
Loop Tiling in the Presence of Exceptions
Abhilash Bhandari and V. Krishna Nandivada

Department of CSE, IIT Madras, Chennai, India
abilash@cse.iitm.ac.in, nvk@cse.iitm.ac.in

Abstract
Exceptions in OO languages provide a convenient mechanism to deal with anomalous situations.
However, many of the loop optimization techniques cannot be applied in the presence of con-
ditional throw statements in the body of the loop, owing to possible cross iteration control
dependences. Compilers either ignore such throw statements and apply traditional loop opti-
mizations (semantic non-preserving), or conservatively avoid invoking any of these optimizations
altogether (inefficient). We define a loop optimization to be exception-safe, if the optimization
can be applied even on (possibly) exception throwing loops, in a semantics preserving manner. In
this paper, we present a generalized scheme to do exception-safe loop optimizations and present
a scheme of optimized exception-safe loop tiling (oESLT), as a specialization thereof.

oESLT tiles the input loops, assuming that exceptions will never be thrown. To ensure
the semantics preservation (in case an exception is thrown), oESLT generates code to rollback
the updates done in the advanced iterations (iterations that the unoptimized code would not
have executed, but executed speculatively by the oESLT generated code) and safely-execute the
delayed iterations (ones that the unoptimized code would have executed, but not executed by
the code generated by oESLT). For the rollback phase to work efficiently, oESLT identifies a
minimal number of elements to backup and generates the necessary code. We implement oESLT,
along with a naive scheme (nESLT, where we backup every element and do a full rollback and
safe-execution in case an exception is thrown), in the Graphite framework of GCC 4.8. To help
in this process, we define a new program region called ESCoPs (Extended Static Control Parts)
that helps identify loops with multiple exit points and interface with the underlying polyhedral
representation. We use the popular PolyBench suite to present a comparative evaluation of
nESLT and oESLT against the unoptimized versions.

1998 ACM Subject Classification D.3.4 [Programming Languages] Processors – Optimization,
Compilers

Keywords and phrases Compiler optimizations, semantics preservation, exceptions, loop-tiling

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2015.124

1 Introduction

Exceptions are one of the useful features in modern languages such as C++, Java, C#, ML and
so on. Exceptions provide a structured way to handle anomalous and unexpected behaviors
in the program and are finding increasing use in real world applications. While exceptions
improve the programmability aspects, they have an impact on the generation of efficient code.
The presence of exception throwing statements (explicitly in C++, Java, C#, ML – using
a throw statement, or implicitly in C# and Java – for example, ArrayIndexOutOfBounds
Exception) in the programs work as a deterrent to many compiler optimizations and analyses.
This is because of the additional control flow edges and dependences (which cannot be
resolved statically) that get introduced due to the presence of exceptions. We will illustrate
the same using an example.

© Abhilash Bhandari and V. Krishna Nandivada;
licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 124–148

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.124
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Bhandari and V.K. Nandivada 125

try{
for(i=0;i<M;i++){
for(j=0;j<N;j++){

if(cond){
throw e; }

a[i][j]=b[j][i];
}

}
}catch(Ex e){ .. }

(a) Matrix transpose.

try{
for(ii=0;ii<M/bn;ii++){
for(jj=0;jj<N/bn;jj++){
for(i=ii∗bn;i<min(M,(ii+1)∗bn);i++){
for(j=jj∗bn;j<min(N,(jj+1)∗bn);j++){

if(cond){throw e;}
a[i][j]=b[j][i];

} } } }
}catch(Ex e){ .. }

(b) An incorrectly tiled matrix transpose.

Figure 1 Matrix transpose and incorrect tiling.

Figure 1a shows the snippet of a code that computes the transpose of a matrix. The
conditional throw statement (and the associated catch) is indicative of any statement that
transfers the control (e.g., break, goto, return, or throw statement) from the body of the
loop nest to an instruction outside the loop nest. The condition could be any of the possible
sanity checks (e.g., array index bounds check) relevant in this context.

Figure 1b shows an incorrectly tiled loop [24], obtained by ignoring the control flow
resulting from the conditional throw statement present in Figure 1a. The tiles are of size
bn∗bn and for simplicity, we assume that M and N are multiples of bn. It can be easily seen that
the performed loop tiling is not semantics preserving (due to the control dependence). Similar
reasoning can be given for many of the loop optimizations (e.g., software pipelining [24], loop
interchange [24]), which makes them non-applicable, in the presence of exceptions.

Most of the compilers (e.g., GCC [32]) tend to be conservative and do not invoke many
loop optimizations in the presence of exception throwing statements (inefficient). Some
compilers (e.g., XLC [17]) provide command line switches to disable exceptions altogether
and invoke the traditional optimizations (semantically non-preserving). There have also
been many studies to identify unnecessary exception throw statements [8, 18, 7], and mark
exception-safe regions [23]. While such a process can enable aggressive optimizations, it has
its limitations owing to the specialized techniques used to target specific popular exceptions
(for example, NullPointerException and ArrayIndexOutOfBoundsException) and the extent
of information available at the time of compilation. To address these issues, we present
a scheme to do exception-safe loop optimizations, especially when the optimizations may
reorder the loop iterations. We define a loop optimization to be exception-safe, if it can be
applied even on exception throwing loops, in a semantics preserving manner.

Though, in this paper for pedagogy, we use exceptions (as the control flow mechanism)
and C++ (as the language of illustration), the presented concepts are equally applicable in
the presence of other control flow statements (such as, goto, break, return) and programs
written in a variety of high level languages that benefit from loop tiling.

Our Contributions
A general scheme of backup, rollback (of the advanced iterations – ones that the unopti-
mized code would not have executed, if an exception is thrown) and safe-execution (of
the delayed iterations – ones that the unoptimized code would have executed, but not
executed by the optimized code) that can be used to derive the exception-safe variation
of any existing loop optimization.

ECOOP’15

126 Loop Tiling in the Presence of Exceptions

Considering the importance of loop-tiling [24, 35], we specialize the exception-safe loop
optimization scheme to derive an optimized exception-safe loop tiling scheme (oESLT
– backs up minimal number of elements, and in case an exception is thrown, rolls back
only the updates of the advanced iterations, and safely executes the delayed iterations).
We also present a naive exception-safe loop tiling scheme (nESLT) that backs up every
element and does a full rollback and safe-execution, in case an exception is thrown.
We present a new program region called Extended SCoP (ESCoP), to help identify loops
(with exception exits) that can be tiled.
We implemented nESLT and oESLT in the Graphite framework of GCC 4.8. We present
an evaluation over a set of base kernel benchmarks drawn from the popular PolyBench 3.2
benchmark suite [27]. We show that in the common case, when no exceptions are thrown,
oESLT leads to significant performance gains (geometric mean 41.5%) compared to the
base kernels (compiled using gcc -O3), at the cost of a minor memory overhead (geometric
mean 0.3%). In this case, nESLT leads to similar gains in performance (geometric
mean 40.8%), but incurs a much larger memory overhead (geometric mean 100%). If an
exception is thrown, the impacts of oESLT and nESLT vary depending on the iteration
in which the exception is thrown.

1.1 Related Work
Loop optimizations [24, 35] are arguably the most important optimizations implemented in
the modern day compilers. Most of the recent advancements [2, 28, 29] in this space focus
on improving the efficiency of the existing techniques. However, these works have mostly
targeted programs that do not throw exceptions. The work of Yun et al [36] presents an
optimal software pipelining scheme in the presence of simple control flow statements. In their
scheme, software pipelining can be performed on code that includes control flows within the
loop body. However, it still cannot handle loops that include exceptions or any other arbitrary
jump statements that transfer the control out of the loop nest. Recently there has been
increased interest [26] in designing optimizations for task parallel programs that may throw
exceptions. Benabderahmane et al. [5] claim that the restrictions imposed by the polyhedral
model are largely artificial and propose changes to the whole polyhedral optimization process
such that the model can be more widely applied to the whole functions in a program. But it
is not clear how their proposed scheme works in the presence of exceptions. To the best of
our knowledge, ours is the first paper on exception-safety of traditional loop optimizations in
general and exception-safe loop tiling in particular.

Analysis of programs that may throw exceptions has received a fair amount of interest,
owing to the inherent scalability related issues therein. Sinha and Harrold [30] describe the
effect of exception-handling constructs on the traditional control and data flow analyses
and presents techniques to construct efficient representation for programs that may throw
exceptions. Allen and Horwitz [1] use a similar representation to compute accurate slices,
for programs that may throw exceptions. Choi et al [9] propose a compact representation
of Control Flow Graph, called Factored Control Flow Graph (FCFG), for the exception
related control flow in OO languages. Fu and Ryder [13] describe a static analysis technique
that computes chains of semantically-related exception-flow links that can help improve the
precision of control flow analysis. In contrast to these program analysis techniques, we present
a technique to do exception-safe loop tiling, and the proposed analysis and transformation
technique is not constrained by any scalability related issues.

