
Identifying Services from Legacy Batch Applications∗

Raghavan Komondoor
Indian Institute of Science,

Bangalore
raghavan@csa.iisc.ernet.in

V. Krishna Nandivada
Indian Institute of Technology,

Madras
nvk@cse.iitm.ac.in

Saurabh Sinha
IBM Research – India

saurabhsinha@in.ibm.com

John Field
Google Inc.

jfield@gmail.com

ABSTRACT
Transaction processing is a key constituent of the IT workload of
commercial enterprises (e.g., banks, insurance companies). Even
today, in many large enterprises, transaction processing is done by
legacy “batch” applications, which run offline and process accumu-
lated transactions. Developers acknowledge the presence of multi-
ple loosely coupled pieces of functionality within individual ap-
plications. Identifying such pieces of functionality (which we call
“services”) is desirable for the maintenance and evolution of these
legacy applications. This is a hard problem, which enterprises grap-
ple with, and one without satisfactory automated solutions.

In this paper, we propose a novel static-analysis-based solution
to the problem of identifying services within transaction-processing
programs. We provide a formal characterization of services in terms
of control-flow and data-flow properties, which is well-suited to the
idioms commonly exhibited by business applications. Our tech-
nique combines program slicing with the detection of conditional
code regions to identify services in accordance with our character-
ization. A preliminary evaluation, based on a manual analysis of
three real business programs, indicates that our approach can be
effective in identifying useful services from batch applications.

Categories and Subject Descriptors
D [2]: 7—Restructuring, reverse engineering, and reengineering;
D [2]: 13—Reusable Software

General Terms
Algorithms,Experimentation

1. INTRODUCTION
Legacy applications written decades ago form the backbone of

the IT infrastructure of most large enterprises (e.g., as reported in
a ComputerWorld magazine 2006 survey). Many of these applica-
tions are written for execution in a “batch” mode; that is, the ap-

∗Part of this work was done when the first, second, and fourth au-
thors were affiliated with IBM Research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISEC ’12, Feb. 22-25, 2012, Kanpur, UP, India
Copyright 2012 ACM 978-1-4503-1142-7/12/02 ...$10.00.

plication runs periodically according to some schedule. Whenever
a business event occurs (e.g., a customer places a new order), the
event generates a “transaction” (input file record), which is batched
up. During application execution, all transactions that have been
batched up since the previous run are processed sequentially. In-
terestingly, the structure of these applications—an intermingling of
code fragments offering differing functionalities—reflects their us-
age pattern: processing multiple kinds of transactions in one go.

The presence of such loosely coupled functionalities (which can
be thought of as different “services”) interleaved within a single ap-
plication, and even within individual programs in the application,
creates challenges in comprehension, maintenance, evolution, and
transformation of legacy applications [22]. In this paper, we ad-
dress the problem of identifying interleaved candidate services in
a batch application. The identified services enhance understand-
ability of the application by allowing the application to be viewed
as a composition of services. They can can serve as a basis for
re-architecting the application to a service-oriented architecture,
which is currently a largely manual, non-systematic process [15].
Finally, once migrated to a service-oriented architecture, a batch
application can even be transformed into an “online” application,
which is capable of processing transaction records as and when they
arrive by invoking the corresponding services.

In business applications, different constituent services are typi-
cally identified by the outputs they generate. Therefore, a naive so-
lution to service identification would be to apply backward slicing
from each output statement in the application. However, such an
approach may result in unsatisfactory results (e.g., too many overly
fine-grained services). To overcome this problem, we present an
approach that is based on two key insights. First, although ser-
vices can be identified by the output they generate, all related output
should be encapsulated within a single service. Second, different
services in an application should be identified by not only the out-
put they produce, but also by the input they consume, and by the
data dependences between different services.

Illustrative Example
Consider the order-processing application shown in Figure 1, which
we use as the running example in this paper. It is written in a sim-
plified variant of the Cobol language, which is the predominant
language of legacy business applications. The initial part of the
program (DATA DIVISION) contains declarations of files and vari-
ables. Variables are prefixed by level numbers (e.g., 01 or 05),
which serve to indicate nesting, akin to record-field relationships,
among variables. Note that Cobol does not require statements to
refer to a fully qualified data name when an unqualified name is
unambiguous. The subsequent part of the program contains the

DATA DIVISION.
FILE SECTION.
FD in-file ACCESS IS SEQUENTIAL.

01 in-rec PIC X(15).
FD out-file ACCESS IS SEQUENTIAL.
FD item-table ACCESS IS RANDOM.
01 item-rec.
05 item-id PIC 9(4) IS PRIMARY KEY.
05 item-avbl-count 9(6).

WORKING-STORAGE SECTION.
01 header-rec.

05 header-status PIC x(8).
05 FILLER PIC X(7).

01 order-rec.
05 ord-type PIC X(7).
05 ord-id PIC X(6).
05 ord-num-items PIC 9(2).

01 i PIC 9(2).
01 ord-item-rec.
05 ord-it-id PIC 9(4).
05 ord-it-count 9(4).
05 FILLER PIC X(7).

01 full-all-avbl PIC X(5).
01 ord-item-recs OCCURS 100 TIMES.
05 ord-its-id PIC 9(4).
05 ord-its-count 9(4).
05 FILLER PIC X(7).

01 num-fulfilled PIC 9(15).

PROCEDURE DIVISION.
/ 1/ OPEN INPUT in-file item-table

OUTPUT out-file.
/ 2/ READ in-file.
/ 3/ MOVE in-rec TO header-rec.
/ 4/ MOVE ’received’ TO header-status.
/ 5/ WRITE header-rec TO out-file.
/ 6/ MOVE 0 TO num-fulfilled.

/ 7/ WHILE in-file NOT AT END
/ 8/ READ in-file INTO order-rec
/ 9/ IF ord-type = ’regord’
/10/ ADD 1 to num-fulfilled
/11/ WRITE order-rec TO out-file (3)
/12/ i = 1 (3)
/13/ WHILE i <= ord-num-items (3)
/14/ READ in-file INTO ord-item-rec (1,3)
/15/ LOOKUP item-table KEY IS ord-it-id INTO item-rec (1,3)
/16/ IF item-avbl-count < ord-it-count (1,3)
/17/ MOVE item-avbl-count TO ord-it-count. (1,3)
/18/ WRITE ord-item-rec TO out-file (1,3)
/19/ i = i + 1 (3)
/20/ END-WHILE (3)
/21/ ELSE IF ord-type = ’fullord’
/22/ MOVE ’ok’ TO full-all-avbl (2)
/23/ i = 1 (2)
/24/ WHILE i <= ord-num-items (2)
/25/ READ in-file INTO ord-item-recs(i) (2)
/26/ LOOKUP item-table KEY IS ord-its-id INTO item-rec (2)
/27/ IF item-avbl-count < ord-its-count(i) (2)
/28/ MOVE ’notOk’ TO full-all-avbl (2)
/29/ ENDIF (2)
/30/ i = i + 1 (2)
/31/ END-WHILE (2)
/32/ IF full-all-avbl = ’ok’ (2)
/33/ ADD 1 to num-fulfilled
/34/ WRITE order-rec to out-file (2)
/35/ i = 1 (2)
/36/ WHILE i <= ord-num-items (2)
/37/ WRITE ord-item-recs (i) TO out-file (2)
/38/ i = i + 1 (2)
/39/ END-WHILE (2)
/40/ ENDIF (2)
/41/ ENDIF
/42/ END-WHILE
/43/ WRITE ’Num. orders fulfilled = ’, num-fulfilled TO out-file.

