
values are better).

interprocedural optimizations. Similarly, the number of edges in the

on-the-fly call-graph created while using LSRV-contexts was 1.25%

lesser than using 2obj1h, across the benchmarks on which 2obj1h

terminated. Note that the trends are not uniform over the bench-

marks, which further elucidates the theoretical incomparability of

the precision of the call-site- and the object-sensitive approaches.

Columns 8, 12 and 15 in Figure 8 respectively show the anal-

ysis time, the average number of contexts created, and the peak

memory usage of 2obj1h, per benchmark. As observed by prior

works [16, 27], we too observe that 2obj1h does not scale to large

benchmarks (batik, eclipse and sunflow, in our case). For the

rest of the benchmarks, we can see that the analysis-cost of LSRV-

contexts is much less compared to 2obj1h: 89.2% lesser time and

59.4% lesser memory. Akin to the improvement over traditional

value-contexts, we can correlate the scalability of LSRV-contexts

over 2obj1h by observing a significant dip in the average number

of contexts created (and analyzed) per method: 13.9 for 2obj1h, but

only 1.2 for LSRV-contexts. For completeness, we also compared

the scalability of LSRV-contexts with a less precise but faster one-

level object-sensitive (without heap-cloning) control-flow analysis

(say 1obj). We found that though 1obj terminated for all the bench-

marks, it still took 71.5% more time than LSRV-contexts (detailed

statistics skipped).

Compare Less, Defer More CC ’19, February 16–17, 2019, Washington, DC, USA

Overall, we see that compared to the state-of-the-art object-

sensitive analyses, LSRV-contexts scale much better, and generate

more opportunities, for the considered clients. To the best of our

knowledge, this is the first time that the state-of-the-art object-

and call-site-sensitive analyses could even be compared for large

benchmarks (made possible by the scalability added to the latter by

LSRV-contexts).

7 RELATEDWORK
There have been several works that propose ways to perform

context-sensitive analyses in a scalable manner; we can broadly

classify them into two categories: (i) efficiently maintaining the

identified contexts [31, 33, 35]; and (ii) defining new context ab-

stractions [10, 17, 27, 30].

Whaley and Lam [33] proposed the use of binary decision dia-

grams (BDDs) to represent equivalent contexts with lesser mem-

ory. Xu et al. [35] explore the non-scalability of BDDs for context-

sensitive analyses involving heap-cloning, and merge the calling

contexts with similar points-to relationships. However, their pre-

sented analysis is imprecise as it lacks flow-sensitivity. Thiessen

and Lhoták [31] present a novel way to scale k-length call-string

based analyses by representing points-to information in terms of

the input-output values of different contexts, which allows merg-

ing of equivalent call-strings. In contrast, in this paper, we have

proposed ways to scale the value-contexts based approach by com-

pacting (level-summarizing) and improving the precision of the

process of finding equivalent contexts.

Milanova et al. [17] propose a new context abstraction called

k-object-sensitivity, which distinguishes the contexts based on the

allocation site of the receiver. Smaragdakis et al. [27] clarify the defi-

nition of object-sensitivity fork > 1, and propose type-sensitivity as

another close sibling. In recent attempts to scale these abstractions,

Tan et al. [30] merge type-consistent objects for type-dependent

analyses, and Li et al. [16] select among the different variants of

object- and type-sensitivity for each method (with a small dip in

the precision). On the contrary, we proposed LSRV-contexts: a way

to scale call-site-sensitivity based analyses (while maintaining their

precision), which, though incomparable, generate similar number

of optimization opportunities as object-sensitive analyses. Similar

to prior works [17, 27], we plan to use heap-cloning to further

improve the precision of client-specific call-site-sensitive analyses

(while keeping scalability), in future.

There have been works that scale the main-analysis using a

pre-analysis. Oh et al. [19] perform a pre-analysis that estimates

the impact of context-sensitivity on different methods for a given

set of queries (for C programs), and then reduce the precision of

the main-analysis on methods that might not benefit from the

enhanced precision. Tan et al. [29] use a pre-analysis to identify

and eliminate redundant objects from object-sensitive analyses (for

Java programs) to reduce the number of effective contexts. Recently,

Karkare [9] first uses a fast analysis to mark variables whose shape

cannot be refined, and skips them in a following precise (slow) pass.

Prior works [26, 28] use a pre-analysis to identify code portions

that do not affect the analysis results or may degrade scalability,

and analyze them conservatively. In contrast, our proposed pre-

analysis identifies the relevant portions of the caller’s heap, whose

results are then used to scale whole-program context-sensitive

analyses for Java programs. We also use the pre-analysis to identify

caller-ignorable methods that are deferred by the main-analysis

and analyzed as a post-pass without any loss of precision.