Converting parts of programs that may throw exceptions to code that may not (e.g.,
by eliminating array out of bounds checks, null pointer checks and so on) is one of the

A. Bhandari and V.K. Nandivada 127

popular ways [7, 34, 8] to optimize programs that may throw exceptions. Loop versioning [22]
is another promising approach where the compiler generates a specialized code with no
exception throw statements; this specialized code is predicated with a series of checks that
guarantee that no exception will be thrown. The main issue with these approaches is that
they are specific to the pre-decided exceptions under consideration and it is quite challenging
to extend the same to arbitrary conditional exceptions. In contrast, our proposed approach
can handle any type of conditional throw statements, and we propose an extension to the
base loop tiling optimization in the presence of exceptions.

Gupta et al [14] present a scheme to speculatively optimize the code, assuming that
exceptions are never thrown. If an exception is thrown in the optimized code, they execute
the unoptimized code (called the compensation code); this requires the complete backup of
the updated array. In contrast, oESLT takes advantage of the underlying behavior of the
loop tiling optimization to reduce the amount of backup, rollback and safe-execution.

There has been prior work on improving the scope and efficiency of speculative execution [4,
21, 10]. The main efficiency consideration here is that of minimal overhead and efficient
recovery code generation. Another form of speculative execution with recovery is seen in the
context of transactional memory [16, 12]. Our proposed method bears some resemblance to
speculative execution, wherein we execute many tiles of the loop in a speculative manner
and if an exception is thrown, we perform ‘recovery’.

Song and Li [31] propose a scheme to tile loops speculatively, where the loop body may
terminate prematurely because of convergence tests. In contrast to our proposed oESLT
scheme, their scheme backs up all the array elements a priori (we only do partial backup),
they backup the whole array many times, and their rollback requires writing of the whole
array from the backed up store.

Our idea of backup and rollback has similarities to the work of versioning exceptions [25]
that describes a language level extension, wherein the program can request a version of the
store to be stored at a point of installation of a handler; when an exception is thrown, all
the changes are reverted. Unlike our work, where for efficiency consideration the rollback is
partial, the rollback in case of versioning exceptions is complete. It would be interesting to
extend their work to handle arrays and partial rollback, and then using versioning exception
to automatically generate rollback and safe-execution code, for loop tiling.

Outline: The rest of the paper is organized as follows. Section 2 presents a general scheme
of exception-safe loop optimizations. Section 3 explains the general process of performing
exception-safe loop tiling, along with a naive version thereof. Section 4 explains the scheme
of optimized exception-safe loop tiling. We present the implementation and experimental
results in Section 5 and conclude in Section 6.

2 Loop Optimizations in the Presence of Exceptions

In this section, we present techniques to do exception-safe loop-optimizations. Consider a
normal loop nest L (consisting of loops with index variables k1, k2, . . . , kn) and a statement
S present therein. Say, the free variables in S depend on a subset K of these index variables.
Given a function M : K → Int, we use S(M) to represent the execution instances of S,
where the index variable ki gets the value M(ki), ∀ki ∈ K. We now present some important
concepts that form the basis of our exception-safe loop optimization scheme.

I Definition 1. Say the trace of the input loop consists of the sequence of statement instances
S(M1), S(M2), · · · , S(Mn). If the same sequence forms the trace of the output loop, the
transformation is said to be trace-preserving or else it is called trace-reordering.

ECOOP’15

128 Loop Tiling in the Presence of Exceptions

i!

j!(0,0)

(M-1,N-1)
x1 x2 x3

(a) Iteration space for the code shown in
Figure 1a.

 !

i!

j!(0,0)

(M-1,N-1)
x1 x2 x3

(b) Iteration space for the code shown in
Figure 1b.

Figure 2 Iteration space for the codes shown in Figure 1.

A trace-reordering transformation may result either via explicit reordering of the state-
ments (example transformations: software-pipeline, instruction scheduling), or by reordering
the iterations of a loop (example transformations: loop interchange, and loop tiling). Simi-
larly, example trace-preserving transformations include loop peeling, loop unswitching and
loop unrolling. The effect of exceptions on these two classes of loop transformations varies.

Trace-preserving transformations: Since the transformations do not change the sequence
of instructions executed at runtime, such transformations can be oblivious to the presence of
exception throwing instructions in the input program.

Trace-reordering transformations: The effect of exceptions on trace-reordering transfor-
mations is more involved. We will illustrate the same using the example.

Figure 2a shows the iteration space traversal for the code shown in Figure 1a. Each cell
(i,j) represents an iteration. Consider the three iterations labeled x1, x2 and x3. For the
input program in Figure 1a, the order of execution of these iterations is x1 ≺ x2 ≺ x3. The
operator ≺ enforces an executes before relation.

Consider Figure 2b that shows the iteration space traversal for the code shown in Figure 1b
(assuming, bn=3). The execution order for the previously considered iterations x1, x2, and
x3, in the transformed code is x3 ≺ x2 ≺ x1. That is, compared to the iteration x2, the
iteration x3 has been advanced and the iteration x1 has been delayed. This difference in the
execution order comes into limelight, when cond evaluates to true (say at iteration x2). In
Figure 2a, for an exception to be thrown in iteration x2, the iteration x1 must have been
executed, and the iteration x3 would not be executed after the exception is thrown. However,
for the iteration space traversal shown in Figure 2b, for an exception to be thrown in iteration
x2, the iteration x3 would have been executed, and the iteration x1 would not be executed
after the exception is thrown. Thus, the semantics of the transformed loop (Figure 1b) does
not match that of the input loop (Figure 1a).

To make the code in Figure 1b exception-safe, if an exception is about to be thrown
during the execution of the transformed loop (for example, at iteration x2 in Figure 2b), the
following additional steps need to be performed.
1. The execution of iterations that have been advanced (for example, iteration x3) should

be rolled-back (first rollback phase).
2. The delayed iterations (for example, x1) should be executed in an order matching the

traversal space shown in Figure 2a (safe-execution phase). If an exception is about to
be thrown during any of these iterations (say, x1) then roll-back the execution of all the
iterations that have been advanced, with respect to x1 (second rollback phase).

3. Throw the most recent exception object (from iteration x1 or x2).

A. Bhandari and V.K. Nandivada 129

 Input
program

 ESCoP
detection

Output
program

 Generate
 backup and
restore code

 Generate
transformed
 loops

 Apply
loop tiling

Convert loops
to polyhedral
representation

Extract loop
nests from
 ESCoPs

Yes

No Is/Are
ESCoP(s)
found?

Figure 3 Exception safe loop tiling process.

These steps are applicable for any trace-reordering loop transformation. In this paper,
we focus on loop tiling which is an important and popular trace-reordering transformation.

3 Exception safe loop tiling

Figure 3 shows the block diagram for our optimized exception safe loop tiling. We define a
new type of program regions called Extended Static Control Parts (ESCoPs) (an extension
of Static Control Parts (SCoPs) [5, 11]) that admit loops with possible exception related
edges in the CFG. We then extract the loop nests from the ESCoPs and mark the control
paths introduced by throw statements (exception edges). Next, we perform traditional
loop tiling (blocking) on the extracted loop nests, which requires that there are no loop
carried dependences (control or data) in the loop. Note: the loop carried control dependence
introduced by the throw statements are masked by the ESCoPs. The tiled loop (for example,
the code shown in Figure 1b) is then made exception-safe by emitting additional code to
backup, to rollback and do safe-execution, if the input loop has exception edges.

Our proposed transformations handle only those loops which have affine bounds and
affine conditions, but may contain throw statements. The conditions that bound the
exception throw statements need not be affine as they are not modeled using the polyhedral
representation. For the ease of explanation, we explain our techniques and algorithms
over square tiling. However, the techniques are general enough to be extended to other
shapes of tiles, provided the tiles are disjoint. We now explain the details of ESCoPs over
which we implement our proposed algorithms and follow it up with a naive scheme of doing
exception-safe loop tiling.

3.1 Extended SCoPs : Single Entry Multiple Exit Regions
A Static Control Part (SCoP) is defined as a region of consecutive statements comprising of
loops with affine bounds and affine conditions, where the conditions depend only on either
constants or loop invariant variables, or the loop index variables [5, 11]. The access functions
used in a memory reference statement should be affine. The loops must be in canonical form.

An important feature of a SCoP is that all the loops that are a part of a SCoP have at
most a single exit. Thus, a loop nest with multiple exits (arising due to a conditional throw
statement present in the body of the inner most loop) is not part of a SCoP. Note, we need
to ensure that the presence of exception edges do not inhibit the tiling of the input loop.
To address these challenges, we define Extended SCoPs (ESCoPs) that admit SCoPs with
a relaxation that the code therein may throw exceptions. The proposed ESCoPs have the
following characteristics:

ECOOP’15

130 Loop Tiling in the Presence of Exceptions

j_1=PHI<j_0, j_2>
if(cond)

j_2=j_1+1;
if(j_2 < N)

F

T

 i_2=i_1+1;
if(i_2 < M)

	 i_1=PHI<i_0,i_2>	

F

T

F T
a[i_1][j_1]=b[j_1][i_1];

normal exit edge

exception
exit edge

Figure 4 ESCoP and SCoP for the example code shown in Figure 1a.