Figure 1: Example business application.

PROCEDURE DIVISION.1

The program has a main loop (lines 7–42). In each loop iteration,
the program processes a transaction (an order) from the input file. A
transaction consists of an order “header” record (read into variable
order-rec in line 8), followed by a number of item records, one
for each item that is included in the order (the number of items in
the order is available in the field ord-num-items of order-rec).
There are two types of orders: “regular” orders, handled in lines 10
through 20 (then branch of the if conditional in line 9), and “full”
orders, handled in lines 22 through 40 (else branch). In both al-
ternatives, an inner loop processes the multiple items that are part
of an order. After processing an order, the program writes it out to
the file out-file (lines 11,18, 34 and 37).

This program is a typical example of a business application, which
typically has a loop that reads transaction records from an input
file, and “dispatches” each transaction to an appropriate region of
code within the loop body depending on the type of transaction.
The code region applies some business logic on the transaction,
perhaps using an inner loop to process the constituents of the trans-
action, creates one or more output records, and writes them out.
Intuitively, different collections of these regions correspond to dif-
ferent services that one may wish to identify.

There are different candidate services in the example program in
Figure 1 which the developer may want to explore. For instance,
consider two alternative sets of services: (i) a service for processing
a full order and a service for processing a regular order; and (ii)
a service for processing a full order, a service for processing an
item in a regular order, a service for processing a regular order, and
a service for processing all orders (i.e., the entire program). The

1For readability, we use the intuitively simpler syntax of WHILE loops in-
stead of the PERFORM UNTIL loops of Cobol.

second alternative captures the hierarchical nature of the underlying
business logic and, therefore, the services. Each service has an
output seed (one or more WRITE statements) and may have one or
more sources (input buffers of READ statements whose values are
used by the service).

We illustrate some of the services identified by our approach on
the example in Figure 1 by labeling all statements belonging to a
service with an identifying label on the right-hand side. For exam-
ple, the statements labeled (2) belong to a service.

Code labeled (1). These statements constitute a service that
processes an item from a regular order. For this service, the output
seed is statement 18, whereas the source is statement 14.

Code labeled (3). Using statements 11 and 18 as the output
seed and lines 8 and 14 as the input source, the entire logic for
processing a regular order can be identified as one service. In other
words, the approach enumerates two services seeded at line 18,
labeled (1) and (3), with (1) being contained within (3).

Code labeled (2). Using lines 34 and 37 as the output seed and
lines 8 and 25 as the input source, the approach identifies lines 22–
40 (except the update to num-fulfilled in line 33) as a candidate
service, to process a “full” order. This service corresponds to the
business logic that, in a full order, all items must be processed to-
gether (by taking into consideration whether all the requested items
are available in requisite quantities). Note that, although both the
inner loops are included in the candidate service, line 33—which
lies between the two loops, but is not pertinent to the logic for
processing an individual order (it increments the count of fulfilled
orders)—is excluded from the service.

Our approach also identifies services that contain output state-
ments 5 and 43. These are “header” and “trailer” output statements,
not present in any loop in the batch program. These output state-

ments are purely artifacts of the batch program and, therefore, are
not particularly interesting as separate services. We indicate in Ta-
ble 1 (Section 3.3) the set of all services identified by our approach
in this example. Note that the services we identify are basically
candidate services. It is up to the develop to choose a set of ser-
vices from among the ones emitted for further analysis and use.

Our Approach
Our goal is to identify candidate code fragments for extraction into
services (as illustrated using the example in Figure 1). To develop a
systematic approach for service identification, we provide a formal
characterization of candidate services in terms of input/output char-
acteristics, control-flow properties, and data-flow properties. The
characterization is tailored to the coding idioms commonly present
in transaction-processing business applications.

One of the key novel aspects of the characterization is that it is
based on the notion of a tag conditional, which is useful for sepa-
rating independent services. A tag conditional is an if or switch
statement that checks the tag field of a record to determine the
record type. For example, ord-type is a tag field in the exam-
ple program, and the conditionals in lines 9 and 21 check this field
to determine the type of an order. Intuitively, a tag conditional
controls a region of code that is likely to contain an independent
service. For instance, line 9 controls the region that contains the
“regular” order service, whereas line 21 controls the region that
contains the “full” order service.

We present a static-analysis approach that identifies candidate
services according to our characterization. The approach analyzes
each code region r that is controlled by a tag conditional or a loop
header. It first identifies the output seed (i.e., set of WRITE state-
ments) in r; then, it considers different bounding regions that sur-
round r and, for each bounding region b, obtains a backward slice
from the seed restricted to b. It emits the slice as a service, provided
the incoming values to and outgoing values from the slice satisfy
certain properties (this is to minimize coupling between the service
and its context). By exploring different bounding regions for each
same seed region r, the analysis is able to generate services at dif-
ferent levels of granularity, and let the programmer finally pick the
ones that they consider the most appropriate.

To evaluate the effectiveness of our approach, we performed a
preliminary evaluation using three real-world business programs
written in Cobol. In the study, we manually applied our approach
to the three programs to identify services, and compared our ap-
proach with the naive approach of performing slicing from individ-
ual WRITE statements. For each subject, our approach identified
services more accurately—i.e., services that match closely the un-
derlying intuitive service structure—than the naive approach. Our
study also illustrates that the naive approach can not only identify
overly fine-grained services, but also miss identifying useful ser-
vices.

The main benefit of our approach is that it provides a systematic
and structured way of identifying services. Moreover, it identifies
services that have several desirable properties, such as cohesiveness
of a service, independence (or loose coupling) among different ser-
vices, and a hierarchical service structure.

The key contributions of the paper are

• A formal characterization that can be used to identify candi-
date services from transaction-processing business applica-
tions
• The presentation of a novel static analysis, based on tag-

condition analysis and program slicing, for identifying can-
didate services.

• The description of three applications of service identification
that are important from the application-developer perspec-
tive: (1) program understanding, (2) modularization of busi-
ness applications, (3) batch-to-online translation
• The presentation of an empirical study of the effectiveness of

our technique using three real Cobol batch programs.

In this paper, we target transaction-processing business applica-
tions, and leave as future work the study of service identification
for other domains, such as web applications.

The rest of the paper is organized as follows. We present our as-
sumptions and background definitions in Section 2. Following that,
we present our characterization of services (Section 3), describe the
algorithm for identifying services (Section 3.3), and discuss three
applications of services identification (Section 5). In Section 6, we
present the empirical study. Finally, we conclude with a discus-
sion of related work in Section 7, and directions for future work in
Section 8.

