
A Framework for End-to-End Verification and
Evaluation of Register Allocators

V. Krishna Nandivada1

Fernando Magno Quintão Pereira2

Jens Palsberg2

1 IBM India Research Laboratory, Delhi
2 UCLA Computer Science Department, University of California, Los Angeles

Abstract. This paper presents a framework for designing, verifying, and
evaluating register allocation algorithms. The proposed framework has
three main components. The first component is MIRA, a language for
describing programs prior to register allocation. The second component
is FORD, a language that describes the results produced by the register
allocator. The third component is a type checker for the output of a reg-
ister allocator which helps to find bugs. To illustrate the effectiveness of
the framework, we present RALF, a tool that allows a register allocator
to be integrated into the gcc compiler for the StrongARM architecture.
RALF simplifies the development of register allocators by sheltering the
programmer from the internal complexity of gcc. MIRA and FORD’s fea-
tures are sufficient to implement most of the register allocators currently
in use and are independent of any particular register allocation algorithm
or compiler. To demonstrate the generality of our framework, we have
used RALF to evaluate eight different register allocators, including iter-
ated register coalescing, linear scan, a chordal based allocator, and two
integer linear programming approaches.

1 Introduction

1.1 Background

The register allocator is one of the most important parts of a compiler. Our
experiments show that an optimal algorithm can improve the execution time
of the compiled code by up to 250%. Although researchers have studied regis-
ter allocation for a long time, many interesting problems remain. For example,
in recent years PLDI (ACM SIGPLAN Conference on Programming Language
Design and Implementation) has published several papers on register allocation
[2004 (2 papers), 2005 (3 papers), 2006 (2 papers)]. While the essence of regis-
ter allocation is well understood, developing a high-quality register allocator is
nontrivial. In addition to understanding the register allocation algorithm, which
can be complex, the developer must also know the internals of the compiler
where the allocator will be implemented. For example, public domain compilers
such as GCC [2] or SMLNJ [1] and compiler frameworks such as SUIF [15] or

SOOT [31] allow a programmer to implement a new register allocator. How-
ever, the programmer has to understand and work with their data structures,
which are complicated because register allocation affects both the machine spe-
cific and machine independent parts of the compilation process. One attempt
to address this problem was Tabatabai et al’s. [3] register allocation framework,
implemented in the CMU C compiler. Their framework presents modules (for
example, graph construction, coalescing, color assignment, spill code insertion,
and others) that different register allocators might need. However, if the allocator
needs mechanisms other than those provided by the framework, the programmer
must still deal with the internals of the CMU C compiler. A goal of our work is
to completely shield the developer of register allocators from the internal com-
plexities of a compiler.

Debugging register allocators is also a complicated task. Errors may surface
in non-trivial ways; sometimes many instructions after the incorrect code. More-
over, the low-level nature of the machine code and its large size makes visual
inspection of the register-allocator’s output tedious and error-prone. As a tes-
timony of these difficulties, most recent publications in this field report only
static data and not run-time measurements, let alone implementations in in-
dustrial compilers. Although static data (such as number of spills, and number
of registers used) is important, it does not reflect the behavior of the register
allocator in the presence of other optimizations and run time factors.

A few researchers have developed techniques for proving register allocators
correct. Naik and Palsberg [21] proved the correctness of the ILP-based regis-
ter allocator of Appel and George [6]. Ohori [26] designed a register allocation
algorithm as a series of proof transformations which is correct by construction.
Other researchers have shown how to validate the output of register allocators.
Necula [24] presented a translation validation infrastructure for the gcc compiler
that includes register allocation. Necula’s scheme treats the memory address
of a spilled register as a variable, which allows reasoning about its live ranges,
although relying on specific characteristics of the gcc compiler, such as address-
ing modes. Leroy [17] formally describes a technique to validate the output of
graph coloring based register allocation algorithms. Basically, if the interference
graph contains a pair of adjacent temporaries allocated to the same register,
the verifier emits an error, otherwise it assumes that the code generated is cor-
rect. Andersson [5] and Pereira et al. [27] adopted similar approaches. Huang
et al. [16] presented a more general approach which matches the live ranges of
values in the original program against the live ranges of machine locations in
the register-allocated program. A goal of our work is to use a type system to
validate the output of register allocators, and to prove the soundness of the type
system itself.

