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Timing analysis of TCP servers
for surviving denial-of-service attacks
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UCLA

Abstract— Denial-of-service attacks are becoming more
frequent and sophisticated. Researchers have proposed a
variety of defenses, including better system configurations,
infrastructures, protocols, firewalls, and monitoring tools.
Can we validate a server implementation in a systematic
manner? In this paper we focus on a particular attack, SYN
flooding, where an attacker sends many TCP-connection
requests to a victim’s machine. We study the issue of
whether a TCP server can keep up with the packets from an
attacker, or whether the server will exhaust its buffer space.
We present a tool for statically validating a TCP server’s
ability to survive SYN flooding attacks. Our tool automati-
cally transforms a TCP-server implementation into a timed
automaton, and it transforms an attacker model, given
by the output of a packet generator, into another timed
automaton. Together the two timed automata form a system
for which the model checker UPPAAL can decide whether
a bad state, in which the buffer overruns, can be reached.
Our tool has two advantages over simply testing the server
implementation with a packet generator. First, our tool
is an order of magnitude faster because of aggressive
abstraction of the server code. Second, our tool can be
applied to a variety of server software without having to
install each one in the kernel of an operating system. Thus,
a programmer of defensive measures against SYN flooding
attacks can get rapid feedback during development.

I. I NTRODUCTION

A. Background

Attacks on internet sites are becoming frequent. In-
creasingly sophisticated attacks on the websites of the
SCO [37], the RIAA [18], the Al Jajeera [36], the
CERT [28], and the White House [29] show that no site
can hope to avoid denial of service (DoS) attacks. For
health-care monitoring and diagnosis over the Internet,
Nisley wrote that “a distributed Denial-of-Service attack
on the monitoring center may prove fatal” [32]. In
response, researchers and system administrators have
built various degrees of defenses against DoS attacks,
including systems with more resources, more restrictive
protocols, firewalls, monitoring systems, and reactive
systems [3], [43], [27], [15], [14], [38], [39], [35]. We
can divide the defense measures into two categories:
detectionof denial of service attacks [43], [27], [39],
[41], [8], and responseto such attacks, either by trying
to traceback the source [14], [23] or by managing the
attack such that the impact can be reduced [30], [35],

[45]. Much of the battle between attackers and defenders
takes place at the TCP-level: more than 90% of the DoS
attacks use TCP [31]. This paper is concerned with tools
and methods to validate TCP-server implementations and
answer questions such as:

Challenge: Can we determine efficiently
whether a TCP server will survive a denial-
of-service attack?

Our main contribution is to show that for a class of
attacks such challenges can be answered efficiently and
fairly accurately usingtiming analysisof the server code
and a novel model of TCP.

B. The Problem
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Fig. 1. TCP protocol and exploit.

In this paper we focus onSYN flooding attackswhich
exploit that TCP [1] requires a three-way handshake to
take place before data can be transmitted between a client
and a server. In the first step of a three-way handshake,
see Figure 1(a), the client sends a packet SYNx to the
server. The packet SYNx is a TCP-connection request
and x is a sequence number. Second, the server stores
a representation of SYNx in a buffer and responds to
the client with two packets SYNy and ACKx+1. Third,
for the connection to be established, the server needs to
wait for an appropriate acknowledgment from the client,
in the form of an ACKy+1 packet. When the ACKy+1

packet has been received, the server clears the buffer
entry for SYNx. If the server does not get a response
from the client before a specified timeout time, then the
server will time out the packet and clear the buffer entry.

Notice that when the server receives a SYN packet,
the server will allocate a buffer entry. SYN flooding is



2

an attempt to exhaust the available buffer space such
that SYN packets from valid clients will have to be
rejected, thereby leading to denial of service to the
valid clients. A malicious client can do SYN flooding
by repeatedly sending SYN packets, see Figure 1(b),
without ever sending ACK packets to complete the three-
way handshake. The SYN packets will get stored in the
buffer and unless packets time out fast enough, they will
accumulate in the buffer and exhaust the available space.
If the buffer space is unbounded, the situation is even
worse: SYN flooding can lead to taking up all the space
resources of the server.

SYN flooding attacks are easy to build and have
a strong effect in terms of blocking the service to
other clients. Not only web servers but also any system
connected to Internet providing TCP-based services such
as FTP or Mail servers are susceptible to SYN flooding
attacks. The core problem is about timing: “can the TCP
server keep up with the packets from the attacker, or will
the TCP server exhaust its buffer space?”