1. ESCoPs are Single Entry Multiple Exit (SEME) regions.
2. Erasing all the throw statements from an ESCoP results in a SCoP – the underlying

SCoP of the ESCoP.
3. The exit condition of the loop that is part of the underlying SCoP, of a given ESCoP,

is called the normal-exit condition and the associated control flow edge is called the
normal-exit edge. An ESCoP can have at most one normal-exit edge.

4. The exit conditions other than the normal-exit condition are termed exception-exit
conditions (or abnormal-exits in GCC parlance), and the associated control flow edges
are called the exception-exit edges.

5. Every loop belonging to an ESCoP need not have exception-exits. However, every loop
belonging to an ESCoP should contain at most one normal-exit. Therefore, every SCoP
is an ESCoP with zero exception-exits.

Figure 4 shows part of the control flow graph (CFG) for the loop nest shown in Figure 1a.
The dotted region depicts the maximal SCoP detected, using the traditional SCoP detection
algorithm [20], which unfortunately contains no loop. However, the corresponding ESCoP
(depicted by a dashed box in Figure 4) includes the whole loop, along with the exception
exit edge (the “T” labeled edge out of the second node). The “F” labeled edge out of the last
node represents the normal-exit edge.

Given a program, we build its corresponding set of ESCoPs, such that each maximal loop
nest present within a try-catch block or procedure boundary is associated with a unique
ESCoP. Later, we perform exception-safe loop tiling on these ESCoPs. Our choice of
ESCoPs is inspired from the fact that rollback and safe-execution operations have to be
performed before the control is transferred to the exception handler. Thus, the rollback and
safe-execution code can be inserted on the exception exit edges of the ESCoPs.

Note that in general, an ESCoP may contain multiple loops and some additional statements
before/after the loops. For the ease of discussion, in this manuscript, we assume that each
ESCoP has a single loop nest, which does not in anyway impact the generality of our proposed
techniques.

A. Bhandari and V.K. Nandivada 131

for(i = 0; i < M; i++){ // backup phase
for(j = 0; j < N; j++){
bak[i][j] = a[i][j];

} /* j */
} /* i */
try{
try{ .. The loop nest of Figure 1b without the try-catch block ..
}catch(...){ // all exceptions caught

for(ti = 0; ti < (ii+1)*bn; ti++){ // rollback phase
for(tj = 0; tj < N; tj++){
a[ti][tj] = bak[ti][tj];

} /* tj */
} /* ti */

for(i = 0; i < M; i++){ // safe-execution phase
for(j = 0; j < N; j++){
if(cond){ throw e; }
a[i][j] = b[j][i]; } /* j */

} /* i */
} /* catch */

}catch(Ex e){ .. }

Figure 5 Impact of nESLT on the code shown in Figure 1a.

3.2 Naive Exception Safe Loop Tiling
The naive exception safe loop tiling (nESLT) approach speculatively tiles the loop assuming
that no exceptions are thrown. It emits code (before the tiled loop) to back up all the
elements that may be updated in the input loop (the backup phase). If an exception is thrown
during the execution of the tiled loop then nESLT handles it in two phases. i) rollback: rolls
back a set of elements that form an over-approximation of the actual updated elements, and
ii) safe-execution: executes the untiled loop (from the beginning) till an exception is thrown.
Note: if −→I and −→J are the iteration vectors when the exception is thrown in the tiled and
untiled loop, respectively, then −→I 6≺ −→J [24]. Further, if no exception is thrown, then the
rollback and safe-execution phases are not invoked.

For the code shown in Figure 1a, Figure 5 shows the code generated by nESLT. The
backup phase backs up all the elements of the array a into an array bak, and is used in the
rollback phase, if an exception is thrown.

The main drawbacks of nESLT are that it conservatively does backup (all the elements,
irrespective of when the exception is thrown), and rollback (all the updated elements and
may be a few more) and safe-execution (more iterations than required). This can lead to a
significant execution time and space overhead.

4 Optimized exception safe loop tiling

We now present our scheme of optimized exception-safe loop tiling (oESLT). We first explain
some key ideas regarding backup, rollback, and safe-execution and then present the individual
algorithms.

ECOOP’15

132 Loop Tiling in the Presence of Exceptions

for(i=0;i<M;i++){
for(j=0;j<N;j++){
for(k=0;k<P;k++){

if (cond) throw Ex;
a[i][j]+= b[i][k]*c[k][j]; } } }

(a) complete-update-pattern

for(i=0;i<M;i++){
for(j=0;j<N;j++){

x[j] += b[i][j];
}

}

(b) partial-update-pattern

Figure 6 Array update patterns.

4.1 Backup
Speculative execution of tiled loops may require certain updates to be rolled back and
this in turn requires that the relevant older values are backed up. The exact values to
back up depends on the array update pattern: complete-update-pattern (cu-pattern) or
partial-update-pattern (pu-pattern).

cu-pattern: Consider the example code snippet shown in Figure 1a, where updates to a
new element (for example, a[i][j]) start only after all the updates to the older elements (for
example, a[i][j-1]) are complete. Such updates are termed as complete-updates. Figure 6a
shows another example of code performing complete-update. At any iteration in this loop,
there is at most one array element (the current element a[i][j]) that is partially updated.
In case of complete-updates, all the distinct array elements updated in the previous iterations
of the loop would never be updated again.

pu-pattern: In Figure 6b, each array element (for example, x[j]) is updated partially in
each iteration of the outer loop. Such updates are termed as partial-updates. At any iteration
in the loop, there are up to N array elements that are partially updated. If the updates to
an array in a loop nest follow both cu-pattern and pu-pattern, we assume the array to be
updated in the latter pattern only.

The goal of our optimized exception-safe loop tiling is to backup as few elements as
possible and as few number of times as possible. For the sake of efficiency, we propose two
different backup schemes: (i) Backup each element of the updated array, every time it is
updated (backup for each iteration) – used for the array updates in input loop nest that
follow the pu-pattern. (ii) Backup each element of the updated array exactly once (backup
for each element) – used for the array updates in input loop nest that follow the cu-pattern.

4.1.1 Backup location and size
The location of insertion of the backup code and the size of the backup array also depend on
the type of the array update pattern.

Case pu-pattern: Since we will use the first backup scheme (backup for each iteration), we
backup just before every update and add the backup statements (copy) the innermost loop.
Thus, the size of the backup array is bound by the size of the iteration space of the loop nest
(e.g., the tiled version of the code shown in Figure 6b requires M*N space for backup).

Case cu-pattern: Even though the size of the updated array gives an upper limit on
the size of the backup array, depending on the program point where the backup code is
emitted (backup point), the actual size can be less. Interestingly, the backup point depends
on the order in which the array elements (requiring backup) in the transformed loop are
updated. The goal in this process (efficiency consideration) is to reduce the size of the
backup array (reduces space overhead) and the number of elements backed up at one go,

A. Bhandari and V.K. Nandivada 133

i

j

Exception
iteration

Advanced
iteration set

Delayed
iteration set

No rollback
iteration set

May rollback
iteration set

Unexecuted
iteration set

x2 x2

Figure 7 Advanced and delayed iterations.

for(ii=0;ii<M/bn;ii++){
for(jj=0;jj<N/bn;jj++){

/* Backup point. */

for(kk=0;kk<P/bn;kk++){
for(i=ii*bn;i<(ii+1)*bn;i++){
for(j=jj*bn;j<(jj+1)*bn;j++){
for(k=kk*bn;k<(kk+1)*bn;k++){

if (cond) throw Ex;
a[i][j]+=b[i][k]*c[k][j]; }}}

(a)

for(ii=0; ii<M/bn; ii++){
/* Backup point */

for(kk=0; kk<P/bn; kk++){
for(i=ii*bn;i<(ii+1)*bn;i++){
for(k=kk*bn;k<(kk+1)*bn;k++){
for(jj=0; jj<N/bn; jj++){
for(j=jj*bn;j<(jj+1)*bn;j++){

if (cond) throw Ex;
a[i][j]+=b[i][k]*c[k][j]; }}}

(b)

Figure 8 Two of the many possible tilings for the code shown in Figure 6a. For simplicity assume:
M, N and P are multiples of bn. Backup code insertion point depends on the tiled code.

henceforth referred as backup pulse (reduces the execution time overhead, if an exception is
thrown). We illustrate it with some examples.