Annotations in the register-allocated code can help validation algorithms.
Morrisett et al. [20] used type annotations to help guarantee memory safety,
Necula and Lee [25] used more general annotations such as memory bounds,
and Agat [4] used type annotations to validate the output of a register allocator.

A goal of our work is to validate the output of register allocators without extra
annotations in the target code.

1.2 Our Results

We present a framework for designing, verifying, and evaluating register alloca-
tors. Our framework shields the developer from the internal complexities of a
compiler, uses a type system to validate the output of register allocators, and
does not rely on code annotations.

MIRA and FORD. Our framework centers around MIRA (Mathematical
Intermediate representation for Register Allocation), a language for describing
programs prior to register allocation, and FORD (FOrmat for Register alloca-
tion Directives), a language that describes the results produced by the register
allocator. MIRA sources are abstract intermediate representations of programs
immediately before the register allocation phase. MIRA descriptions contain ar-
chitecture and program specific information. The former includes information
such as number and classes of machine registers, number of caller-save regis-
ters, and costs of loads and stores. The latter consists of information such as
the program’s control flow graph, use and definition sites of each variable, and
estimated usage frequency of each instruction. In the context of our framework,
the register allocator emits FORD directives that control spill code generation,
register and variable mapping at different program points, and any additional
code that needs to be inserted (For example, move instructions). MIRA and
FORD can accommodate many of the traditional register allocation algorithms
and are simple enough to be easily used by the developer of register allocators.

Type system. We use a type system to verify that the output of a regis-
ter allocator is correct. Our type system was inspired by Morrisett et al.’s type
system for assembly language [20] and can be used with intermediate represen-
tations other than MIRA and FORD. A type correct program is guaranteed to
have properties such as: (1) pseudos whose live ranges overlap are assigned to
different registers, (2) live ranges of the same pseudo always reach a join point
assigned to the same register, and (3) a live register is not overwritten before
it is used. We have found that typical errors in the implementation of a regis-
ter allocator violate these properties. The type checker points out the locations
of the register-allocated code where these properties fail. We have proved type
soundness for our type system using the Twelf Meta-theorem prover [32].

RALF. Our tool RALF (Register ALlocation Framework) allows a program-
mer to plug a new register allocator into gcc, without requiring the programmer
to know any details of gcc’s implementation. RALF is an extra layer added on
top of gcc, acting as a glue between gcc and the plugged-in register allocator. The
new register allocator takes a MIRA program as input and gives a collection of
FORD directives as output. The main objective of RALF is to be simple: when
writing a register allocator compatible with our framework, the developer only
has to write a program that translates MIRA to FORD. RALF treats the register
allocator, which can be implemented in any language, as a black box whose only
purpose is to translate MIRA sources (provided by RALF) to FORD directives

(which are fed back to RALF). Given an input program and the plugged-in reg-
ister allocator, RALF generates a StrongARM binary executable using the new
register allocator and the rest of gcc. RALF uses our type checker to verify the
output of the register allocator. In addition to our own experiments with RALF,
we have used RALF in an advanced compiler course at UCLA. As part of a class
assignment, each student implemented a different register allocation algorithm
to be used with the framework. More about these experiences can be found
at RALF’s homepage http://compilers.cs.ucla.edu/ralf. Our current im-
plementation of RALF compiles only C code to the StrongARM architecture;
however, the MIRA and FORD description languages are designed to be gen-
eral enough to fit other source languages and architectures. The RISC nature of
the StrongARM architecture helps to keep RALF simple. Our implementation,
which gets activated by different compiler switches, contains around 5000 lines
of C code divided among 125 functions. The proposed framework is not intended
for industrial implementations of register allocators, but for fast implementation
and testing of research prototypes. The techniques used in our type system can
be used also in a production compiler.