C. Simulation-based Experiment
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Fig. 2. Simulation-based experiment.

We begin with an experiment that examines a state-
of-the-artsimulation-basedapproach to validating TCP
server implementations. The approach uses one of the
many network simulators and integrated experimental
environments [12], [22], [24], [44] to deploy and test the
TCP-server implementation. Further, the approach sim-
ulates network traffic (from attackers and well-behaved
clients) with a packet generator, and then itchecks
whether the server succumbs to attacks. We chose the
TCP-server implementationlwIP [19], the accompanying
experimental environmentsimhost, the packet generator
D-ITG, [9] and the packet senderSpak [40]. In the
experiment, we set the buffer size to five, we used
packet sequences of ten packets, and we tried 10,000
combinations of:

1) the average inter-packet arrival time, that is, the
mean of a normal distribution with the standard
deviation being 25% of the average, and

2) the timeout time, that is, the length of time the
server will keep a SYN packet it its buffer before
the server removes the packet.

Furthermore we repeated the experiment ten times. Fig-
ure 2 presents the results:red means that the server
succumbed to the attack at least once, whilegreen
means that the server didnot succumb to the attack.
(On black-and-white hardcopies,greenis represented by
small triangles, andred by small dots.) On a system that
has dualIntel Xeon CPUsrunning at 3.06GHz with 512
KB of cache and 4GB of main memory, the ten runs took
a total of around 850 minutes. We limited ourselves to
packet traces of ten packets because for larger and more
realistic traces (of sizes say greater than 100) we could
not run even one instance of the simulator to completion,
even after running it for more than 8 hours.

The simulation-based approach produces a graph that
is useful for a system administrator who wants to tune
the timeout time and buffer size and for a developer
of TCP servers who wants to gauge the quality of
an implementation. Additionally, recent QOS-regulation
approaches enable a system to dynamically tune the
packet inter-arrival time by filtering the traffic to a TCP
server [21]. However, the simulation-based approach is
time consuming, both because of the simulation time
itself and because the approach requires the OS kernel
to be recompiled and redeployed in the experimental
environment. Further, the presence of monitoring code in
the system impacts the temporal behavior, reducing the
accuracy of the results. Can we do better using timing
analysis?

D. Our Results
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Fig. 3. Block diagram for ATASYN.

We present a tool called ATASYN (Analyzer for
Timed Applications—SYN flood detection) for deter-
mining whether a TCP server will survive a SYN
flooding attack. Our tool takes the same input as the
simulation-based experiment reported above, namely a
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TCP-server implementation and a packet sequence. Our
tool is based on timing analysis and can efficiently
derive good approximations of graphs such as the one
in Figure 2. ATASYN embodies three ideas:

ATASYN = model of TCP as a timed automaton
+ timing analysis
+ real-time model checking.

As a result, instead of running a slow and highly
accurate simulation using simhost, we can now run a
fast and fairly accurate simulation using ATASYN.

Figure 3 shows a block diagram of ATASYN’s two
phases. Theanalyzer phase uses timing analysis to
automatically abstract the code of a TCP-server imple-
mentation into a timed automaton [6], and it transforms
straightforwardly a packet sequence into another timed
automaton. Thevalidator phase combines the two timed
automata into a system for which the real-time model
checker UPPAAL [11] can decide whether a bad state,
in which the buffer overruns, can be reached. ATASYN
is an order of magnitude faster than the simulation-
based approach because of aggressive abstraction of the
TCP-server code. Moreover, ATASYN can be applied
to a variety of server software without having to install
each one in the kernel of an operating system. Thus, a
programmer of defensive measures against SYN flooding
attacks can get rapid feedback during development.
ATASYN follows in the footsteps of much work on
using timed automata to model and verify systems with
temporal properties [7], [5], [26], [10].

When comparing the results of simulation and ATA-
SYN, we will use the following terminology:

• False positive: The simulation does not report a
successful attack, but ATASYN does.

• False negative:The simulation does report a suc-
cessful attack, but ATASYN does not.

Ideally, there would be no false positives and no false
negatives. ATASYN reports 2% false positives and 9%
false negatives in our experiments. The high speed and
low error rate of ATASYN makes it a practical tool for
the working system administrator.