To illustrate the possibility that the size of the backup array can be less than the size of
the updated array, consider the tiled iteration space shown in Figure 7. We observe that for
the first iteration of any row of tiles, the advanced iteration set and the delayed iteration set
are empty. In other words, at the beginning of every row of tiles, the tiled loop execution is
semantically equivalent to the unoptimized loop execution. Thus the advanced iteration set
for any iteration contains the iterations only from the beginning of the current row of tiles
and it is enough to backup these updates, and rollback in case an exception is thrown. This
leads to a scenario where it is enough to allocate memory of size equaling that of a row of
tiles, for the backup array. We now illustrate the importance of backup point, on the exact
size of backup array and the backup pulse, with examples.

For the code shown in Figure 6a, Figure 8 shows two different tilings, and Figure 9
presents the backup codes thereof. Choosing any other program point in Figure 8 to emit the
backup code would lead to increased overheads (space and execution time). For Figure 8a,
inserting the backup code (within the loop with index jj) meets our specified efficiency
consideration in the best possible manner (backup size = bn*N, backup pulse = bn*bn). Note
that, it is enough to keep a backup of just one row of tiles at a time and for efficiency we
can backup one tile at a time. Similarly, for Figure 8b, inserting the backup code (within

ECOOP’15

134 Loop Tiling in the Presence of Exceptions

for(i=ii*bn;i<(ii+1)*bn;i++)
for(j=jj*bn;j<(jj+1)*bn;j++)
bak[i%bn][j]=a[i][j];

(a) Backup code for Figure 8a

for(i=ii*bn;i<(ii+1)*bn;i++)
for(j=0;j<N;j++)
bak[i%bn][j]=a[i][j];

(b) Backup code for Figure 8b

Figure 9 Backup codes.

the outermost loop with index ii) meets our specified efficiency consideration in the best
possible manner (backup size = bn*N, backup pulse = bn*N). As another example, a tiling
scheme that further exchanges the ii and kk loops of Figure 8b would lead to a scenario,
where we have to backup the full array (size = M*N) all in one go (before the beginning of kk
loop) – similar to nESLT.

4.1.2 Backup Algorithm
The backup algorithm is shown in Figure 10. The input loop nest inpL (by ignoring the
exception-exit edges) is transformed into trL using the traditional loop tiling technique.
Every array update statement in the trL is handled separately and hence a unique backup
array is used for every array that is updated in the loop.

For the input array update statement S, say R is its counterpart in trL. If the array
update of S in inpL follows the pu-pattern, the array element modified in S is backed up
before each update. We use an auxiliary function ‘emit’ to generate code and || indicates a
string concatenation operator. Note that the backup array, in this case, is indexed with the
iteration vector of trL.

If the array update of S in inpL follows the cu-pattern, the backup process is more
involved. First the backup-point is determined and then the backup loop nest is generated.
The variables inpIdxSeq and tiledGrpIndexSeq contain an ordered set of loop index variables.
inpIdxSeq contains the list of the loop-indices of inpL, corresponding to the loops that
surround S; the index of the outermost loop comes first. For the code shown in Figure 6a,
inpIdxSeq = [i, j, k]. During the first phase of traditional tiling transformation, the loop
nest is strip-mined [24]. For each loop in the input loop, the strip-mined loop has two loops:
one loop (the outer one) iterates over groups of elements (grouping loop), and another loop
(the inner one) iterates over all the elements in a given group (element loop). The variable
tiledGrpIndexSeq contains the list of loop indices of the grouping loops that surround R
(for the code shown in Figure 8b, tiledGrpIndexSeq = [ii, kk, jj]). We use two auxiliary
functions getIndexSeq and getGroupIndexSeq to return the appropriate ordered sets. Given
a loop index of a loop, the auxiliary function OriginalIndex returns the loop index of the
input loop (inpL). For example, OriginalIndex function can be represented as a set of pairs
{(ii, i), (i, i), (jj, j), (j, j), (kk, k), (k, k)}.

We emit the backup code just before that outermost grouping loop, at which the sequence
inpIdxSeq and OriginalIndex(tiledGrpIndexSeq) do not match. This is the point after
which the update pattern of the input loop differs from the transformed loop. The backup
code is determined by the chop [19] computed for the update statement R, bound by the loop
over the index variable tiledGrpIndexSeq[d]. For the two possible tilings shown in Figure 8a
and Figure 8b, Figure 9 shows backup code to be emitted at the backup point specified.
Note: Inserting the backup code on the critical path of execution may lead to i-cache and
d-cache pollution. Therefore it is desirable to have a backup mechanism in which the backup
execution does not come on the critical execution path of the input code. Hence in case of

A. Bhandari and V.K. Nandivada 135

1 Function GenBackupCode (inpL, trL, S, bak)
Input: inpL: input loop nest that has been tiled; trL: transformed tiled loop nest; S:

array update statement in inpL; bak the backup array.
2 begin
3 Say arr is the array variable updated in S and R is the counterpart of S in trL;
4 Say −→I =index vector used to update the array in R;
5 updateType = type of array update in S;
6 if (updateType = cu-pattern) then
7 inpIdxSeq = getIndexSeq(inpL, S);
8 tiledGrpIndexSeq = getGroupIndexSeq(trL, R);
9 for (d = 0 ; ; d++) do // Compute the longest common prefix length.

10 if inpIdxSeq[d] 6= OriginalIndex(tiledGrpIndexSeq[d]) then break;
11 ;
12 bakSlice = chop(R, getLoop(tiledGrpIndexSeq[d]));
13 emit bakSlice before the loop with loop index tiledGrpIndexSeq[d];
14 emit bak || "[" || −→I || "] =" || arr || "[" || −→I || "]" as the last statement in the

body of the innermost loop of bakSlice;
15 else
16 Say −→I1=iteration vector in which R is updated;
17 emit bak || "[" || −→I1 || "] =" || arr ||"[" || −→I ||"]" before R;

Figure 10 Backup Algorithm.

“Backup for each element”, the backup code is not inserted inside the innermost loop (though
it is semantically correct to do so).

4.2 Rollback and Safe-execution
In this subsection, we present techniques to generate an efficient code to rollback and perform
safe-execution. The main intuition behind this process is to rollback only the relevant
computations (advanced iterations) and perform safe-execution of just the required iterations
(delayed iterations).

4.2.1 Computing advanced and delayed iteration sets
Given an unoptimized loop, its tiled counterpart, and an iteration vector −→p , we identify two
sets of iterations:
1. A(−→p) : The set of iterations executed before −→p in the tiled loop.
2. B(−→p) : The set of iterations executed before −→p in the unoptimized loop.

If an exception is thrown in the iteration vector −→p , then the set (A(−→p)−B(−→p)) consists
of all the advanced iterations (with respect to −→p) and hence the updates made by only
these iterations need to be rolled-back. Similarly, the set (B(−→p) − A(−→p)) consists of all
the delayed iterations and hence all these iterations have to be freshly executed (as part
of safe-execution, may be in an untiled manner). As discussed earlier in this section, if
an exception is thrown during this phase of safe-execution, say at iteration −→q , then we
have to further roll-back the execution of all the iterations that have been advanced with

ECOOP’15

136 Loop Tiling in the Presence of Exceptions

respect to −→q (second rollback phase). The set of advanced iterations with respect to −→q ,
after performing roll back for the iteration −→p is ((A(−→q)−B(−→q))− (A(−→p)−B(−→p))). Note
that ((B(−→q) − A(−→q)) − (B(−→p) − A(−→p))) = φ, and hence there are no delayed iterations
with respect to −→q . As a result no further exceptions may be thrown and we do not need
any further rollback phase. Note that if the unoptimized execution of the loop throws an
exception, then the iteration at which the exception is thrown is given by −→q or −→p , depending
on whether any exception is thrown during safe-execution or not, respectively.

As an example, consider Figure 7 that shows the iteration space for the matrix transpose
examples shown in Figure 1 (assuming M=N=9 and a tile size of 3× 3). Consider a specific
iteration x2. The set A(−→x2) is given by the iterations corresponding to the dotted, dark-grey
and checked boxes. The set B(−→x2) is given by the iterations corresponding to the dotted,
dark-grey and the light-grey boxes. Thus, if an exception is thrown at x2, the checked-boxes
(= A(−→x2)−B(−→x2)) correspond to the iterations that need to be rolled-back, and the iterations
corresponding to the light-grey boxes (= B(−→x2)−A(−→x2)) should be safely executed.

For the loop in Figure 6a and its corresponding transformed code in Figure 8b (along
with the backup code in Figure 9b), the loop with rollback code and safe-execute code is
shown in Figure 11. For brevity we show the rollback and safe-execution loops for two of the
total five interchanges (algorithms given below).

4.2.2 Generating efficient rollback and safe-execution code
An interesting challenge that was observed doing the generation of the above mentioned A(−→p)
and B(−→p) sets is that these sets are non-convex in general. Performing the set-difference
operations (in GCC) over non-convex sets to generate the sets corresponding to the advanced
and delayed iterations, and the automatic generation of loop nests over such sets was (i)
quite time consuming, and (ii) leading to inefficient code (owing to the complex convex
set decomposition routines employed by the underlying library code). To overcome these
challenges, we first identify the impact of loop tiling (in terms of reordered operations) as
the union of the impact due to its constituent sub-transformations, and then generate the
rollback and safe-execution code corresponding to each of these sub-transformations.