2. ASSUMPTIONS AND DEFINITIONS
We assume a simple imperative language, with the usual con-

structs, such as assignments, sequencing, conditional statements,
loops, jumps (i.e., goto statements), READ and WRITE statements
to access sequential files, LOOKUP and UPDATE statements to access
random-access files, and procedure calls. Variable declarations (as
in Cobol) are of the form “var PIC X(n)” or “var PIC 9(n),”
which declare the variable var to store a byte sequence of length
n. An X indicates that the bytes store arbitrary characters, whereas
a 9 indicates that the bytes store decimal digits. Conditional state-
ments are assumed to be side-effect free; if a conditional has side
effects, it ought to be first transformed to remove the portions with
side effects into separate statements. We assume that the Cobol
PERFORM loops have been translated to normal while loops, with
the introduction of explicit statements, if necessary, to initialize and
increment loop-induction variables.

Input (i.e., READ) and output (i.e., WRITE) statements have se-
mantics as described below. Each statement refers to a buffer (i.e.,
variable) and a file. When the statement executes, bytes are trans-
ferred between the buffer and the file. The number of bytes trans-
ferred is equal to the declared length of the buffer. In the example
program of Figure 1: (a) Line 8 reads the next data record from
the sequential input file in-file into the input buffer (variable)
order-rec; (b) Line 15 reads the record that has value ord-it-id
in its primary key field from the random-access database table
item-table into the variable item-rec; and (c) Line 11 appends
the value (scalar or record) in order-rec to the sequential output
file out-file. For ease of presentation we assume that distinct
READ statements use distinct input buffers, and that other state-
ments do not modify input buffers. We use the terms “record” and
“value” interchangeably because, at a basic level in Cobol, all val-
ues are simply sequences of bytes, with no real difference in repre-
sentation between a scalar value and a record value.

In our approach, a program is represented as a control-flow graph,
in which nodes represent statements or conditionals, and edges rep-
resent potential flow of control among the statements/conditionals.

Our approach requires the computation of conservative interpro-
cedural data dependences [16]. A statement u is data dependent
on statement d if d assigns a value to a memory location l, u reads
l, and there exists a path from d to u along which no statement
assigns a value to l. A statement s is control dependent on a condi-
tional c if and only if there exist multiple branches from c such that
along one of the branches s is definitely reached, whereas along all
other branches s may not be reached [8]. A statement s dominates

statement t if and only if all paths from the entry of the program to
t go through s [1]. A backward slice of a program from a node s is
the set of nodes on which s is dependent by the transitive closure
of data and control dependences [20]. To account for jump nodes
correctly during slicing, we treat jump nodes as pseudo predicates
to ensure that they are included in a slice as appropriate [3].

An e-hammock [13] is a subgraph of a CFG that has a single
entry node, and, if all jumps are replaced by no-ops, a single fall-
through exit node outside the subgraph. It can be shown that a CFG
subgraph is an e-hammock if and only if the subgraph corresponds
to a sequence of source-code statements (simple or compound) hav-
ing the additional property that its entry node is the target of all in-
coming jump edges (i.e., those whose sources are outside the block
sequence). An e-hammock H is the tightest e-hammock surround-
ing a set of CFG nodes N if and only if H includes all the nodes in
N , and ∀H ′ such that H ′ is an e-hammock and H ′ includes all the
nodes in N , H ′ ⊇ H .

We handle only programs without improperly overlapping loops
(i.e., reducible programs). Although arbitrary programs involving
goto statements can be irreducible in general, these are very rare
in practice.

3. CHARACTERIZATION OF SERVICES

3.1 Informal Characterization of a Service
A service S in a program P is a fragment of code (i.e., a sub-

set of CFG nodes) that satisfies certain properties. The properties
are of two kinds: control-flow properties and data-flow properties.
Our intuition is that fragments that satisfy these properties tend to
provide meaningful, independent functionality. Here we provide
informal introductions to these properties; we formalize these no-
tions in Section 3.3.

The nodes in a service need not necessarily constitute a con-
tiguous, single-entry single-exit region of the CFG. The required
control-flow properties, intuitively, are (1) the service be contained
in an e-hammock in the CFG (which is basically a CFG subgraph
that corresponds to a sequence of source-level statements with no
incoming jumps into the middle of the sequence), (2) the entry node
of this region be included in the service (thus becoming the entry
node of the service), and (3) each conditional node in the region
that controls one more nodes belonging to the service also be in the
service. The control-flow properties basically constitute a part of
the sufficient condition for extractability of the service into a sepa-
rate procedure [13].

Each time controls enters the entry node of the service S during
the execution of P we call it an invocation of the service. Note
that there may be intervening nodes in the region containing a ser-
vice that do not belong to the service; for instance, the statement
labeled 33 surrounded by service (2) in Figure 1. These may cause
control to leave a service and then re-enter it (via non-entry nodes)
within a single invocation of the service; e.g., in the example con-
trol may leave service (2) at line 32 and re-enter it at statement 34.
This is purely an artifact of interleaving in the given source code,
and will vanish if the interleaved services are separated by a source-
to-source transformation (see further discussion in Section 5).

The data-flow properties ensure that the service interacts with its
context (i.e., surrounding code) in restricted ways, thus minimiz-
ing coupling with the environment. The properties are with respect
to the source variables as well as output variables of the service.
A source variable of a service is a variable through which a value
generated outside the service (or in a previous invocation of the
same service) flows into a computation in the current invocation
of the service. Intuitively, the sources of a service are its parame-

/ 1/ balance = 0
/ 2/ WHILE in-file not AT END
/ 3/ READ in-file INTO trans
/ 4/ IF trans.code = ’depo’
/ 5/ balance = balance + trans.amt
/ 6/ WRITE ’deposit success’, balance
/ 7/ ELSE IF trans.code = ’withdr’
/ 8/ IF balance >= trans.amt
/ 9/ balance = balance - trans.amt
/10/ WRITE ’withdraw success’, balance
/11/ ELSE
/12/ WRITE ’withdraw reject’, balance
/13/ ENDIF
/14/ ENDIF
/15/ END-WHILE
/16/ WRITE balance

Figure 2: Example to illustrate the specification of global vari-
ables. (Data declarations are omitted for brevity.)

ters from its context. We require that each source variable v is (1)
an input buffer of a READ statement, (2) a variable that is declared
as “global” by the programmer, meant for communication between
services or between a service and its context, or (3) derives its value
from the current values of other variables in categories (1) and (2).
These restrictions ensure the independence of each service invoca-
tion from its context (i.e., the surrounding code and other service
invocations). By restricting a service to use (1) the values in input
buffers, which are basically inputs to the entire program from its
environment, and were not computed by the context of the service,
(2) the values in global variables designated for inter-service com-
munication, and (3) variables whose values are derived from these
(and not other arbitrary variables whose values are defined in the
context of the service), we seek to minimize coupling between a
service and its context. Note that in addition to receiving values
through its sources, a service may also contain READ statements
through which it directly reads values from input files.

Furthermore, in order to satisfy the normal meaning of a param-
eter, we require that each source of a service must either remain
invariant during the execution of the service, or must be written to
only by statements within the service. That is, any statement that is
not in the service but intervenes between statements in the service
should not update any source. We call this the “unique parameter
value” requirement. In the interest of space, we postpone discus-
sion about output variables to Section 3.3.