The main technical challenge is to devise an abstrac-
tion of TCP which leads to an efficient and accurate
SYN-flood vulnerability detector, while abstracting away
computational details that are irrelevant to buffer over-
flow. Our new timed automaton for modeling TCP has a
number of states which is linear in the size of the buffer.
We use worst-case execution time (WCET) analysis [33],
[34], [2], [16], [13], [25], [20] to compute the timings
needed in the timed automaton.

In the following section, we describe how we abstract
TCP code into a timed automaton. In section III we
present a timed automaton for handling multiple packets,

and in section IV we show how to represent an attacker
as a timed automaton. Finally, in section V we present
our experimental results.

II. FROM TCP CODE TO A TIMED AUTOMATON

Most TCP servers have three main components: a
packet interrupt handler, packet processing routines, and
a timer interrupt handler. When a TCP server receives
a packet, the server will run a packet interrupt handler,
which in turn call the packet processing routines. With
regular intervals, the timer interrupt handler removes
timed-out packets from the buffer. The timer interrupt
handler also has the task of firing a packet-handler
interrupt when it identifies a newly arrived packet in the
OS-queue. Note that the OS-queue is a data structure
different from the SYN-buffer.

ATASYN maps a TCP implementation to a timed
automaton of the form shown in Figure 4. The automaton
in Figure 4 models how to handle a single packet. In the
following section we will show how to extend the au-
tomaton to handle multiple packets. Notice that Figure 4
shows an informal version of the timed automaton on the
left and the actual timed automaton on the right. Basic
information about timed automata can be found in the
appendix.

The automaton has seven states. Notice that six of
the states have two labels, while the seventh state is
called Timeout. For the states with two labels, the
first label is a name of the state (the label is one of
A1, A2, A3, A4, A

′

4, A5), while the second label denotes
a WCET (the label is one ofC1, C2, C3, C4, To). A1

models the packet interrupt handler; we useC1 to denote
the WCET of A1. A2 models the packet processing
routines; we useC2 to denote the WCET of executing
code from the beginning ofA1 to the end ofA2. A3

models the clearing of the OS-queue entry; we use
C3 to denote the WCET of executing code from the
beginning of A1 to the end ofA3. A4 and A′

4 both
model a run of the timer interrupt handler; we useC4 to
denote the WCET of executing the interrupt handler. The
hardware timer sends interrupts at a regular interval of
lengthTp and this interrupt wakes up the timer interrupt
handler.Tp is a constant that typically is embedded in
the TCP-implementation and must be identified by the
user of ATASYN. All ofC1, C2, C3, C4 includes the time
to execute the timer interrupt handler, possibly several
times. A5 models the waiting for an ACK packet; the
maximum wait time is the timeout time for SYN packets,
which we denote byTo. The last state, labeledTimeout,
is reached when at least one packet times out.

Let us now consider how to obtain the WCETs
C1, C2, C3, C4 from the TCP-server implementation
lwIP, which is written in C. ATASYN relies on that
the user identifies the beginning and end of each of
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handler 
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Fig. 4. Timed automaton for a packet handler.

the four corresponding pieces of code in the C source
code. The user does the identification by wrapping each
code piece in a function. It is difficult to obtain WCET
information directly from a high level language like C.
In contrast, we can get good timing estimates for the
object code generated by gcc or any other C compiler.
However, because of the code motion which is part of
gcc’s optimization phase, it can be difficult to identify
in the object code where a particular functionality is
implemented. So, we take a middle approach: we first
use gcc to compile the C-code to register transfer lan-
guage (RTL), which is a format used internally in the
gcc compiler. It is the backend of gcc that translates
the front end’s abstract syntax tree into RTL. At the
RTL level, it is straightforward to do WCET analysis.
Since there is a direct mapping from RTL instructions
to machine code the timing estimates can be done with
more confidence than for C. We have added a phase
in gcc just before the final phase that emits assembly
code. While the actions of the assembler and linker may
affect the timing analysis, our results show that for our
application, the overall effect is small.

We employ a well-known WCET analysis [20] which
takes the pipelining architecture of the Xeon processor
into account. Our implementation of the WCET analysis
is conservative in several ways, including that it does not
take into account that Xeon is a super-scalar architecture,
or the effect of cache or data dependencies. We chose
that particular WCET analysis because it leads to good
overall results. It remains to be seen whether a better

WCET analysis can significantly improve our results.