Comparison of eight register allocators. We have used RALF to imple-
ment and compare eight different registers allocators. The allocators tested range
from classical algorithms, such as the usage-count based implementation [11], to
novel approaches, such as register allocation via coloring of chordal graphs [27].
In addition of using static data, such as number of variables spilled, we com-
pare the different algorithms by running the produced code on a StrongARM
processor.

The remainder of this paper is organized as follows: Section 2 describes a
simplified version of MIRA and FORD and characterizes the register alloca-
tion problem. Section 3 presents our type system, and Section 4 discusses our
experimental results.

2 A Simplified view of MIRA and FORD

Register allocation is the process of mapping a program M that can use an un-
bounded number of variables, or pseudo-registers, to a program F that must use
a fixed (and generally small) number of machine registers to store data. In the
remainder of this paper we use register in place of machine register, and pseudo
for pseudo-register. If the number of registers is not sufficient to accommodate
all the pseudos, some of them must be stored in memory; these are called spilled
pseudos. Following the nomenclature normally used in the gcc community, we
call the intermediate representation of programs M the Register Transfer Lan-
guage (RTL) and we use Location Transfer Language (LTL) to describe programs
F . As shown in Figure 1, MIRA and FORD have been designed to constitute
an interface between the register allocator and the RTL/LTL intermediate rep-
resentations. They facilitate the development of register allocation algorithms
by hiding from the algorithm’s designer the details of the RTL/LTL representa-
tion that are not relevant to the register allocation process. In order to precisely

register allocator
M
I
R
A

F
O
R
D

C
source

program

exec
program

Ralf's
Front
End

Ralf's
Back
End

R
T
L

L
T
LType checking

Fig. 1. Block diagram of our register allocation framework.

characterize the register allocation problem, we will use a simplified version of
MIRA and a simplified version of FORD in this section. We will call them sMIRA
and sFORD respectively. For our purposes, a register allocator RA is a black box
which takes an sMIRA program Psm and a description of the target architecture,
and produces an sFORD program Psf . In this section, we will assume that the
architecture specific information is a list of K machine registers Regs, and a set of
caller save registers CallerSave ⊆ Regs. Thus, Psf = RA(Psm,Regs,CallerSave).
An actual register allocator would require more information, such as the class of
each machine register, the cost of different operations, etc. Such information is
present in the concrete specification of MIRA and FORD, which is given in the
full version of this paper, available at http://compiler.cs.ucla.edu/ralf.

2.1 Simplified MIRA

sMIRA programs are described by the grammar in Figure 2(a). We adopt an
abstract representation of programs. All the operands not relevant to register al-
location, such as constants, heap memory addresses, and others, are represented
with the symbol •. The only explicit operands are pseudos (p) and pre-colored
registers (r, p). The latter are pseudos that have been assigned a fixed machine
register due to architectural constraints. In this simplified presentation, we only
use pre-colored register to pass parameters to function calls, and to retrieve their
return value. Other operands, such as constants and memory references on the
heap are abstracted out.

An sMIRA program is a sequence of instruction blocks. Each instruction block
consists of an address label, represented by L, heading a sequence of instructions
(I) followed by a jump. sMIRA programs can use an unbounded number of
pseudo registers p. We do not distinguish the opcode of instructions, except
branches and function calls. Branches affect the control flow, and function calls
may cause caller save registers to be overwritten, once register allocation has
been performed. A function call such as (r0, p0) = call (r1, p1)..(rs, ps) uses pre-
colored pseudos (r1, p1)..(rs, ps) as parameters, and produces a return value in
the pre-colored pseudo (r0, p0). Notice that in sMIRA a call instruction does
not contain a label; that is because we support only intra-procedural register
allocation. An example of sMIRA program is given in Figure 2(b).