The tiling of a loop nest can be seen as strip-mining followed by a series of loop interchanges.
The strip-mining transformation does not reorder the iteration space and only the loop
interchange operations contribute to the final reordering. For the tilings shown in Figure 8a
and Figure 8b, the sequence of interchanges are [(j, kk), (i, jj), (i, kk)] and [(j, kk), (j, k),
(jj, kk), (jj, k), (i, kk)], respectively. An interchange (p, q) indicates that the outer-loop
with index variable p, is interchanged with the inner-loop with index variable q.

For an iteration vector −→p over some iteration space, the advanced iterations set A(−→p)−
B(−→p) and delayed iterations set B(−→p)−A(−→p) produced by a single interchange operation
are convex sets. However, for an iteration vector −→q ∈ B(−→p)−A(−→p) (−→q is an iteration of safe-
execution phase in which an exception is thrown), then ((A(−→q)−B(−→q))− (A(−→p)−B(−→p)))
may not be a convex set. In case of the “Backup for each element” scheme, for simplicity,
without loss of significant performance, we over-approximate this set to be the minimal
enclosing convex set possible (max overhead bound by the tile size). In case of the “Backup
for each iteration” scheme, we decompose the non-convex set into a series of convex sets.

4.2.3 Rollback and Safe-execution algorithm
Figure 12 shows the driver for generating the rollback and safe-execution code. The function
InvokeRestorePhaseCode takes as input an auxiliary structure trLStruct that contains all

A. Bhandari and V.K. Nandivada 137

try{
.. Code from Figure 8b, along with Figure 9b ..

}catch(...){ /* Rollback code start */
for(p=i+1;p<(ii+1)*bn;p++){// Rollback for (i, kk) plane
for(q=0;q<N/bn;q++){
for(r=q*bn;r<min(N,(q+1)*bn);r++){
a[p][r]=bak[p%bn][r]; } } }

p=i; // Rollback for (jj, kk) plane
for(q=jj+1;q<N/bn;q++){
for(r=q*bn;r<min(N,(q+1)*bn);r++) {
a[p][r]=bak[p%bn][r]; } }

· · · Rollback for other planes. Not shown ...

try{ /* Safe Execution code start */
// Safe-execution for (i, kk) plane
for(p=ii*bn;p<i;p++){
for(q=0;q<N/bn;q++){
for(r=q*bn;r<min(N,(q+1)*bn);r++){
for(s=kk+1;s<P/bn;s++){
for(t=s*bn;t<min(P,(s+1)*bn);t++){
if (cond) throw Ex;
a[p][r]+= b[p][t]*c[t][r]; } } } } }

p=i; // Safe-execution for (jj, kk) plane
for(q=0;q<jj;q++){
for(r=q*bn;q<min(N,(q+1)*bn);r++){
for(s=kk+1;s<P/bn;s++){
for(t=s*bn;t<min(P,(s+1)*bn);t++){
if (cond) throw Ex;
a[p][r]+= b[p][t]*c[t][r]; } } } }

· · · Safe execution code for other planes. Not shown ...

}catch(...){ /* Second rollback code start */
for(x=p+1;x<=i;x++){ // Rollback for (i, kk) plane
for(y=0;y<N/bn;y++){
for(z=y*bn;z<min(N,(y+1)*bn);z++) {
a[x][z]=bak[x%bn][z]; } } }

x=i; // Rollback for (jj, kk) plane
for(y=q+1;y<=jj;y++){
for(z=y*bn;z<min(N,(y+1)*bn);z++) {
a[x][z]=bak[x%bn][z]; } }

· · · Second rollback for other planes. Not shown ...

throw; // throw the last caught exception (second rollback code)
} // end of second rollback and safe execution
throw; // throw the last caught exception (first rollback code)

} // end of first rollback code.

Figure 11 Restore code.

ECOOP’15

138 Loop Tiling in the Presence of Exceptions

1 Function InvokeRestorePhaseCode (trLStruct)
Input: trLStruct: contains all the required information about tiled loop nest

2 begin
3 for (every exception-exit edge e in the tiled loop nest of trLStruct) do
4 e1 = GenRollbackCode(e, trLStruct); // Rollback phase
5 GenSafeExecutionCode(e1, trLStruct); // Safe-execution phase

Figure 12 Driver for rollback and safe-execution phases.

1 Function boundedSubtract (LoopB, LoopA, T , −→I)
Input: LoopB is the LoopNest on which a loop interchange operation is performed to

obtain the loop nest LoopA; −→I is an iteration vector; T is a statement in the
body of LoopB and LoopA

2 begin
3 A=getDomain(LoopA, T , −→I);
4 B=getDomain(LoopB, T , −→I);
5 return subtract(A,B);

Figure 13 Parameterized bounds computation, followed by set subtraction.

the information about the tiled loop nest. For each exception edge in the tiled loop nest,
the function InvokeRestorePhaseCode invokes the rollback phase code generator GenRoll-
backCode and the safe-execution phase code generator GenSafeExecutionCode. The rollback
code is inserted at the destination of the exception edge. The exit point of the rollback code
(returned by GenRollbackCode) is used by GenSafeExecutionCode to insert the safe-execution
code.

Figures 13 and 14 show the sketch of two helper algorithms. The function boundedSubtract
(Figure 13) takes as input two loop nests (derived by interchanging two loops therein), along
with a common statement, and an iteration vector. The function getDomain (LoopA, T , −→I)
returns the set of iterations of LoopA (executed before −→I) in which T is evaluated. The
boundedSubtract function returns the set-difference of these domains.

The function getRestoreStmt (Figure 14) takes an array update statement R as input
and returns a statement T (that acts as the restore statement for R). The domain of T is
set to the vector space of the index vector of R, if we use the “backup per element” scheme.
Otherwise, it is set to the vector space of the iteration vector of the loop containing R.

The algorithm for the rollback is shown in Figure 15. Rollback loops are emitted to
restore the computations performed in the advanced iterations. They are emitted for each
interchanged plane in interchanges. The function getInterchanges returns the sequence of
interchange operations performed on the input loop nest that produced the tiled loop nest
trL. Each such interchange has an associated input loop and output loop.

A rollback loop is generated for each interchange operation. For each update statement in
the body of the loop nest, we compute the restore statement (by invoking getRestoreStmt).
We compute the iterations to rollback, by invoking boundedSubtract on the domains of trS
and trL, and store in itrsToRollBack. We then project this set onto the domain of T , to
compute the actual domain in which the rollback should happen. All such generated restore
statements are fed to a loop generator (generateLoops) to generate the loop nest for the

A. Bhandari and V.K. Nandivada 139

1 Function getRestoreStmt (R)
Input: R : an array update statement that is backed up

2 Say arr[−→I] is the array updated in R;
3 if (backupScheme = “backup per iteration”) then
4 Say T is the statement arr[−→I] = bak[−→I1], where −→I1 is the iteration vector of the

loop containing R;
5 domain(T)=vectorSpace(−→I1);
6 else // backup per element
7 Say T is the statement arr[−→I] = bak[−→I];
8 domain(T)=vectorSpace(−→I);
9 return T ;

Figure 14 A helper function to generate a restore statement.

1 Function GenRollbackCode (e, trLStruct)
Input: e : entry edge to place the generated code; trLStruct: contains all the

required information about tiled loop nest;
2 begin
3 interchanges = getInterchanges(trLStruct);
4 while (interchanges.hasNext()) do
5 op = interchanges.next();
6 trS = op.inputLoop(); trL = op.outputLoop();
7 for (every array update statement R in trS) do
8 T = getRestoreStmt(R);
9 −→p = iteration vector used to evaluate R in trS.

itrsToRollBack=boundedSubtract(trS, trL,R,−→p);
10 domain(T) = Project(itrsToRollBack, domain(T));
11 rollbackStmts.add(T);
12 〈exitEdge, newLStruct〉 = generateLoops(e, rollbackStmts, trLStruct);
13 e = exitEdge ;
14 return exitEdge;

Figure 15 Rollback phase.

rollback phase. This function returns the new loop (newLStruct) and the normal exit point
(exitEdge) of newLStruct. Figure 11 shows the rollback phase code for the two interchanges
(i, kk) and (jj, kk).