In the TCP/IP implementation lwIP, each loop in the
packet handler and the timer interrupt handler iterates
over the buffer. So as a simple static estimate of the
number of loop iterations, we use the buffer size.

When a packet is received by the TCP server, the
packet interrupt handler (labeledA1) is invoked. In
Figure 4 we want to start the clock from that point so
we reset the clock variableT to zero. In timed automata,
transition from one state to another requires that the
guard on the edge be satisfied; accordingly we set the
guards in our transitions such that it semantically agrees
to the informal automaton on the left. At the end of
stateA1, the clock is set to a value greater than sum of
WCET of the packet interrupt handler, and the time to
execute the invoked timer interrupt handlers. Similarly,
at the end of stateA2, the clock is set to value greater
than the time required to execute the code corresponding
to these states and the time to run the timer interrupt
handler every time it was invoked during the execution.

The modeling of the timer interrupt handler requires
further explanation. The transitions fromA1, A2, A3, A5

to Timeoutall model the case where the timer interrupt
handler runs and times out at least one packet. The
transitions fromA2 to A4 and fromA5 to A′

4 model the
case where the timer interrupt handler runs but doesnot
time out any packets. It would be semantically correct
to add such transitions toA1, A3, but we left them out
as an optimization. The reason why the optimization is
correct is that atA1, A3, the packet interrupt handler is
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disabled, so there it would have no immediate effect to
fire a packet-handler interrupt. Furthermore, if a packet
times out while executingA1, it will be timed out
when execution reachesA2; similarly for A3. Note that
while executing the timer interrupt handler, none of the
interrupts are enabled.

In summary, the user of ATASYN must identify four
pieces of code, the timer period, and the buffer size,
and ATASYN then maps the packet handler to a timed
automaton. Our model is conservative because 1) the
WCET analysis provides upper bounds on the execution
time and 2) our model ensures that the timer interrupt
handler is called as least as many times as the timer
interrupt handler is invoked in the actual server. Notice
that the number of nodes in the timed automaton is fixed
and independent of the number of lines of code in the
TCP implementation.

III. H ANDLING MULTIPLE PACKETS

ATASYN abstracts a server that has multiple buffer
entries and handles multiple packets into a timed au-
tomaton. In this section we extend the automaton given
in section II to complete the abstraction. Note that our
execution model consists of a single processor with an
OS capable of running multiple threads. Hence at any
one particular time, only one thread can be active.
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Fig. 5. Complete timed automaton for a server.

Let us now look at the server automaton given in
Figure 5. We need to be able to analyze and reason about
several copies of the code in packet processing routines
at the same time, namely, as many as there are buffer
entries. For each buffer entry, we replicate the model
shown in previous section. In addition, there are edges
connecting each replica and a self loop on the stateA1

in each replica. Each such replica is called azone, and
zonei and zonei+1 are connected, signifying that when
ith packet is being processed, the next packet (i + 1th)
can come and the server may process this new packet.
Eachzonei has an individual timerTi keeping track of
the time in that zone. Along with these, we also have

a global timerGTimer that keeps track of global time.
GTimer is reset to zero in the first state of thezone1.

The server, on getting the first SYN packet, goes to
the stateA2. Now either in this state or inA5, if the
server finds another SYN packet for a fresh connection,
then the server starts working on the second packet. The
guardGrd on that edge is given by:

InputIsReady&& GTimer ≤ To.

We implement the macro InputIsReady by a set of
synchronization constructs between the server automaton
and the attacker automaton (we omit the details).

The same strategy continues while processing the rest
of the packets. Finally, if the server has already filled up
m entries, wherem is the size of the buffer, and another
SYN packet arrives for a new connection, then the packet
has to be dropped and we have an effective SYN flooding
attack. In the automaton we model that by reaching the
final state SYNFlood. If we reach SYNFlood, then the
attacker can continue the attack and keep all the servers’
buffer entries occupied, resulting in a successful denial-
of-service attack.

The server has many states from which it cannot be
SYN flooded or which are not important when studying
the SYN flooding attack. We abstract all those states into
one dummy nodeTimeout. For example, from the states
A3, andA5 in the firstzone, and fromA1, A2, A3, and
A5 in the otherzoneswe have an edge toTimeoutwith
the following guard that transfers control to theTimeout
state, if the first packet times out:

GTimer ≥ To.