Consider the three services marked in Figure 1. Assume that the
programmer has specified item-table (the persistent table that
contains information on available items) as a global variable. In this
example, none of the services have any output variables. For ser-
vices (2) and (3), the source variables are the input buffer in line 8,
whose fields are used in both services, as well as item-table. For
service (1) the only source is item-table. Each of these services
also reads order item records from the input file directly. Note that
services (2) and (3) read multiple order items in each invocation;
although we might want to consider having the context read these
items from the input file and pass them as parameters to the ser-
vices, this would require an invasive source transformation.

3.2 Specification of Global Variables
Persistent tables, such as item-table in the example in Fig-

ure 1, normally ought to be declared as global variables. As re-
gards other program variables, we illustrate the need for program-
mers to specify explicitly the ones that are to be treated as global
variables. Consider the example in Figure 2. This program updates
the bank balance of a customer by processing the transactions from
in-file. Lines 5–6 and lines 8–13 correspond to the candidate
services that process an individual deposit and withdrawal transac-
tion, respectively. Lines 4–14 correspond to the candidate service

“process individual transaction,” whereas the entire program corre-
sponds to the candidate service “process all transactions.”

The global-variables specification captures the programmer’s in-
tent of how independent the inferred services ought to be and, indi-
rectly, the granularity of the services to be inferred. For the exam-
ple in Figure 2, consider the three finer-grained candidate services
that are contained within the loop body (i.e., the services other than
“process all transactions”). Suppose the programmer does not de-
clare balance to be a global variable. Then, variable balance,
which is a source, satisfies neither of the three properties of sources
mentioned in Section 3.1. In particular, it does not satisfy the third
property because its value is dependent on the old values in the in-
put buffer trans that were read in iterations prior to the current
one. Therefore, without the declaration of balance as a global
variable (which would cause it so satisfy the second property), the
three finer-grained services would be not identified.

3.3 Formal Definition of a Service
Before presenting our definition of a service, we present prelim-

inary definitions. In the following, we use S to refer to the code
fragment (i.e., a set of CFG nodes) in a candidate service.

DEFINITION 1. (Downwards-exposed variable) A variable v
is said to be downwards exposed in S, or equivalently an output
variable of S, if some definition of v in S reaches a use of v outside
S, or reaches a use of v in S via a path that leaves S and then re-
enters S through its entry node (i.e., the entry node of the tightest
e-hammock that contains S).

DEFINITION 2. (Upwards-exposed variable) A variable v is
said to be upwards exposed in S, or equivalently a source variable
of S, if some use of v in S is reached by a definition of v outside S,
or is reached by a definition of v in S via a path that leaves S and
then re-enters S through its entry node.

DEFINITION 3. (Incoming value) A value in variable v is said
to be incoming to S if the value was placed in v either by a state-
ment not in S or by a node in S during a previous invocation of S,
and resides in v at some point of time t in execution when control
enters a node in S from a node outside S. If another variable w
also contains an incoming value at time t, the two incoming values
are said to correspond.

Note that the statement that places the value in v need not pre-
cede the entry of S; it could be an intervening statement, in which
case the node to which control enters at time t would not be the
entry node of S.

DEFINITION 4. (Derived variable) A variable v is said to be
derived from a set of variables V , if whenever there is an incoming
value in v to S, there are corresponding incoming values in all
variables in V to S, and the incoming value of v is fully determined
by (i.e., is a mathematical function of) the corresponding incoming
values of the variables in V .

We assume that each variable in the program (including input
buffers) have a special value Uninit before the program starts exe-
cution.

DEFINITION 5. (Service) A service S in a program P is a tuple
(S,G, e), where S is a (possibly non-contiguous) set of nodes, G is
the set of (programmer-declared) global variables, excluding input
buffers, in P , and e is the entry node of S such that the following
control-flow and data-flow properties are satisfied.

Input. program P , declared set of global variables G.

(Step 1) Identify all tag fields and tag conditionals in P .
(Step 2) Identify the set of regions Reg in P .
(Step 3) For each region reg ∈ Reg:

(a) Let W be the set of all WRITE statements in reg Proceed to
Step (b) if W is non-empty.

(b) For each region rega that is equal to or contains reg

(i) Obtain a backward slice S, bounded within region rega,
by using the nodes in W as the slicing criterion. A re-
striction observed during the slicing is that we do not
follow dependence edges backward that are induced by
paths not entirely contained within rega.

(ii) Emit (S, P,G) as a service provided
A. No other service has been emitted so far that differs

from this one only in terms of have more or fewer
“if” conditionals, and

B. It satisfies the characterization in Section 3.3.

Figure 3: The algorithm for identifying services.

• (Control-flow property 1) Let H be the tightest e-hammock
that contains the nodes in S. Then, for each n ∈ S, all
control-dependence ancestors of n in H are also in S. The
entry node of H is the entry node of the service.
• (Data-flow property 1) Each upwards (downwards) exposed

variable v (1) belongs in G, or (2) is an input buffer whose
READ statement in outside (inside) S, or (3) is derived (Def-
inition 4) from a subset of input buffers and global variables
that are upwards (downwards) exposed in S.
• (Data-flow property 2) For each upwards-exposed variable

v there does not exist any execution of P wherein during a
single invocation of S two different incoming values of v are
used by nodes in S during this invocation of S.

Note that data-flow property 2 formalizes the “unique parameter
value” requirement discussed in Section 3.1.

4. DESCRIPTION OF THE ALGORITHM
Figure 3 presents the algorithm for identifying services that con-

form to the characterization presented in the previous section. The
algorithm takes as inputs the program P and the set of global vari-
ables G. It generates as output a set of candidate services. Next,
we discuss different steps of the algorithm.

Step 1: Identify tag fields and conditionals
Tag conditionals are the “if” conditionals that test a tag field in an
input buffer, or a variable that stores a copy of a tag field of an
input buffer, against one of the possible tag values of that field.
A tag field is basically a field in an input record that determines
how the record ought to be processed (e.g., field ord-type in the
example in Figure 1). The algorithm first identifies tag fields using
the heuristic presented in Reference [14]; alternatively, tag fields
could be specified manually using programmer annotations. From
the tag fields, the algorithm determines the variable occurrences—a
variable occurrence is a pair (n, v), where n is a node and v is a
variable—to which tag fields of input buffers may flow via zero or
more copy statements. To do this, the algorithm uses the transitive
data-dependence analysis described in Reference [14]. Finally, the
algorithm characterizes as a tag conditional any “if” conditional p
that contains a conjunct of the form v = k or v 6= k, such that
(p, v) was previously identified as storing a copy of a tag field.
Although this technique may not necessarily yield all conditionals
in a program that a human would regard as a tag conditional, for our

analyzed subjects in the empirical study (Section 6), it identified all
tag conditionals.
EXAMPLE 1. Consider the example program in Figure 1, in which
the algorithm identifies order-rec.ord-type as a tag field. Us-
ing this information, the algorithm identifies the conditionals in
lines 9 and 21 as tag conditionals. 2