The rollback loop generation phase is followed by the safe-execution loop generation
phase. The safe-execution phase consists of two steps. In the first step, all the loop nests
that execute the delayed iterations is generated. In the next step, a second set of rollback
loops are generated which rollback the advanced iterations if an exception is thrown during
the execution of the delayed iterations. We want to ensure that the delayed iterations are
executed in the unoptimized order (so that if any exception is thrown during this execution,
it matches the first exception that is thrown during the unoptimized execution). To aid
in this process, we define a binary relation ‘<o’ over a pair of interchange operations. Say
opa = (a1, a2) and opb = (b1, b2), we say that opa <o opb, if a1 is outer to b1 (covariant) in

ECOOP’15

140 Loop Tiling in the Presence of Exceptions

1 Function GenSafeExecutionCode (e, trLStruct)
Input: e : entry edge to place the generated code, trLStruct: contains all the

required information about the generated tiled loop nest.
2 begin
3 interchanges = getInterchanges(trLStruct).sort(’<o’);
4 emit "try {";
5 while (interchanges.hasNext()) do
6 op = interchanges.next();
7 trS = op.inputLoop(); trL = op.outputLoop();
8 for (every statement S in trL) do
9 −→p = iteration vector used to evaluate S in trL.

Domain(S)=boundedSubtract(trL, trS, S, −→p);
10 safeExecStmts.add(S);

// generate the loop at edge e. exitEdge represents the
normal-exit edge

11 〈exitEdge, newLStruct〉 = generateLoops(e, safeExecStmts, trLStruct);
12 op.setSafeExecLoop(newLStruct);
13 e = exitEdge;
14 emit "} catch (Exception ex) {";
15 interchanges = getInterchanges(trLStruct);
16 while (interchanges.hasNext()) do
17 op = interchanges.next();
18 trS = op.inputLoop(); trL = op.outputLoop();
19 nlS = op.safeExecLoop();

// Second Rollback phase. Will not throw any exception.
20 for (every array update statement R in trL) do
21 T = getRestoreStmt(R);
22 −→p = iteration vector used to evaluate R in trL;
23 −→q = iteration vector used to evaluate R in nlS;
24 P=boundedSubtract(trL, trS, R, −→p); // A(−→p)−B(−→p)
25 Q=boundedSubtract(trL, trS, R, −→q); // A(−→q)−B(−→q)
26 Domain(T)=subtract(Q,P); // (A(−→q)−B(−→q))− (A(−→p)−B(−→p))
27 add(restoreStmtList, T);
28 g = generateLoops(g, restoreStmtList, trLStruct);
29 emit "} // end catch";

Figure 16 Safe Execution phase.

the input strip-mined loop, or a1 = b1 and a2 is inner to b2 (contravariant) in the input
strip-mined loop. Given two interchange operations I1 and I2, if I1 <o I2, then the execution
of the delayed iterations resulting from the interchange operation I1 precedes that of I2, in
the unoptimized order.

Figure 16 shows the algorithm to generate the safe-execution phase code. To generate the
safe-execution code, we process the ordered loop-interchanges (sorted using the comparator
‘<o’). For every statement (includes array update statements and conditional exception
exits) in trL, the safe-execution phase domain is computed similar to that of the rollback

A. Bhandari and V.K. Nandivada 141

phase. The generated statements are passed to the function generateLoops to generate a
new loop (stored in newLStruct). To handle any exception that may be thrown during
the safe-execution code, we insert the safe execution code inside a try-block and generate
the code for the handler (second rollback phase, see Section 4.2.1) in the corresponding
catch-block. Figure 11 shows the code generated by the algorithm shown in Figure 16.

We highlight some of the interesting points about the code generation task: (i) The code
for the rollback and safe-execute phases is added at the destination of the exception edge.
This code is executed only when the abnormal-exit edge is taken, thereby leaving the i-cache
unpolluted during the execution of the main loop. (ii) We generate the safe-execution loops
in an order that ensures that given two interchanges I1 and I2 (say, I1 <o I2), if an exception
may be thrown in both the safe-execution loops generated for I1 and I2, at iteration vectors
−→p1 and −→p2, then it can be guaranteed that p1 ≺ p2. This is in accordance of our guarantee
that we don’t need any further rollback phase (see Section 4.2).

4.3 Discussion
Bounds: To explain the bounds on the number of backup elements, restore operations and
safe-execution operations (for oESLT), we use Figure 1a as an example. We will assume that
the tile is of size bn*bn.

The minimum size of the backup array is at least bn*N and the maximum size of the
backup array is bound by the size of the array that is being updated (M*N), and this scenario
occurs when the selected backup-point is outside the loop nest (oESLT, behaves like nESLT).

The minimum number of elements that need to be restored is 0 (for example, if an
exception is thrown in the very first iteration). And the maximum number of elements that
may be restored is (bn-1)*(N-bn); for example, this case occurs, when the exception is
thrown at the iteration i=bn, j=N-bn.

The minimum number of safe-execution operations performed is 0 (for example, if an
exception is thrown at the iteration i=bn, j=0). The maximum number of safe-execution op-
erations performed is bound by the maximum number of restore operations: (bn-1)*(N-bn).

Handling exceptions and segmentation faults in backup code: The backup code may
throw an exception (for example, NullPointerException or ArrayIndexOutOfBoundsException
in languages like Java) or may lead to segmentation fault (in languages like C++) if the array
to be backed up is uninitialized or if the array access is illegal. This issue can be addressed by
performing the required checks on the updated array, before the execution of exception-safe
tiled code. For example, consider the tiled code shown in Figure 8a and its backup code shown
in Figure 9a. The check (a!=NULL && size_a[0]>=M && size_a[1]>=N), where size_a[0]
represents the size of outer dimension (first dimension) of array a, is performed before the
execution of the tiled code. The tiled code is executed, only if the check succeeds. Otherwise,
the unoptimized code is executed.

Importance of ESLT: Even though exceptions may be thrown rarely, semantics preserving
compilation requires that we cannot apply traditional optimizations (such as loop tiling) by
ignoring exceptions. Even though our proposed semantics preserving optimizations do incur
some minor overheads, we show in Section 5 that the resulting gains are significant.

5 Implementation and Evaluation

We have implemented our proposed techniques (nESLT and oESLT) in the Graphite frame-
work of GCC-4.8. The Graphite framework provides support for polyhedral optimizations

ECOOP’15

142 Loop Tiling in the Presence of Exceptions

Sl Kernel name Input Size
1 2mm(2) 4000 (EL)
2 3mm (3) 4000 (EL)
3 gemm (1) 4000 (EL)
4 syrk (1) 4000 (EL)
5 syr2k (1) 4000 (EL)
6 doitgen (1) 256 (L)

Figure 17 Benchmarks kernels and the input sizes. The numbers in the brackets indicate the
number of tiled loops. EL = Extra Large, L = Large.

like loop tiling, loop interchange and so on, and is implemented as an optimization pass in
GCC-4.8 (one of the 100s of passes). We use the powerful Integer Set Library (ISL) [33]
of GCC compiler framework to implement the helper functions (discussed in Section 4.2)
like ‘boundedSubtract’, ‘Project’, ‘subtract’, ‘getDomain’, and support representations like
domain of a statement and iteration vectors. The ‘generateLoops’ function used in Sec-
tion 4.2, uses the underlying Chunky Loop Generator framework (CLOOG) [3], to generate
the transformed loops.

We have evaluated our techniques on the popular Polybench 3.2 (converted to C++)
benchmark suite [27]. It is a collection of well known numerical and linear-algebraic kernels
(containing loops) designed specifically for the study of different loop optimizations. The
kernels can be run over a wide set of input sizes. Compared to application benchmark suites
like SPEC [15] and PARSEC [6], Polybench (because of its small size and focussed loop
kernels) has an advantage that it helps us localize the impact of the specific loop optimization
under consideration, with little interference from the rest of the program. To evaluate the
different overheads associated with our techniques, we need benchmarks where exceptions
may be thrown in different computation loops (or in the absence of such benchmarks, we have
to edit the loops in the existing benchmarks to throw exceptions conditionally). Considering
the size and complexity of the benchmarks like SPEC or PARSEC, it is quite challenging to
introduce such tunable conditional throw statements in all the loops therein. In contrast,
because of the smaller sizes, the Polybench kernels make it quite easy to introduce such
tunable conditional throw statements.

We converted all the thirty Polybench kernels to C++. Of these kernels, we found that
only the six kernels shown in Figure 17 could be tiled and the rest could not be tiled (fourteen
of the kernels had data dependences that could not be resolved, and another ten were found
to be non profitable by GCC). To derive the base (unoptimized) versions of the six shown
kernels, we performed a pass of loop-distribution (to generate perfectly nested loops), and
perform function inlining of the computation kernel in the ‘main’ method (to satisfy some
requirements of the underlying GCC compiler framework to perform tiling). We then added
a conditional throw statement before the main computation statement, and nested each
such loopnest inside a try-catch block. Figure 18 shows the sample transformations done
in the 2mm kernel, to derive the corresponding base kernel. We introduce the surrounding
try-catch block, so that the code after the loop nest (for example, code to print the execution
statistics) can execute, even if the exception is thrown. Note that the conditional exception
throw statements are added in the innermost loop before the array access statement so as to
give an effect of some common throw statements like ArrayBoundsCheck, NullPointerCheck,
and so on. We use these base versions as the input to our loop tiling phase. We chose the
largest input (provided by PolyBench) such that the arrays can be allocated on the stack (a

A. Bhandari and V.K. Nandivada 143

main(){
...
mm();
...
print (execTime);

}

void mm(){
for (i=0;i<NI;++i){
for (j=0;j<NJ;++j){
C[i][j] = 0; /* init */
for (k=0;k<NK;++k){
C[i][j]+=alpha*A[i][k]*B[k][j];

}
}

}

(a) Representative snippet of the original
Polybench kernel 2mm.

main(){
...
for (i=0;i<NI;i++){
for (j=0;j<NJ;j++){
C[i][j] = 0; /* init */ } }

try{
for (i=0;i<NI;i++){
for (j=0;j<NJ;j++){
for (k=0;k<NK;++k) {
if (some-cond)
throw 20;// throw some exception

C[i][j]+=alpha*A[i][k]*B[k][j];
} } } } catch (...) {}

...
print (execTime);

}

(b) Modified 2mm kernel.