(Programs) Psm ::= L1I1; . . . ; LkIk

(Code labels) L ::= L1 | L2 | . . .
(Instr. Sequence) I ::=
- (Jump) | jump L
- (Sequence) | i; I

(Pseudos) p ::= p1 | p2 | . . .
(Registers) r ::= r1 | . . . | rk

(Operands) o ::=
- (Constants) | •
- (Pseudos) | p
- (Pre-coloreds) | (r, p)

(Instructions) i ::=
- (Assignment) | p = o
- (Ass. pre-col.) | (r, p) = o
- (Cond. jump) | if p jump L
- (Function call) | (r0, p0) = call

(r1, p1)..(rs, ps)

L1 L2

p0 = • p0 = p0

p1 = • (r0, p6) = •
p2 = p0 (r0, p6) = call (r0, p6)
if p1 jump L3 p2 = (r0, p6)
jump L2 p3 = p0

p4 = •
L3 p7 = p4

p4 = p0 if p3 jump L2

p5 = p2 jump L3

jump exit

(a) (b)

Fig. 2. (a) Syntax of sMIRA programs. (b) Example of sMIRA program.

(Programs) Psf ::= L1 I1; . . . ; Lk Ik

(Code Labels) L ::= L1 | L2 | . . .
(Inst. seq.) I ::=
- (Jump) | jump l
- (Sequence) | i; I

(Pseudos) p ::= p1 | p2 | . . .
(Registers) r ::= r1 | r2 | . . .
(Mem. locs.) l ::= l1 | l2 | . . .
(Operands) o ::=
- (Constant) | •
- (Reg. bind) | (r, p)
- (Mem. bind) | (l, p)

(Instructions) i ::=
- (Assig.) | (r, p) = o
- (Store) | (l, p) = o
- (Cond. jump) | if (r, p) jump L
- (Func. call) | (r0, p0) = call

(r1, p1)..(rs, ps)

L1 L2

(r1, p0) = • (r1, p0) = (r1, p0)
(r0, p1) = • (r0, p6) = •
(r1, p2) = (r1, p0) (l1, p0) = (r1, p0)
(l0, p2) = (r1, p2) (r0, p6) = call (r0, p6)
if (r1, p1) jump L3 (r1, p0) = (l1, p0)
jump L2 (r2, p2) = (r0, p6)

(l0, p2) = (r2, p2)
L3 (r2, p3) = (r1, p0)
(r1, p4) = (r1, p0) (r0, p4) = •
(r0, p2) = (l0, p2) (r0, p7) = (r0, p4)
(r0, p5) = (r0, p2) if (r1, p3) jump L2

jump exit jump L3

(a) (b)

Fig. 3. (a) Syntax of sFORD programs (b) Example of sFORD program.

(r0, p0) = •
(r2, p2) = (r1, p0)

(r0, p0) = •
(r0, p1) = •
(r1, p2) = (r0, p0)

(l0, p0) = (r0, p0)
(l0, p1) = (r1, p1)
(r1, p2) = (l0, p0)

(r1, p1) = •
(r0, p0) = call
(r2, p2) = (r1, p1)

L1 (r0, p0) = •
if (r0, p0) jump L2
(r0, p1) = •
jump L2

L2 (r1, p2) = (r0, p0)

(a) (b) (c) (d) (e)

Fig. 4. (a-e) Examples of errors due to wrong register allocation.

2.2 Simplified FORD

A register allocator produces sFORD programs, which are represented by the
grammar in Figure 3(a). Operands in sFORD are bindings of pseudos (p) to
machine locations. In our representation, a machine location can be either a
physical register (r), or a memory address (l). In addition to calls and branches,
we distinguish loads “= (l, p)”, and stores “(l, p) =”, because these instructions
are used to save and restore spilled values. Notice that we make an explicit dis-
tinction between code labels, represented by L, and data labels (stack locations),
represented by l. In the sFORD representation, caller-save registers can be over-
written by function calls; thus, the register allocator must guarantee that pseudos
that are alive across function calls are not mapped to caller-save registers.