Step 2: Identify regions in the program
This step decomposes the program P into a tree structure of re-
gions; each region is a maximal e-hammock that is controlled by a
branch of a tag conditional or a loop header (the tag conditional or
the loop header is not part of the region). Note that the outermost
region is the entire program and has no parent region.
EXAMPLE 2. For the example in Figure 1, the algorithm identi-
fies seven regions: (R1) the whole program, (R2) the loop body in
lines 8–41, (R3) lines 10–20, (R4) lines 14–19, (R5) lines 22–40,
(R6) lines 25–30, and (R7) lines 37–38. The containment hierar-
chy among these regions is R1 → R2, R2 → R3, R3 → R4,
R2 → R5, R5 → R6, and R5 → R7. 2

Step 3: Perform slicing in each region
Step 3 performs backward slicing in each region to identify candi-
date services. For each region reg , this step first identifies the set
W of WRITE statements in reg . Next, it computes a backward slice
using the statements in W as the slicing criteria. To do this, the al-
gorithm identifies a bounding region rega of reg , which may be the
same as reg . By varying the bounding region, multiple candidate
services are identified (from which the programmer could select the
desired ones). We illustrate the benefit of this later in this section.
In addition, we use a heuristic to prune away certain candidate ser-
vices to reduce seemingly similar services: if a candidate service
from an outer boundary differs from a candidate service from an
inner boundary only in containing some additional “if” conditional
nodes (i.e., no additional computation nodes), we ignore the outer
candidate service and consider only the inner one.
EXAMPLE 3. As mentioned earlier, order-rec.ord-type is the
only tag field in the program in Figure 1, and item-table is the
only variable declared as global by the user. Suppose that reg con-
sists of lines 14–19. Then, W = {18}. We illustrate different
services that can be identified by considering different bounding
regions. First, let the bounding region rega be the same as reg .
The algorithm computes a candidate service that is this entire re-
gion (see the fragment labeled (1) in Figure 1). This corresponds
to the service for processing an item of a regular order. Next, let
rega be the containing region 10–20. In this case, the algorithm
computes the service consisting of lines 12–20. This candidate is
a variant of the ideal service that processes an entire regular order
(the ideal one from the programmer’s perspective would be the ser-
vice labeled (3) in Figure 1, which includes the WRITE statement in
line 11). These two candidate services differ not in the set of WRITE
statements they contain, but in that the second candidate includes a
loop (lines 13–20) that is not part of the first candidate. This is the
motivation for us to generate multiple candidate services starting
from the same seed of WRITE statements W : we would like to re-
port services that process records at different levels of granularity,
and let the programmer decide which one (or many) among them
are the most desirable. Next, by setting the bounding region rega

as lines 8–41, we get a candidate containing lines 8–9 and lines 12–
20. This is yet another variant of service (3) in Figure 1. Finally,
by setting rega to be the entire program, we get a candidate con-

Seed Bounding
Region Region

No. (reg) (rega) Code in Service Description
1 14–19 14–19 14–18 reg. order item
2 14–19 10–20 12–20 reg. order
3x 14–19 8–41 8, 9, 12–20 reg. order
4 14–19 P 1, 2, 7–9, 12–20, 42 all reg. orders
5 10–20 10–20 11–20 reg. order
6x 10–20 8–41 8, 9, 11–20 reg. order
7 10–20 P 1, 2, 7–9, 11–20, 42 all reg. orders
8 37, 38 37, 38 37 —
9 37, 38 22–40 22–32, 35–40 full order
10x 37, 38 8–41 8, 21–32, 35–40 full order
11 37, 38 P 1, 2, 7–8, 42, all full orders

21–32, 35–40
12 22–40 22–40 22–32, 34–40 full order
13x 22–40 8–41 8, 21–32, 34–40 full order
14 22–40 P 1, 2, 7–8, 42, all full orders

21–32, 34–40
15 8–41 8–41 8, 9, 11–32, 34–41 reg./full order
16 8–41 P 1, 2, 7–8, 42, all orders

9, 11-32, 34–41
17 P P P all orders

Table 1: Candidate services for the example in Figure 1.

sisting of the lines 1, 2, 7–9, 12–20, and 42 (the end of the outer
loop). This essentially corresponds to a partial evaluation of the
entire program, restricted to processing all regular orders from an
input file that contains both regular orders and full orders. 2

Table 1 lists all candidate services for the example program iden-
tified by our approach; the four services discussed in Example 3
are shown in the first four rows of the table. The first column of the
table is the serial number (we explain later the meaning of annota-
tion ‘x’). Columns 2 and 3 show the seed region and the bounding
region, respectively. Column 4 shows the code in the identified
service. Finally, Column 5 provides an informal description of the
closest ideal service. The rows in the table are sorted first by the
seed region (column 2), and within each seed, by increasing sizes
of the bounding regions (column 3).

The first, fifth, and the twelfth services are the ones marked in
Figure 1 as services (1), (3), and (2), respectively. Note that one
of the candidate services computed by the algorithm, namely ser-
vice 8, has no meaningful description and is, therefore, an unde-
sirable service. Rows 1, 5, 7, 12, 14, 15, and 17 show the ideal
services from the programmer’s perspective, whereas the other ser-
vices (except the one in row 8) are variants of these ideal services.

The candidate services in rows 3, 6, 10, and 13 (annotated with
‘x’) are eliminated by the heuristic that checks whether these ser-
vices differ from other candidates only in terms of having extra
conditionals. For instance, the candidate in row 3 is eliminated be-
cause it is identical to the one in row 2 except that it has an extra
conditional node, namely, line 9. Thus, four of the 17 candidate
services identified in Step 3(b)(i) are eliminated by this heuristic.

Next, the algorithm checks if each candidate service satisfies the
characterization of Section 3.3. All candidates identified by the
algorithm satisfy the control-flow property. In general, they may
not satisfy the data-flow properties. However, all 17 candidate ser-
vices identified by the algorithm on the running example satisfy
the characterization. In fact, as we observe in Section 6, in prac-
tice, the algorithm almost always identifies only candidate services
that meet the characterization, provided the programmer declares
an appropriate set of variables as global variables. For instance,
as discussed in Section 3.2, if balance were to be not declared a
global variable, only the entire program shown in Figure 2 satisfies

the characterization. However, if balance is declared as a global
variable, various meaningful fragments within the program (e.g.,
lines 8–13) satisfy the characterization.

In other words, the characterization is useful in two ways: (1) to
check whether any given arbitrary fragment of code (not necessar-
ily identified by the algorithm) is a service, and (2) as a feedback
mechanism to the programmer during the execution of the algo-
rithm, to fine tune the set of variables declared as global, until the
candidate services that they would like meet the characterization.

Discussion
It follows from the previous discussion that the number of services
identified by the algorithm can be up to |reg |2, where |reg | is the
total number of regions in the program. The total number of regions
itself is bounded by the number of loops and tag conditionals in the
program.

The services emitted by our algorithm form a hierarchical tree
structure. Basically, a service S1 is contained in another service S2

if the set of nodes in S1 is contained in the set of nodes in S2. For
example, service (1) in Figure 1 is contained within service (3).