Figure 18 Typical transformations done on the PolyBench kernels to derive the base (unoptimized)
versions.

requirement of GCC loop-tiling). All the experiments were performed for square tiles. The
size of the tiles was fixed by choosing the best tile size for the original benchmark kernels on
our hardware: 16 for doitgen, and 20 for the rest.

All the experiments were performed on an Intel Xeon CPU E5-2670 system (with 32 KB
L1 data and instruction caches, 256 KB L2 cache, and 20MB L3 cache). We present our
evaluation over three different schemes: nESLT, oESLT, and the in built GCC loop tiling
(here after termed as the unoptimized scheme). The unoptimized scheme does not tile any
of these loops because of the presence of throw statements. Each of these schemes were
invoked in GCC with -O3 -fgraphite options.

5.1 Impact of oESLT and nESLT when no exceptions are thrown
Figure 19 shows the impact of exception-safe loop tiling (ESLT) , when no exceptions are
thrown inside the tiled loop; we measure the impact on both the execution time (Figure 19a)
and memory (Figure 19b). We define percentage (%) improvement in execution time of
scheme A over scheme B = 100×(1− execution time with A

execution time with B). Similarly, we define percentage
(%) overhead in the parameter under consideration (memory or execution time) of scheme
A over scheme B = 100× (parameter value with A

parameter value with B − 1). From Figure 19a, it can be seen
that compared to the unoptimized scheme, on average oESLT and nESLT result in 41.5%
and 40.8% improvements, respectively.

It can be seen that for most of the benchmarks (except doitgen) the impact of nESLT
and oESLT on the execution time is similar; the maximum gap occurs for gemm, where the
“backup all elements in one shot” scheme of nESLT helps in improved locality and leads to
minor improvement. However, in case of doitgen, oESLT performs significantly better than
nESLT. This is because, doitgen has a loop nest of depth 4, and during tiling, the outermost
loop in the loop-nest is not tiled. Interestingly, the array update is based on the index of

ECOOP’15

144 Loop Tiling in the Presence of Exceptions

58
.2
	

58
.0
	

58
.7
	

3.
5	

3.
1	

41
.0
	

41
.5
	

58
.8
	

58
.0
	

62
.0
	

3.
5	

3.
2	

30
.0
	

40
.8
	

0	

10	

20	

30	

40	

50	

60	

70	

2mm	 3mm	 gemm	 syrk	 syr2k	 doitgen	 Mean	

%
	 im

pr
ov
em

en
t	 w

.r.
t.	
un

op
/m

iz
ed

	 sc
he

m
e	

Benchmark	

nESLT	 oESLT	

(a) Percentage (%) improvement in execution
time.

10
0	

10
0	

10
0	

10
0	

10
0	

10
0	

10
0	

0.
50
0	

0.
50
0	

0.
50
0	

0.
50
0	

0.
50
0	

0.
02
4	

0.
30
2	

0	

20	

40	

60	

80	

100	

120	

2mm	 3mm	 gemm	 syrk	 syr2k	 doitgen	 Mean	

%
	 m

em
or
y	
ov
er
he

ad
	 w
.r.
t.	
un

op
2m

iz
ed

	
sc
he

m
e	

Benchmark	

nESLT	 oESLT	

(b) Percentage (%) memory overhead.

Figure 19 Effect of ESLT when the nested conditional exception is never thrown.

the outermost three loop indices. As a result the number of elements in the backup pulse of
oESLT is significantly small and hence the backup loop behaves as a prefetch loop, thereby
improving performance.

Figure 19b shows the memory overhead incurred by both nESLT and oESLT, compared to
the unoptimized scheme. It can be seen that the nESLT incurs significant memory overhead
(geometric mean 100%). Compared to that oESLT reuses the backup space and reduces the
memory overhead to a large extent (geometric mean 0.302%).

5.2 Overheads due to backup
To measure the overheads that we incur due to the insertion of backup code, we created a
new ESLT scheme called the ideal ESLT (iESLT) scheme, wherein the loop is tiled, but has
no backup code. Note: the conditional throw statements are retained (similar to oESLT and
nESLT). In Figure 20, we compare the behavior oESLT and nESLT schemes against that
of iESLT, when the input codes do not throw any exception. It can be seen that for most
kernels the overhead due to the backup code is quite low (between -2% to 8.5%, geometric
mean 1.39% for oESLT, and between 0% to 17%, geometric mean 2.69% for nESLT). In case

A. Bhandari and V.K. Nandivada 145

1.
15
	

1.
10
	

8.
37
	

0.
01
	

0.
02
	

-‐2
.0
0	

1.
39
	

-‐0
.2
4	

1.
09
	

-‐0
.4
7	

0.
01
	

0.
28
	

16
.5
2	

2.
69
	

-‐5	

0	

5	

10	

15	

20	

2mm	 3mm	 gemm	 syrk	 syr2k	 doitgen	 Mean	

%
	 	 o
ve
rh
ea
d	
w
.r.
t.,
	 iE
SL
T	
sc
he

m
e	

Benchmark	

nESLT	 oESLT	

Figure 20 Percentage (%) overhead in execution time.

of doitgen, as discussed before, nESLT backups too many elements and thus incurs higher
overhead. For the same kernel, in case of oESLT, interestingly, we realize slight performance
gains because of the backup code! This we believe is because of the possible cache benefits
due to the backup code (it acts as a prefetch loop). To establish this hypothesis, we increased
the input size for doitgen (from 256 to 384 = 16*24) and found that the benefits due to the
backup loop decreases; the backup loop stops working as a prefetch loop and hence pollutes
the cache.

5.3 Impact of ESLT when exceptions are thrown
Figures 22 shows the impact of ESLT, when exceptions are thrown inside the tiled loop.
Based on our experience with exceptions in OO programs that predominantly use exceptions
to report corner cases (e.g., array being updated is null, the update to the array is not within
the array bounds, and so on, which typically occur either at the beginning of the loop, or
towards the end), we present a study of nESLT and oESLT, by forcing the exception to be
thrown only in the first element of the first tile (Figure 21a), or last element of the last tile
(Figure 21b) of the loop-nest.

In Figure 21a, it can be seen that nESLT incurs significant performance degradation
(ranging between 80.0% to 260.0%, geometric mean 185%) owing to the time spent in
conservatively backing up all the array elements at the beginning. On the other hand, oESLT
incurs a minor performance degradation (between 0.0% to 1.6%, geometric mean 1%) owing
to the minimal backing up that is done as part of the optimized exception-safe loop tiling
scheme.

In Figure 21b, it can be seen that nESLT again incurs significant performance degradation
(between 38.2% to 96.8%, geometric mean 61.8%), owing to the time spent in conservative
rollback and safe-execution of all the iterations. On the other hand, oESLT leads to significant
improvements in performance (between 3.1% to 57.7%, geometric mean 38.9%). This is
because the time savings resulting from tiling did offset the minimal time spent on rollback
and safe execution.

Overall, it can be seen that oESLT leads to significant improvements when no exceptions
are thrown (common case). In the not so common case, when an exception is indeed thrown,
the gains depend on the exact iteration in which the exception is thrown (i.e., if the overheads
are offset by the gains due to tiling).

ECOOP’15

146 Loop Tiling in the Presence of Exceptions

-‐1
.6
	

-‐1
.4
	

-‐1
.5
	 0.
0	

-‐1
.4
	 0.
0	

-‐1
.0
	

-‐1
82

.2
	 -‐1

34
.8
	

-‐2
52

.9
	

-‐2
60

.0
	

-‐2
53

.8
	

-‐8
0.
0	

-‐1
85

.0
	

-‐300	

-‐250	

-‐200	

-‐150	

-‐100	

-‐50	

0	

2mm	 3mm	 gemm	 syrk	 syr2k	 doitgen	 Mean	

%
	 im

pr
ov
em

en
t	 w

.r.
t.	
un

op
/m

iz
ed

	 sc
he

m
e	

Benchmark	

nESLT	 oESLT	

(a) Exception thrown in the first tile.