We abstract the possible dropping of a packet by setting
up a self loop in the stateA1 with a guardLc given by:

InputIsReady&& GTimer ≤ To.

We also have some more constraints in the automata
to model the OS Queue and some synchronization con-
structs for the abstraction of a loss free network (we omit
the details).

The actual server inserts and removes packets from
the buffer. The server removes a packet if the packet
times out or if the server receives a reset packet (RST)
or an acknowledgment packet (ACK). If we want to
model all possible states of the buffer, then we would
need exponentially many states in the server automaton,
one for each subset of the packets. Fortunately, for
the purposes of ATASYN, we don’t need exponentially
many states. The reason is that we distinguish between
packet sequences solely on the basis of whether they can
reach the SYNFlood state or not. The question that we
ask of UPPAAL for a given packet sequence is: “does
there exist a run of the automaton which reaches the
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SYNFlood state?” A packet sequence that cannot reach
the SYNFlood state will count as an unsuccessful attack.

Let us consider a packet sequence containing a packet
that in the actual server gets inserted into the buffer
and later times out and gets removed. Suppose also
that the packet sequence leads to SYN flooding. In
our server automaton, at least two paths are possible.
One path will process the packet in the appropriate
zone and later, when that packet times out, go to the
Timeout state. So, that path does not demonstrate the
SYN flooding. However, there is another path in which
we immediatelydrop the packet, using a self loop, and
now there is no reason for going to theTimeoutstate,
so instead the server automaton will process the other
packets and end up in the SYNFlood state. When the
server automaton drops a packet using a self loop in one
zone, it continues in thesamezone when the next SYN
packet comes. Thus, the server automaton contains only
forward transitions, i.e., transitions from zonei to i+1.

For example, let us consider a packet sequence
p1, p2, . . . , pm+1 which leads to SYN flooding. Suppose
that while control is inzone3, processing packetp3, the
first packetp1, stored in the buffer inzone1, times out.
In that case, we use a transition to theTimeoutstate.
However, the packet sequencep2, . . . , pm+1 can still
lead to SYN flooding. We can reach the SYNFlood state
by the following actions: packetp1 is dropped inzone1,
then zone1 gets packetp2, zone2 gets packetp3, and
eventually we reach the SYNFlood state.

In summary, we avoid an automaton of exponential
size by (1) asking whether the SYNFlood state is reach-
able, (2) using self loops to drop packets, and (3) using
transitions to theTimeoutstate. The size of our server
automaton is linear in the buffer size. For a buffer of
sizem, the server automaton has6 × m + 2 states.

IV. FROM AN ATTACKER TO A TIMED AUTOMATON

Start

last input is read)
and

Send SYN

GTimer <= T1 GTimer <= T2

Send SYN GTimer <= T3GTimer <= Tn

(GTimer >= Tn

last input is read)
and

(GTimer >= T1

last input is read)
and

S
end S

Y
N

Send SYN

(GTimer >= T2 

Fig. 6. Timed automaton for an attacker.

We assume that the attacker (or, in general, the

network environment around the server) sends packets
with a delay controlled by a statistical distribution.
The distribution is “tester chosen”, can be varied, and
does not influence how we model an attacker. Given a
distribution we use a packet generator to compute the
packet inter-arrival time for a pre-determined number of
packets.

The generated packet sequence is the one seen by
the server. For the server, all the packets lost during
transmission are not of any concern. So, the attacker
starts by sending a SYN packet, and then it sends more
SYN packets at the pre-decided intervals. The attacker
sends the next packet only after the server has read
the last packet because all the server cares about are
the packets that comes to its notice. The attacker stops
after sending the pre-decided number of packets. Notice
that ATASYN’s interpretation of a packet sequence is
different from what happens when we send the same
packet sequence to simhost. The reason is that the net-
work may loose packets, deliver them in a different order,
and change the intervals. This difference will eventually
be part of the reason why simhost and ATASYN give
slightly different results.