Whole-program escape analysis and control-flow analysis are

two very important heap analyses with wide applicability, and

there have been works to improve their scalability on large pro-

grams. Kotzmann and Mössenböck [11] propose a fast but impre-

cise unification-based escape analysis for the HotSpot client com-

piler [12]. Padhye and Khedker [20] present a value-contexts based

precise control-flow analysis; however it does not scale well on large

programs. Our proposed approach helps perform value-contexts

based escape and control-flow analyses that are not only precise,

but also scale very well to large programs. To the best of our knowl-

edge, this is the first work that scales these heap analyses while

realizing the precision of unbounded call-strings, especially using

the practical value-contexts approach.

8 CONCLUSION AND FUTUREWORK
In this paper, we proposed a three-stage analysis approach to scale

complex whole-program value-contexts based heap analyses for

large programs, without losing precision. Our approach was based

on the novel idea of LSRV-contexts, which take into account an

important observation that we do not need to compare the com-

plete value-contexts at each call-site. LSRV-contexts helped reduce

the comparison performed for determining context-equality and

classify more value-contexts as equivalent. We evaluated our ap-

proach on two nontrivial heap analyses. The results showed that our

approach not only reduced the analysis time and memory consump-

tion significantly, but also helped analyze previously unanalyzable

large programs in a reasonable time.

Future work. Besides using LSRV-contexts to scale other analy-
ses, we also plan to incorporate the benefits of object-sensitivity and

heap-cloning to LSRV-contexts, thereby improving the precision of

value-contexts further.

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their sug-

gestions for improvements. We also thank Rohan Padhye (PhD

student, UC Berkeley) and Uday Khedker (Professor, IIT Bombay)

for insightful discussions on value-contexts.

REFERENCES
[1] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.

McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,

Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.

Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von

Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Bench-

marking Development and Analysis. In Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-oriented Programming Systems, Languages, and
Applications (OOPSLA ’06). ACM, New York, NY, USA, 169–190.

[2] Bruno Blanchet. 2003. Escape Analysis for JavaTM: Theory and Practice. ACM
Trans. Program. Lang. Syst. 25, 6 (Nov. 2003), 713–775. https://doi.org/10.1145/

945885.945886

[3] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011.

Taming Reflection: Aiding Static Analysis in the Presence of Reflection and

Custom Class Loaders. https://github.com/secure-software-engineering/tamiflex.

In Proceedings of the 33rd International Conference on Software Engineering (ICSE
’11). ACM, New York, NY, USA, 241–250. https://doi.org/10.1145/1985793.1985827

[4] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and

Sam Midkiff. 1999. Escape Analysis for Java. In Proceedings of the 14th ACM

https://doi.org/10.1145/945885.945886
https://doi.org/10.1145/945885.945886
https://doi.org/10.1145/1985793.1985827

CC ’19, February 16–17, 2019, Washington, DC, USA Manas Thakur and V. Krishna Nandivada

SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications (OOPSLA ’99). ACM, New York, NY, USA, 1–19. https://doi.org/10.

1145/320384.320386

[5] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar,

and Manu Sridharan. 2002. Efficient and Precise Datarace Detection for Multi-

threaded Object-oriented Programs. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation (PLDI ’02).
ACM, New York, NY, USA, 258–269. https://doi.org/10.1145/512529.512560

[6] Charles Daly, Jane Horgan, James Power, and John Waldron. 2001. Platform

Independent Dynamic Java Virtual Machine Analysis: The Java Grande Forum

Benchmark Suite. In Proceedings of the 2001 Joint ACM-ISCOPE Conference on
Java Grande (JGI ’01). ACM, New York, NY, USA, 106–115. https://doi.org/10.

1145/376656.376826

[7] Tamar Domani, Gal Goldshtein, Elliot K. Kolodner, Ethan Lewis, Erez Petrank,

and Dafna Sheinwald. 2002. Thread-local Heaps for Java. In Proceedings of the
3rd International Symposium on Memory Management (ISMM ’02). ACM, New

York, NY, USA, 76–87. https://doi.org/10.1145/512429.512439

[8] David Grove and Craig Chambers. 2001. A Framework for Call Graph Construc-

tion Algorithms. ACM Trans. Program. Lang. Syst. 23, 6 (Nov. 2001), 685–746.

https://doi.org/10.1145/506315.506316

[9] Amey Karkare. 2018. TwAS: Two-stage Shape Analysis for Speed and Precision. In

Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC ’18).
ACM, New York, NY, USA, 1857–1864. https://doi.org/10.1145/3167132.3167330

[10] Uday P. Khedker and Bageshri Karkare. 2008. Efficiency, Precision, Simplicity,

and Generality in Interprocedural Data Flow Analysis: Resurrecting the Classical

Call Strings Method. In Proceedings of the Joint European Conferences on Theory
and Practice of Software 17th International Conference on Compiler Construction
(CC’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 213–228. http://dl.acm.

org/citation.cfm?id=1788374.1788394

[11] Thomas Kotzmann and Hanspeter Mössenböck. 2005. Escape Analysis in the

Context of Dynamic Compilation and Deoptimization. In Proceedings of the 1st
ACM/USENIX International Conference on Virtual Execution Environments (VEE
’05). ACM, New York, NY, USA, 111–120. https://doi.org/10.1145/1064979.1064996

[12] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas

Rodriguez, Kenneth Russell, and David Cox. 2008. Design of the Java

HotSpot&Trade; Client Compiler for Java 6. ACM Trans. Archit. Code Optim. 5, 1,
Article 7 (May 2008), 32 pages. https://doi.org/10.1145/1369396.1370017

[13] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java Points-to Analysis

Using SPARK. In Proceedings of the 12th International Conference on Com-
piler Construction (CC’03). Springer-Verlag, Berlin, Heidelberg, 153–169. http:

//dl.acm.org/citation.cfm?id=1765931.1765948

[14] Ondřej Lhoták and Laurie Hendren. 2006. Context-Sensitive Points-to Analysis:

Is It Worth It?. In Proceedings of the 15th International Conference on Compiler
Construction (CC’06). Springer-Verlag, Berlin, Heidelberg, 47–64. https://doi.org/

10.1007/11688839_5

[15] Ondřej Lhoták and Laurie Hendren. 2008. Evaluating the Benefits of Context-

sensitive Points-to Analysis Using a BDD-based Implementation. ACM Trans.
Softw. Eng. Methodol. 18, 1, Article 3 (Oct. 2008), 53 pages. https://doi.org/10.

1145/1391984.1391987

[16] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018. Scalability-

first Pointer Analysis with Self-tuning Context-sensitivity. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 2018). ACM,

New York, NY, USA, 129–140. https://doi.org/10.1145/3236024.3236041

[17] AnaMilanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized Object

Sensitivity for Points-to Analysis for Java. ACM Trans. Softw. Eng. Methodol. 14,
1 (Jan. 2005), 1–41. https://doi.org/10.1145/1044834.1044835

[18] Steven S.Muchnick. 1997. Advanced Compiler Design and Implementation. Morgan

Kaufmann.

[19] Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi.

2014. Selective Context-sensitivity Guided by Impact Pre-analysis. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’14). ACM, New York, NY, USA, 475–484. https://doi.org/

10.1145/2594291.2594318

[20] Rohan Padhye and Uday P. Khedker. 2013. Interprocedural Data Flow Analysis in

Soot Using Value Contexts. In Proceedings of the 2nd ACM SIGPLAN International

Workshop on State Of the Art in Java Program Analysis (SOAP ’13). ACM, New

York, NY, USA, 31–36. https://doi.org/10.1145/2487568.2487569

[21] Jens Palsberg and Michael I. Schwartzbach. 1991. Object-oriented Type Inference.

In Conference Proceedings on Object-oriented Programming Systems, Languages,
and Applications (OOPSLA ’91). ACM, New York, NY, USA, 146–161. https:

//doi.org/10.1145/117954.117965

[22] Erik Ruf. 2000. Effective Synchronization Removal for Java. In Proceedings of the
ACM SIGPLAN 2000 Conference on Programming Language Design and Implemen-
tation (PLDI ’00). ACM, New York, NY, USA, 208–218. https://doi.org/10.1145/

349299.349327

[23] Marc Shapiro and Susan Horwitz. 1997. The effects of the precision of pointer

analysis. In Static Analysis, Pascal Van Hentenryck (Ed.). Springer Berlin Heidel-

berg, Berlin, Heidelberg, 16–34.

[24] M Sharir and A Pnueli. 1978. Two approaches to interprocedural data flow analysis.
New York Univ. Comput. Sci. Dept., New York, NY. https://cds.cern.ch/record/

120118

[25] Olin Grigsby Shivers. 1991. Control-flow Analysis of Higher-order Languages
or Taming Lambda. Ph.D. Dissertation. Pittsburgh, PA, USA. UMI Order No.