Let Psm be the sMIRA program in Figure 2(b), and consider an architecture
where Regs = {r0, r1, r2} and CallerSave = {r0, r1}. Let RA be a hypothetical
register allocator, such that Psf = RA(Psm,Regs,CallerSave) is the program in
Figure 3(b). In our example, RA has allocated register r1 to pseudo p0 in the
first instruction of L1. The pseudo p2 has been spilled due to the high register
pressure in block L2; its memory location is given by the label l0. Furthermore,
pseudo p0 has been spilled to memory location l1 because it is stored in the caller
save register r0 and is alive across a function call.

3 Type Checking

Inaccuracies in the implementation of a register allocation algorithm may result
in different types of errors in the sFORD program. In Figure 4 we illustrate five
different errors that can be produced by a flawed register allocator. In Fig. 4(a),
p0 was defined in register r0 at instruction 1, but it is expected to be found in
register r1 when used in instruction 2. In Fig. 4(b) register r0 is overwritten in
instruction 2 while it contains the live pseudo p0. Fig. 4(c) describes a similar
situation, but in this case a memory location is overwritten while the value it
holds is still alive. In Fig. 4(d), we assume that r1 is a caller save register. In
this case, pseudo p1 may have its location overwritten during the execution of
the function call in instruction 2. Finally, in Fig. 4(e) the value of p0, stored in
register r0 may be overwritten, depending on the path taken during the execution
of the program. This last error is particularly elusive, because its consequences
might not surface during the testing of the target program.

In order to guarantee that the values used in the sMIRA program are pre-
served in the sFORD representation, we use a type checker inspired by [20]. The
basic data used in our type system are machine locations, and the type of a
machine location is the pseudo-register that it stores. In our case, the register
allocator annotates each definition or use of data with its type. A definition of
a machine location, e.g (ri, pj) = • corresponds to declaring ri with the type
pj . Let (ri, pj) be an annotated machine location. Intuitively, every time this
machine location is used, e.g (r, p) = (ri, pj), its annotated type corresponds to
the type that can be discovered by a type inference engine if the sFORD pro-
gram is correct. For instance, the program in Figure 4(a) is incorrect because
p0, the type of r1 in the second instruction cannot be inferred. Notice that these
annotations can be inferred from the sMIRA/sFORD programs; they are not
present in the final LTL code.

3.1 Operational semantics of sFORD programs

We define an abstract machine to evaluate sFORD programs. The state M of
this machine is defined in terms of a tuple with four elements: (C,D,R, I). If
M is a program state and we have M ′ such that M → M ′, then we say that
M can take a step. A program state M is stuck if M cannot take a step. A
program state M goes wrong if ∃M ′ : M →∗ M ′ and M ′ is stuck. I is defined
in Figure 3(a); the code heap C, data heap D, and register bank R are defined
below.

(Code Heap) C ::= {L1 = I1, . . . , Lk = Ik}
(Data Heap) D ::= {l1 = p1, . . . , lm = pm}
(Register Bank) R ::= {r1 = p1, . . . , rn = pn}
(Machine State) M ::= (C,D,R, I)

The evaluation rules for our abstract machine are given in Figure 5. Rules 1, 2
and 3 evaluate the operands of sFORD. The assignment statement (Rule 4) mod-
ifies the mapping in the register bank, and the store statement (Rule 5) modifies
the mapping in the data heap. The result of a conditional branch has no impor-
tance in our representation. Therefore, an instruction such as if (r, p) jump v is
evaluated non-deterministically by either Rule 6 or Rule 7. We conservatively
assume that a call instruction changes the contents of all the caller save registers.
It also defines a register with the return value (Rule 8). In order to simulate the
effects of a function call on the caller-save registers we define the erasing function
“�” below. We augment the set of pseudo-registers with ⊥. This pseudo will be
used as the type of non-initialized registers and we assume that it is not defined
in any instruction of the original sMIRA program.