We use the distributed internet traffic generator D-
ITG [9] as the basis for generating SYN packets at ran-
dom intervals. D-ITG can generate packets with delays
based on different statistical distributions. Our aim is
to feed some large number of SYN packets, generated
with delays based on some statistical distribution, to the
server and see the effect of the attack. So, we use the D-
ITG to generate packet inter-arrival times and compute
the time for sending theith packet (PAT (i)). Since
we want to fire the next packet only after the previous
packet is read and the server is ready for the next packet,
the packet generator process (represented as an attacker
timed automaton) waits for communication from the
server timed automaton to release the next packet.

To generate a timed automaton for the attacker, we
generate one node for each packet and connect the
nodes for packetsi and i + 1 by an edge. We also
generate a special nodestart node for the attacker
and connect it to the node corresponding to the first
packet. We setPAT (start) to be zero. For each node
i in the attacker timed automata, we set an invariant
GTimer≤ PAT (i). Each edge between two neighborsi

andj, has aguard, GTimer≥ PAT (i), a synchronizing
guard inputIsRead?, and an assignment to the global
variableinput = SY N .

The model for the attacker is shown in Figure 6.
The automaton will stop after sending a pre-determined
number (n) of packets. The number of nodes in the
attacker automaton isn + 1, and the number of edges is
n.

After the timed automata for the server and attacker
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have been generated, and given values for the packet
inter-arrival time and the timeout time, ATASYN runs
UPPAAL. Running UPPAAL will check if the server
automaton will go to the SYNFlood state, which would
indicate SYN flooding.

V. EXPERIMENTAL RESULTS

We have implemented our analysis in the optimization
phase of gcc 3.3 [4] for the x86 architecture, before gcc
reorders the basic blocks.
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Fig. 7. Output by ATASYN.

We have used ATASYN to test the light-weight
TCP/IP protocol implementation lwIP [19]. The lwIP
implementation can run with or without the underlying
OS. The focus of the lwIP implementation is to reduce
the RAM usage while still having a full scale TCP,
making lwIP suitable for use in embedded systems. The
complete lwIP TCP/IP implementation is around 18K
lines with around 300 functions. Of this the TCP SYN-
packet-processing-related code is around 2500 lines of
code with around 30 functions. For the purposes of
this paper we set the buffer size to 5. We have tested
ATASYN with buffer sizes up to 100 and it scales well.

We have run ATASYN on thesamecomputer, the
same10,000 combinations of inter-packet arrival time
and timeout time, and thesamepacket sequences for
each of the 10,000 points that we used for the experiment
with simhost reported in Section I. Figure 7 presents
the results:red means that the attack is successful,
while green means that the attack isnot successful.
(On black-and-white hardcopies,greenis represented by
small triangles, andred by small dots.) We can compare
Figure 2 and Figure 7 directly: ideally the figures would
be identical or close to identical. Let us first examine
Figure 7. In thered area, the attacks are successful. For
a given packet inter-arrival time, it is better not to choose
a timeout time such that we get a red point.

In the greenarea, the attacks are not successful. The
region to the right of the red area agrees with the intu-
ition that higher timeout time is affordable for environ-
ments with longer packet inter-arrival delays. Common
sense says that if an attacker can send packets at a high
rate, i.e., the packet inter-arrival time is small, then the
timeout time should be set to a small value. However,
notice the green region below timeout =3.5× 108. It is
perhaps surprising to see that even for low packet inter-
arrival delays, the server did not get SYN flooded. The
main cause for that is the lower timeout time. Because
the timeout time was so low, earlier packets are getting
timed out before all the buffer entries could be filled.
Still, the timeout time was large enough that the TCP
server would accept some connections. It looks rather
attractive to set the timeout time to about= 3.5 × 108.
It may be noted that even though this would not lead
to SYN flooding, it may disallow connections to some
valid clients whose packets do not come fast enough.

Note that the boundary between red and green is not
sharp. This is because for each average packet inter-
arrival time we get sequences of delays based on a
statistical distribution. A constant delay packet generator
would give a clearer demarcation between the regions.
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Fig. 8. Output by ATASYN, with false positives.

ATASYN takes around 4 minutes to generate the graph
shown in Figure 7. In contrast, each of the ten runs
of simhost to generate the graph shown in Figure 2
took around 85 minutes. So, ATASYN us more than 20
times faster than simhost. ATASYN spent less than one
second to produce the timed automaton from the lwIP
implementation, and most of the 4 minutes on running
UPPAAL. For packet sequences of length 100, simhost
did not terminate after 8 hours. In contrast, for packet
sequences of length 500, ATASYN generates a graph
like the one in Figure 7 in around 40 minutes.