GAX91-26964.

[26] Yannis Smaragdakis, George Balatsouras, and George Kastrinis. 2013. Set-based

Pre-processing for Points-to Analysis. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages
& Applications (OOPSLA ’13). ACM, New York, NY, USA, 253–270. https:

//doi.org/10.1145/2509136.2509524

[27] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick Your

ContextsWell: Understanding Object-sensitivity. In Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’11). ACM, New York, NY, USA, 17–30. https://doi.org/10.1145/1926385.

1926390

[28] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspec-

tive Analysis: Context-sensitivity, Across the Board. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’14). ACM, New York, NY, USA, 485–495. https://doi.org/10.1145/2594291.

2594320

[29] Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-Object-Sensitive Pointer

Analysis More Precise with Still k-Limiting. In Static Analysis, Xavier Rival (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 489–510.

[30] Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and Precise Points-to Analysis:

Modeling the Heap by Merging Equivalent Automata. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2017). ACM, New York, NY, USA, 278–291. https://doi.org/10.1145/3062341.

3062360

[31] Rei Thiessen and Ondřej Lhoták. 2017. Context Transformations for Pointer

Analysis. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2017). ACM, New York, NY, USA,

263–277. https://doi.org/10.1145/3062341.3062359

[32] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and

Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. In Pro-
ceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON ’99). IBM Press, 13–23. http://dl.acm.org/citation.cfm?id=

781995.782008

[33] John Whaley and Monica S. Lam. 2004. Cloning-based Context-sensitive Pointer

Alias Analysis Using Binary Decision Diagrams. In Proceedings of the ACM SIG-
PLAN 2004 Conference on Programming Language Design and Implementation
(PLDI ’04). ACM, New York, NY, USA, 131–144. https://doi.org/10.1145/996841.

996859

[34] John Whaley and Martin Rinard. 1999. Compositional Pointer and Escape Anal-

ysis for Java Programs. In Proceedings of the 14th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications (OOPSLA ’99).
ACM, New York, NY, USA, 187–206.

[35] Guoqing Xu and Atanas Rountev. 2008. Merging Equivalent Contexts for Scalable

Heap-cloning-based Context-sensitive Points-to Analysis. In Proceedings of the
2008 International Symposium on Software Testing and Analysis (ISSTA ’08). ACM,

New York, NY, USA, 225–236. https://doi.org/10.1145/1390630.1390658

https://doi.org/10.1145/320384.320386
https://doi.org/10.1145/320384.320386
https://doi.org/10.1145/512529.512560
https://doi.org/10.1145/376656.376826
https://doi.org/10.1145/376656.376826
https://doi.org/10.1145/512429.512439
https://doi.org/10.1145/506315.506316
https://doi.org/10.1145/3167132.3167330
http://dl.acm.org/citation.cfm?id=1788374.1788394
http://dl.acm.org/citation.cfm?id=1788374.1788394
https://doi.org/10.1145/1064979.1064996
https://doi.org/10.1145/1369396.1370017
http://dl.acm.org/citation.cfm?id=1765931.1765948
http://dl.acm.org/citation.cfm?id=1765931.1765948
https://doi.org/10.1007/11688839_5
https://doi.org/10.1007/11688839_5
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1145/3236024.3236041
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/2594291.2594318
https://doi.org/10.1145/2594291.2594318
https://doi.org/10.1145/2487568.2487569
https://doi.org/10.1145/117954.117965
https://doi.org/10.1145/117954.117965
https://doi.org/10.1145/349299.349327
https://doi.org/10.1145/349299.349327
https://cds.cern.ch/record/120118
https://cds.cern.ch/record/120118
https://doi.org/10.1145/2509136.2509524
https://doi.org/10.1145/2509136.2509524
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1145/3062341.3062359
http://dl.acm.org/citation.cfm?id=781995.782008
http://dl.acm.org/citation.cfm?id=781995.782008
https://doi.org/10.1145/996841.996859
https://doi.org/10.1145/996841.996859
https://doi.org/10.1145/1390630.1390658

	Abstract
	1 Introduction
	2 Background
	3 Scalable Context-Sensitive Analyses
	3.1 Challenges
	3.2 Proposed Approach

	4 Instantiations
	4.1 Thread-escape Analysis
	4.2 Control-flow Analysis

	5 Discussion
	6 Implementation and Evaluation
	6.1 Analysis Time
	6.2 Number of Contexts
	6.3 Peak Memory Usage
	6.4 Comparison with Object-sensitive Analyses

	7 Related Work
	8 Conclusion and Future work
	References