Note that any single service we identify is contained within a sin-
gle procedure; this service may, however, contain procedure calls.
We leave it to future work to extend the approach to identify inter-
procedural services.

5. APPLICATIONS OF SERVICE IDENTI-
FICATION

In this section, we discuss three applications of our service iden-
tification technique: program understanding, batch modularization,
and batch-to-online transformation.

5.1 Program Understanding
It is well-recognized that identifying and labeling concepts in an

application improves its understandability [21]. The services we
identify within batch applications are an instance of concepts. The
hierarchy of services our algorithm emits can be represented as a
service tree within an integrated development environment (IDE),
such as Eclipse, which can be enabled as part of a new service view.
This service view can color code (and indent) individual services so
as to help the developer focus on a service, and edit just that par-
ticular service. If the update to a particular service can change the
service tree, it gets reflected in the tree and keeps the developer
aware of any changes that might reorganize the services. Addition-
ally, the developer can annotate different services with comments
and the IDE can link the annotations to the service nodes.

5.2 Batch Modularization
An interesting application of our service-identification technique

is that of re-engineering legacy code by extracting different ser-
vices as separate procedures, and replacing the previously in-place
code of each service with a call to the extracted procedure. Al-
though this does not modify the essential batch nature of the appli-
cation, it would improve the understandability and maintainability
of a batch program. The application developer may select a service
from the ones identified in Section 3.3, and pass it onto an exist-
ing procedure-extraction algorithm (e.g., [13, 17]). The procedure
extractor could rewrite the batch program by creating a separate
procedure corresponding to each service. Because of the hierar-
chical nature of the services, an extracted procedure may contain
calls to other previously extracted services. The extraction algo-
rithms are quite general; for instance, for the example in Figure 1,
the algorithms can extract contiguous fragments, e.g.,service (3),

as well as non-contiguous fragments, e.g.,service (2). Service (2)
would be extracted by first placing a copy of line 32 after line 40,
then moving line 33 so that it becomes nested under this new copy,
then extracting the (now contiguous) fragment. An interesting chal-
lenge, which we leave to future work to address, is that of automatic
naming of the services.

5.3 Batch-to-Online Transformation
Advances in the computing industry and business requirements

have in many situations made it critical to translate legacy batch
systems into online systems, in which individual services can run
independently of each other and process transactions as and when
they arrive. Service identification is the first step toward such a
batch-to-online translation. Once services have been identified,
each one can be extracted and wrapped as a separate execution unit.
These execution units can be called asynchronously as the inputs to
them become available from the environment. They can be called
concurrently too, provided the critical sections that access shared
data are protected by appropriate synchronization.

The hierarchical organization of our services enables the online
system to have an interesting property. An “outer” service can be
invoked whenever its “header” transaction arrives, and then sus-
pended pending the arrival of the “inner” transactions that are con-
ceptually nested within it. Whenever an inner transaction arrives,
the corresponding inner service can be invoked in the context of the
suspended invocation of the outer service. Finally, after all inner
transactions have arrived and have been processed, the outer ser-
vice can be resumed and allowed to complete. For instance, in the
example in Figure 1, the environment can invoke service (3) when-
ever the header of an order record arrives. It would then suspend
this invocation (after line 12), and invoke service (1) (in the context
of the suspended service (3)) whenever a transaction corresponding
to an item within the order arrives. Finally, it would complete the
suspended invocation of the outer service (i.e., service (1)) after all
items have arrived. With this approach the system will be able to
process multiple orders concurrently, even if the items within each
order arrive non-deterministically from the environment, and inter-
leaved with items of other orders. We leave it to future work to
flesh out the details of this particular application, and validate it in
real contexts.

6. EVALUATION
We have presented a novel static-analysis-based approach for

identifying services from batch-processing business applications.
To evaluate the approach, we performed a manual analysis of the
three medium-sized proprietary Cobol programs, each around 1000
lines long. These are typical examples of batch programs that we
have encountered in many enterprise applications. Each of these
batch programs has a single outermost loop, which processes all
input records. Each program consists of a sequence of “Cobol
paragraphs”, which are “performed” (invoked) at different places.
For the purpose of this evaluation, we assumed that all the para-
graphs were inlined. For each benchmark, we present a few statis-
tics: number of lines of Cobol code, number of WRITE statements,
number of loops, number of marked global variables, and the num-
ber of services identified by our approach. For each benchmark,
we contrast our approach with the naive approach of performing
backward slicing using each WRITE statement as a seed. We dis-
cuss our experience with each of the program, followed by some
general observations.

Benchmark A1
Lines = 1323; WRITEs = 62; Loops = 5; Marked global vari-

/ 1/ Initialization();
/ 2/ while (...) {
/ 3/ Read-and-validate-input-record();
/ 4/ switch(inp-rec.f1) {
/ 5/ // 12 way switch statement
/ 6/ case 1: ...
/ 7/ case 2: ...
/ 8/ ...
/ 9/ case 7:
/10/ switch(inp-rec.f2) {
/11/ case ’a’: ...
/12/ case ’b’: ... }
/13/ ...
/14/ case 12:
/15/ switch(inp-rec.f2) {
/16/ case ’a’: ...
/17/ case ’b’: ... }
/18/ }
/19/ }
/20/ Write-statistics();

Figure 4: Skeleton code of Benchmark A1.

Seed Bounding Code in
Service Region Region Service Description
1 6 3–18 3,4,6,18 ReadValidateReformat1
2 6 1–20 1–4,6,18,19 Reformat1_InLoop
.
35 17 3–18 17 ReadValidateReformat18
36 17 1–20 1–4,17–19 Reformat18_InLoop
.
37 3–18 3–18 3–18 ReformatAnyOneRec
38 3–18 1–19 1–19 ReformatAllRec
39 1–20 1–20 1–20 A1

Table 2: Candidate services for Benchmark A1.

ables = 0; Identified services = 39.

A skeleton of Benchmark A1 is shown in Figure 4. This pro-
gram is a banking information system that formats input files and
writes to an output file based on different input parameters (e.g.,
new applicant, deposit, etc.). There are 12 types of records; each
type is processed in a case statement of a 12-way switch state-
ment. Some of these 12 record types (case 7 through case 12) have
further variations based on other input-record fields. Of these total
24 switch branches, there are 18 logical switch branches in the pro-
gram, including the outer switch with 6 branches (case 1 through
case 6), and 12 inner ones within some of the outer-level branches
(for instance, inp-rec.f1 is 7 AND inp-rec.f2 is ’a’). Of the
total 62 WRITE statements, 8 occur in Write-statistics mod-
ule, 36 occur in the initialization and record-validation modules,
and a WRITE occurs in each of the 18 logical switch branches.

The naive service-identification approach would generate 62 dif-
ferent services, one for each WRITE statement, without considering
whether some of the statements (e.g., the ones that occur in the re-
gion of the same tag condition) can be grouped. Thus, for instance,
there are eight WRITE statements in the Write-statistics mod-
ule; the naive scheme would generate eight backward slices and,
thereby, identify eight services, one for each slice.