Let us now compare the accuracy of ATASYN relative
to simhost. In Figure 8,greenmeans that simhost and
ATASYN agree on green, whilered denotes afalse
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Fig. 9. Output by ATASYN, with false negatives.

positive. A false positive is a case for which simhost
not report a successful attack, but ATASYN does. We
found 230 false positives in the sample space of 10,000
points, that is, 2.3%. In other words, if ATASYN reports
a successful attack, then there is nearly a 98% chance
that simhost will agree. Notice that the false positives are
distributed in a seemingly random fashion. One of the
main reasons for the false positives is that when a packet
sequence is sent to simhost, the network may deliver the
packets to TCP layer of simhost with different intervals
between the packets. In contrast, the packet sequence
sent to ATASYN represent the intervals between when
packets are made available to the TCP layer.

In Figure 9,greenmeans that simhost and ATASYN
agree on green,red means that simhost and ATASYN
agree on red, while abluecircle denotes afalse negative.
A false negative is a case for which ATASYN does not
report a successful attack, but simhost does. We found
916 false negatives in the sample space of 10,000 points,
that is, 9.16%. In other words, if ATASYN reports does
not report a successful attack, then there is nearly a
91% chance that simhost will agree. Notice the blue
points along the y-axis; they represent a curious anomaly
that fortunately only occurs when the packet inter-arrival
times are close to 0.

The 2.3% false positives indicate that ATASYN is
particularly effective at determining when a TCP server
is vulnerable to SYN flooding. The 9.16% false negatives
serve as a reminder that ATASYN cannot entirely replace
simhost. ATASYN is most valuable in cases where a
developer or an administrator of a TCP server wants to
quickly gauge the degree of vulnerability.

VI. SUMMARY

The main contributions and features of ATASYN are:

• Static Analysis: ATASYN does static analysis of
TCP-server code written in C.

• Fast: ATASYN runs an order of magnitude faster
than doing similar validation by running the actual
server.

• Accurate The suggestions/warnings given by ATA-
SYN are fairly accurate. The graph produced by
ATASYN is highly comparable to that produced by
running the actual server.

• Modular: There is no need to have or modify the
entire OS kernel: the TCP server is analyzed in
isolation.

• Scalable: ATASYN can test the server against
large sequences of input packets within reasonable
amount of time.

• Graphical: ATASYN produces a graph that shows
whether a server can survive SYN flood attacks.

• Uses off-the-shelf tools:ATASYN uses gcc, UP-
PAAL, and gnuplot.

• Needs few user annotations:A few, simple-to-give
user annotations are needed.

We believe that our approach is promising and may
be useful in the context of other denial-of-service at-
tacks. Our technique is fairly independent of the high-
level language in which the TCP server is implemented
because the timing analysis and the abstraction into a
timed automaton are done on RTL code, which is an
intermediate format close to assembly language. Our
technique is also fairly independent of the choice of the
real-time model checker. Model checkers that could take
the place of UPPAAL include KRONOS [17] and RED
[42]. It remains to be seen whether the use of a different
model checker can increase the speed of ATASYN.

Our tool ATASYN is available from our website at
http://compilers.cs.ucla.edu/atasyn.
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APPENDIX: TIMED AUTOMATA

Real-time systems can be modeled by timed automata.
A timed automaton is a finite state automaton with
integer-valued clocks. The states are represented by(l, u)
wherel is a control node andu is a clock assignment,
i.e., the current values of all the clocks. All the clocks of
a system start at the same instant from 0 and then they
proceed at the same rate. Their values can be tested (by
comparing them to natural numbers), they can be reset,
and they can be assigned a natural number. Guarantees
about timing are enforced by clock constraints (which
are guards on transitions and invariants on nodes). A
clock constraint in UPPAAL is a constraint consisting
of zero or more of the following three components: a
guard that needs to be true for the transition to take
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place, a channel read/writesynchronizationcommand,
and anassignmentstatement that assigns to a timer or a
variable. If the transition has a channel read command,
then for the transition to succeed some process must have
written to the channel and that data is available to be
read. Once the data is read, the next read will fail until
some process has written again.
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