53
.2
	

52
.6
	

57
.7
	

3.
4	

3.
1	

41
.0
	

38
.9
	

-‐4
4.
6	

-‐4
6.
8	

-‐3
8.
2	

-‐9
6.
4	

-‐9
6.
8	

-‐5
8.
1	

-‐6
1.
8	

-‐120	

-‐100	

-‐80	

-‐60	

-‐40	

-‐20	

0	

20	

40	

60	

80	

2mm	 3mm	 gemm	 syrk	 syr2k	 doitgen	 Mean	

%
	 im

pr
ov
em

en
t	 w

.r.
t.	
un

op
/m

iz
ed

	 sc
he

m
e	

Benchmark	

nESLT	 oESLT	

(b) Exception thrown in the last tile.

Figure 22 Percentage (%) improvement in execution time.

Even though we use throw statements to represent the abnormal-exits, our proposed
techniques can be used to handle any typical non-local control transfer statement (for example,
goto, break, return, and so on). The techniques can also be applied on loops that contain
multiple abnormal-exits of different types. Further, our techniques can handle conditional
throw statements over both affine and non-affine conditions (a common scenario).

6 Conclusion and Future Work

In this paper, we present a generalized scheme to do exception-safe loop optimizations and
present a scheme of optimized exception-safe loop tiling (oESLT), as a specialization thereof.
oESLT leads to performance gains (because of loop tiling), with minimal overhead (due to
backup and rollback).

Usually, the loops with exception throw statements (common in Java, C++) have multiple
exit edges and to identify such loops in a general-purpose compiler (for example, GCC), we
defined a new program region called ESCoP. We implemented our proposed techniques (built
on top of ESCoPs) in GCC and show significant gains over the kernels from the PolyBench
suite.

A. Bhandari and V.K. Nandivada 147

As a part of future work, we plan to understand the impact of the backup code on the
tile size and the profitability. Designing an efficient exception-safe loop tiling scheme for
parallel code is another interesting future work.

Acknowledgements. We would like to thank Shashidhar G for helping with the experimental
setup, Rupesh Nasre and Raghesh Aloor for their insightful comments on a prior version of the
manuscript and insightful discussions, in general. This research work is partially supported
by the New Faculty Seed Grant, funded by IIT Madras (CSE/11-12/567/NFSC/NANV),
the DRDO research grant (CSE/08-09/103/DRDO/HODX), and the DAE research grant
(CSE/13-14/139/BRNS/NANV). We thank all these agencies for their generous funding and
support.

References
1 M. Allen and S. Horwitz. Slicing java programs that throw and catch exceptions. In PEPM,

pages 44–54, 2003.
2 R. Baghdadi, A. Cohen, S. Verdoolaege, and K. Trifunović. Improved loop tiling based on

the removal of spurious false dependences. TACO, 9(4):52:1–52:26, 2013.
3 C. Bastoul. Code generation in the polyhedral model is easier than you think. In PACT,

pages 7–16, Juan-les-Pins, Sep 2004.
4 A. A. Belevantsev, S. S. Gaisaryan, and V. P. Ivannikov. Construction of speculative

optimization algorithms. Program. Comput. Softw., 34(3):138–153, 2008.
5 M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul. The polyhedral model

is more widely applicable than you think. In CC, LNCS, 2010.
6 C. Bienia, S. Kumar, J. Pal Singh, and K. Li. The parsec benchmark suite: Characterization

and architectural implications. In PACT, pages 72–81, New York, NY, USA, 2008. ACM.
7 R. Bodík, R. Gupta, and V. Sarkar. ABCD: eliminating array bounds checks on demand.

In PLDI, pages 321–333. ACM, 2000.
8 M. G. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. J. Serrano, V. C. Sreedhar,

H. Srinivasan, and J. Whaley. The Jalapeño Dynamic Optimizing Compiler for Java. In
JAVA, pages 129–141, 1999.

9 J. Choi, D. Grove, M. Hind, and V. Sarkar. Efficient and precise modeling of exceptions
for the analysis of Java programs. SE Notes, 24(5):21–31, 1999.

10 J. Collard. Automatic parallelization of while-loops using speculative execution. Interna-
tional Journal of Parallel Programming, 23(2):191–219, 1995.

11 P. Feautrier. Dataflow analysis of array and scalar references. International Journal of
Parallel Programming, 20, 1991.

12 K. Fraser and T. Harris. Concurrent programming without locks. ACM Trans. Comput.
Syst., 25(2), May 2007.

13 C. Fu and B. G. Ryder. Exception-chain analysis: Revealing exception handling architec-
ture in Java server applications. In ICSE, pages 230–239. IEEE, 2007.

14 M. Gupta, J-D Choi, and M. Hind. Optimizing Java programs in the presence of exceptions.
In ECOOP, pages 422–446. Springer-Verlag, 2000.

15 J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Comput. Archit. News,
34(4):1–17, September 2006.

16 M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-free
data structures. In ISCA, pages 289–300. ACM, 1993.

17 IBM. XL C/C++ Compiler. http://www-03.ibm.com/software/products/en/
xlcpp-aix.

ECOOP’15

http://www-03.ibm.com/software/products/en/xlcpp-aix
http://www-03.ibm.com/software/products/en/xlcpp-aix

148 Loop Tiling in the Presence of Exceptions

18 K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Ogasawara, T. Suganuma, T. Onodera,
H. Komatsu, and T. Nakatani. Design, Implementation, and Evaluation of Optimizations
in a Just-in-time Compiler. In JAVA, pages 119–128, 1999.

19 D. Jackson and E. J. Rollins. Chopping: A generalization of slicing. Technical Report
CMU-CS-94-169, Carnegie Mellon University, Pittsburgh, PA, USA, 1994.

20 R. Johnson, D. Pearson, and K. Pingali. The program structure tree: Computing control
regions in linear time. In PLDI, pages 171–185, 1994.

21 J. Lin, W. Hsu, P. Yew, R. D. Ju, and T. Ngai. Recovery code generation for general
speculative optimizations. TACO, 3(1):67–89, 2006.

22 V. V. Mikheev, S. A. Fedoseev, V. V. Sukharev, and N. V. Lipsky. Effective enhancement
of loop versioning in java. In CC, pages 293–306, 2002.

23 J. E. Moreira, S. P. Midkiff, and M. Gupta. From flop to megaflops: Java for technical
computing. TOPLAS, 22(2):265–295, 2000.

24 S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.
25 V. K. Nandivada and S. Jagannathan. Dynamic state restoration using versioning excep-

tions. HOSC, 19(1):101–124, 2006.
26 V. K. Nandivada, J. Shirako, J. Zhao, and V. Sarkar. A Transformation Framework for

Optimizing Task-Parallel Programs. TOPLAS, 35(1):3:1–3:48, April 2013.
27 L. N. Pouchet. PolyBench: The Polyhedral Benchmark suite.
28 L. Renganarayanan, D. Kim, M. M. Strout, and S. Rajopadhye. Parameterized loop tiling.

TOPLAS, 34(1):3:1–3:41, May 2012.
29 H. Rong, Z. Tang, R. Govindarajan, A. Douillet, and G. R. Gao. Single-dimension software

pipelining for multidimensional loops. TACO, 4(1), March 2007.
30 S. Sinha and M. J. Harrold. Analysis and testing of programs with exception-handling

constructs. IEEE TSE, 26(9):849–871, September 2000.
31 Y. Song and Z. Li. New tiling techniques to improve cache temporal locality. In PLDI,

pages 215–228, New York, NY, USA, 1999. ACM.
32 R. M. Stallman and GCC DeveloperCommunity. Using The GNU Compiler Collection: A

GNU Manual For GCC Version 4.8.0. CreateSpace, Paramount, CA, 2013.
33 S. Verdoolaege. ISL: An integer set library for the polyhedral model. In ICMS, pages

299–302, 2010.
34 T. Würthinger, C. Wimmer, and H. Mössenböck. Array bounds check elimination in the

context of deoptimization. Sci. Comput. Program., 74(5-6):279–295, Mar 2009.
35 J. Xue. Loop Tiling for Parallelism. Kluwer Academic Publishers, 2000.
36 H. Yun, J. Kim, and S. Moon. Optimal software pipelining of loops with control flows. In

ICS, pages 117–128. ACM, 2002.

	Introduction
	Related Work

	Loop Optimizations in the Presence of Exceptions
	Exception safe loop tiling
	Extended SCoPs : Single Entry Multiple Exit Regions
	Naive Exception Safe Loop Tiling

	Optimized exception safe loop tiling
	Backup
	Backup location and size
	Backup Algorithm

	Rollback and Safe-execution
	Computing advanced and delayed iteration sets
	Generating efficient rollback and safe-execution code
	Rollback and Safe-execution algorithm

	Discussion

	Implementation and Evaluation
	Impact of oESLT and nESLT when no exceptions are thrown
	Overheads due to backup
	Impact of ESLT when exceptions are thrown

	Conclusion and Future Work