Table 2 shows some of the services identified by our approach,
along with the seed, the bounding region, and a description of the
service; the seed, the bounding region, and the identified services
are shown by the line numbers. Figure 5 shows the identified ser-
vices visually to illustrate the service hierarchy. Our approach iden-
tifies the 18 tag conditions corresponding to the 18 logical switch-
case statements. For each of these tag conditions, our approach
finds two service variants by varying the bounding region. The

Read−and−validate−input−record

Wite statistics

Input validation

A1

ReformatAllRec

ReadValidateReformat5
WHILE Loop

ReformatAnyOneRec

S11 S13 S15 S17 S18S12 S14 S16S10

S2 S4 S6 S8 S9S3 S5 S7S1

Figure 5: Hierarchical services identified for Benchmark A1.
Dashed boxes indicate some of the identified services.

Initialization();
while (...) {

Read-and-validate-input-customer-record();
while (...) {
Read-and-validate-activity-record();

}
}
Write-statistics();

Figure 6: Skeleton code of Benchmark A2.

first service is contained in the main loop, which validates the input
record and invokes the core service; service 1 in Table 2 is an in-
stance of such a service. In Figure 5, an example of such a service
is shown as the dashed curved region labeled ReadValidateRefor-
mat5. The second service invokes the initialization code, and then
performs the core service in a loop; service 2 in Table 2 is an in-
stance of such a service. For lack of space, we do not show an
instance of this service in Figure 5.

In addition to these 36 services, our approach finds three more
services. The first service (service 37 in Table 2) corresponds to the
complete loop body—shown by the dashed rectangle labeled Refor-
matAnyOneRec in Figure 5. The second service (service 38) corre-
sponds to program initialization and the complete loop—shown by
the dashed rectangle labeled ReformatAllRec in Figure 5. The third
service (service 39), which corresponds to the entire program and
includes the initialization code, the complete loop, and the code
that print statistics, is shown by the dashed rectangle labeled A1 in
Figure 5. The first among these three services is contained within
the second one, and further the second one is contained within the
third one. The total number of identified services is 39.

An interesting point to node is that although A1 has many more
regions than we discuss here—it has 106 tags and 5 loops)—our
approach ignores many of them because they do not control any
WRITE statements. (This is true across all the three benchmarks.)
Another noteworthy point is that A1 has loop-carried dependences
introduced by different counters, which are part of a single record
variable, and are used to collect statistics. The service correspond-
ing to the whole program is identified by specifying these output
statements along with the other output statements as the seed.

Benchmark A2
Lines = 1296; WRITEs = 19; Loops = 2; Marked global vari-
ables = 0; Identified services = 5.

A skeleton of this benchmark program is shown in Figure 6. This
program performs the nightly processing of the data of personal
banking customers that have been updated during the day. It has
a batch loop, which iterates over all the customers; nested within
that loop is another loop, which iterates over the activities of each

Write statistics

S1

Customer

header
processing loop

processing loop
activity

header

Initialization

Figure 7: Hierarchical services identified for Benchmark A2.

customer. The body of the inner loop intuitively defines a service
that processes customer data. Of the 19 WRITE statements, 16 oc-
cur in Write-statistics module, one occurs in the initialization
module, and the remaining two occur in the body of the inner loop.

The naive service-identification approach would identify 19 ser-
vices, one for each WRITE statement, without considering whether
the writes can be grouped. In contrast, our approach identifies only
one service corresponding to the inner data-processing code; this is
shown as the dashed rectangle S1 in Figure 7.

Although this service is within two nested regions, our approach
identifies only one service, and three variants of this core service.
The first variant corresponds to the core service invoked within the
inner loop (which processes the data for a customer); it is shown
by the dashed curved region containing S1 and activity-processing
loop in Figure 7. The second service corresponds to the outer loop
(which processes the data for all customers); it is shown by the
dashed curved region containing S1, the activity-processing loop,
and the customer-processing loop in Figure 7. The third service
invokes the initialization code before invoking the outer loop; it
shown by the dashed curved region containing S1, the activity-
processing loop, the customer-processing loop, and the initializa-
tion code.

Our approach identifies two more services by using the inner and
outer loop bodies as the bounding regions, but these are identical to
the services already identified. Finally, our approach identifies an-
other service consisting of initialization of data and the outermost
loop, and the last one consisting initialization, whole data process-
ing, and writing of statistics (shown by the dotted rectangle in Fig-
ure 7).

Benchmark A3
Number of lines = 803; WRITEs = 1; Loops = 1; Marked global
variables = 1; Identified services = 2.

A skeleton of this benchmark program is shown in Figure 8.
This program contains simple record-processing code, where each
record is read in a loop and processed. Two interesting aspects of
this program are the following: (1) iteration i of the loop generates
the output record based on the input record read in iteration i − 1
(i > 0), or the record read before the beginning of the loop (i = 0);
(2) each loop iteration copies the updated statistics to two fields of
the output record before the output record is written out.

The naive service-identification approach would generate a sin-
gle service for the WRITE statement. If no variable is marked as
global, our technique also identifies only one service (identical to
service identified by the naive approach). However, if we iden-
tify the variable used to collect the statistics as a global variable,
our technique identifies a service corresponding to the part of the

Initialization();
Read-record();
while (...) {

Process-record();
Update-statistics();
Copy-statistics-to-output-record();
Write-output-record();
Read-record(); }

Figure 8: Skeleton code of Benchmark A3.

While−loop

Initialization Read−record

Process−record

Copy−statistics−to
output−record

Read−record

record

Write−output

Update−statistics

Figure 9: Hierarchical services identified for Benchmark A3.

loop body (shown in the dashed rectangle in Figure 9). Moreover,
our technique identifies another service corresponding to the whole
program (shown in the dotted rectangle in Figure 9). Note that we
do not generate a service that does the initialization and executes
an iteration of the loop.

Discussion
Although preliminary, this study illustrates the benefit of our tech-
nique that, unlike the naive technique, it does not identify overly
fine-grained services. By grouping relevant WRITE statements in
the same service, our technique identifies meaningful services that
are also organized in a hierarchical manner, which arguably can
help in program understanding. Moreover, as the data for Bench-
mark A3 illustrate, our approach can identify services that the naive
technique misses. Thus, our results indicate that the approach has
the potential to be highly effective in identifying useful services
from legacy batch applications.

Another noteworthy point is that the user input (marking the
global variables) required by our technique to identify services ef-
fectively is minimal for the three benchmarks: of the three bench-
marks, only one required global variables to be marked and, even
in that case, only one record variable had to be marked.

From our experience in studying Cobol programs, we observe
that our modeling of the tag condition has been precise enough.
All the tag conditions we have seen in the programs have been of
the form (Field op Const), where Field is a field in a record, op ∈
{=, 6=} and Const is a constant literal. For all our subject programs,
the inferred services matched the underlying intuitive services.

Although our results are promising, they are preliminary, and
further empirical investigation is required to confirm them. The
most significant threat to the validity of our observations are threats
to external validity, which arise when the observed results cannot
be generalized to other experimental setups. In our study, we used
only three Cobol subjects of medium size. The effectiveness of the
technique may vary for other subjects. However, the three subjects
contain typical idioms of batch-processing legacy Cobol applica-
tions. Therefore, we are confident that our results may generalize
to other subjects as well. An implementation of the approach will

let us conduct more extensive empirical studies in the future.

7. RELATED WORK
There has been a significant amount of past work in the area

of identifying candidate services from legacy software. These in-
clude techniques based on software clustering [25, 26], graph anal-
ysis [19], slicing based on programmer specifications of the slicing
criterion [6, 11, 18], as well as combined static and dynamic anal-
ysis [7, 24]. The approaches in the first two categories mentioned
above are fully automated, whereas the latter ones need program-
mer involvement (in terms of slicing criteria or test cases). To our
knowledge, we are the first to provide a formal characterization of
a service, based on input/output characteristics and data-flow and
control-flow properties, and the first to propose the notion of hier-
archical organization of services. Furthermore, we provide a so-
lution that is tailored to the idioms that occur frequently in batch-
processing business applications. Finally, although the candidate
services we identify are influenced by programmer specifications
of global variables, providing these specifications requires less ex-
tensive developer interaction than providing slicing criteria for each
service, or a good set of test cases.

Hess [12] proposes an approach for categorizing entire programs
(not statements) within a batch application based on the system-
level idioms and relationships they participate in. Structural trans-
formations of batch applications are also discussed.

There have been many automated as well as semi-automated ap-
proaches reported in the literature for identifying related proce-
dures, classes, modules, etc. [2, 4, 5, 23]. These approaches do
not address the problem of precise identification of interleaved fea-
tures.

There has been foundational work reported in the areas of para-
metric [9] and conditioned [10] program slicing, which integrate
partial evaluation and program slicing in a systematic and formal
way. It would be interesting future work to use these ideas to pro-
vide a characterization of services that is less code-oriented, and
that relates the operational semantics of a service to the semantics
of the containing service or program.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented an automated technique for identify-

ing interleaved, independent services from batch-processing busi-
ness applications. We presented a characterization of services in
terms of input/output characteristics, control-flow properties, and
data-flow properties. We then presented an algorithm that combines
tag-condition analysis with program slicing to identify services that
conform to our characterization. Our preliminary empirical results
indicate the potential usefulness of the approach.

Implementation of the proposed technique and a detailed eval-
uation remains the main future work. There are several problems
in the area of service identification and extraction that can make
for challenging future research. For example, it would be interest-
ing to formalize the quality or usefulness of an identified service.
Similarly, approaches to filter and rank identified services would be
useful. More powerful transformation techniques (e.g., making use
of program-rewriting techniques) ought be explored to expand the
idioms of batch programs that can be addressed.

9. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles,

techniques, and tools. Addison-Wesley, Boston, MA, USA, 1986.
[2] G. Antoniol, G. Casazza, M. Di Penta, and E. Merlo. A method to

re-organize legacy systems via concept analysis. In Proc. Int.
Workshop on Program Compr. (IWPC), pages 281–290, 2001.

[3] T. Ball and S. Horwitz. Slicing programs with arbitrary control flow.
Lecture Notes in Computer Science, (749):206–222, 1993.

[4] G. Caldiera and V. R. Basili. Identifying and qualifying reusable
software components. IEEE Computer, 24(2):61–70, 1991.

[5] F. Chen, S. Li, and W. C.-C. Chu. Feature analysis for
service-oriented reengineering. In Proc. 12th Asia-Pacific Software
Engineering Conference, pages 201–208, 2005.

[6] A. Cimitile, A. D. Lucia, and M. Munro. Identifying reusable
functions using specification driven program slicing: a case study. In
Proc. Int. Conf. on Softw. Maint. (ICSM), pages 124–133, 1995.

[7] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source
code. IEEE Trans. Softw. Eng., 29(3):210–224, 2003.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans. Prog.
Lang. Sys., 9(3):319–349, July 1987.

[9] J. Field, G. Ramalingam, and F. Tip. Parametric program slicing. In
Proc. Symp. on Principles of Progr. Langs., pages 379–392, 1995.

[10] C. Fox, S. Danicic, M. Harman, and R. M. Hierons. Consit: a fully
automated conditioned program slicer. Softw. Pract. Exper.,
34(1):15–46, 2004.

[11] M. Harman, N. Gold, R. M. Hierons, and D. Binkley. Code
Extraction Algorithms which Unify Slicing and Concept Assignment.
In Working Conf. in Reverse Engg. (WCRE), pages 11–21, 2002.

[12] H. M. Hess. Aligning technology and business: Applying patterns for
legacy transformation. IBM Systems Journal, 44(1):25–46, 2005.

[13] R. Komondoor and S. Horwitz. Effective, automatic procedure
extraction. In Proc. Int. Workshop on Program Comprehension,
pages 33–42, 2003.

[14] R. Komondoor and G. Ramalingam. Recovering data models via
guarded dependences. In Proc. Working Conf. on Reverse Engg.,
pages 110–119, 2007.

[15] K. Kontogiannis, G. Lewis, , and D. Smith. A research agenda for
service-oriented architecture: Research needs for maintenance and
evolution of service-oriented systems. In Proc. 2nd Intl. Workshop on
SOA-Based Systems Maint. and Evolution (SOAM), 12th European
Conf. on Softw. Maint. and Reengineering (CSMR), 2008.

[16] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe.
Dependence graphs and compiler optimizations. In Proc. Symp. on
Principles of Progr. Langs., pages 207–218, 1981.

[17] A. Lakhotia and J. Deprez. Restructuring programs by tucking
statements into functions. Inf. and Softw. Technology,
40(11-12):677–689, Nov. 1998.

[18] F. Lanubile and G. Visaggio. Function recovery based on program
slicing. In Proc. Conf. on Software Maint. (ICSM), pages 396–404,
1993.

[19] S. Li and L. Tahvildari. A service-oriented componentization
framework for java software systems. Proc. Working Conf. on
Reverse Engg., pages 115–124, 2006.

[20] K. Ottenstein and L. Ottenstein. The program dependence graph in a
software development environment. In Proc. ACM Softw. Engg.
Symp. on Practical Softw. Development Environments, pages
177–184, 1984.

[21] V. Rajlich and N. Wilde. The Role of Concepts in Program
Comprehension. In Int. Workshop on Program Compr. (IWPC), pages
271–280, 2002.

[22] S. Rugaber, K. Stirewalt, and L. Wills. Understanding interleaved
code. Automated Software Engg., 3(1-2):47–76, June 1996.

[23] A. van Deursen and T. Kuipers. Identifying objects using cluster and
concept analysis. In Proc. 21st Intl. Conf. on Softw. Engg., pages
246–255. IEEE Computer Society Press, 1999.

[24] N. Wilde and M. C. Scully. Software reconnaissance: mapping
program features to code. Journal of Software Maintenance,
7(1):49–62, 1995.

[25] Z. Zhang, R. Liu, and H. Yang. Service identification and packaging
in service oriented reengineering. In Proc. 17th Int. Conf. Softw.
Engg. and Knowledge Engg. (SEKE), pages 14–16, 2005.

[26] Z. Zhang and H. Yang. Incubating services in legacy systems for
architectural migration. In Proc. Asia-Pacific Software Engineering
Conference (APSEC), pages 196–203, 2004.