� : R×X 7→ R′

(R �X)(r) = ⊥ if r ∈ X, else R(r)

In Figure 5 the set X is replaced by the set of caller-save registers. We draw
the attention of the reader to the premises of rules 4 to 8, which ensure that a
location used by an instruction indeed contains the pseudo that is expected by

that instruction. For example, for the sFORD instruction (r1, p1) = (r0, p0), the
premise of Rule 4 ensures that r0 is holding the value p0 when this instruction
is executed.

D, R ` • (1)

D, R ` (r, p), if R(r) = p ∧ p 6= ⊥ (2)

D, R ` (l, p), if D(l) = p ∧ p 6= ⊥ (3)

D, R ` o

(C, D, R, (r, p) = o; I) → (C, D, R[r 7→ p], I)
(4)

D, R ` o

(C, D, R, (l, p) = o; I) → (C, D[l 7→ p], R, I)
(5)

D, R ` (r, p)

(C, D, R, if (r, p) jump L; I) → (C, D, R, I ′)
Ccond (6)

Ccond = L ∈ domain(C) ∧ C(L) = I ′

D, R ` (r, p)

(C, D, R, if (r, p) jump L; I) → (C, D, R, I)
(7)

∀(ri, pi), 1 ≤ i ≤ s, D, R ` (ri, pi)

(C, D, R, (r0, p0) = call (r1, p1), . . . , (rs, ps); I)
→ (C, D, (R � callerSave)[r0 7→ p0], I)

(8)

(C, D, R, jump L) → (C, D, R, I) if Cjump (9)

Cjump = L ∈ domain(C) ∧ C(L) = I

Fig. 5. Operational Semantics of sFORD programs

Operands

` • : Const (10)

Γ (r) = p p 6= ⊥
Γ ` (r, p) : p

(11)

∆(l) = p p 6= ⊥
∆ ` (l, p) : p

(12)

Instructions

∆; Γ ` o : t p 6= ⊥
Ψ ` (r, p) = o : (Γ ×∆) 7→ (Γ [r : p]×∆)

(13)

∆; Γ ` o : t p 6= ⊥
Ψ ` (l, p) = o : (Γ ×∆) 7→ (Γ ×∆[l : p])

(14)

Γ ` (r, p) : p Ψ ` L : (Γ ′ ×∆′) (Γ ×∆) ≤ (Γ ′ ×∆′)

Ψ ` if (r, p) jump L : (Γ ×∆) 7→ (Γ ×∆)
(15)

∀(ri, pi), 1 ≤ i ≤ s, Γ ` (ri, pi) : pi p0 6= ⊥
Ψ ` (r0, p0) = call (r1, p1), . . . , (rs, ps) : (Γ ×∆) 7→ ((Γ � callerSave)[r0 : p0]×∆)

(16)

Instruction sequences

Ψ ` L : (Γ ′ ×∆′) (Γ ×∆) ≤ (Γ ′ ×∆′)

Ψ ` jump L : (Γ ×∆)
(17)

Ψ ` i : (Γ ×∆) 7→ (Γ ′ ×∆′) Ψ ` I : (Γ ′ ×∆′)

Ψ ` i; I : (Γ ×∆)
(18)

Bank of Registers

∀r ∈ domain(Γ). ` R(r) : Γ (r)

Ψ ` R : Γ
(19)

Data Heap

∀l ∈ domain(∆). ` D(l) : ∆(l)

Ψ ` D : ∆
(20)

Code Heap

∀L ∈ domain(Ψ).Ψ ` C(L) : Ψ(L)

` C : Ψ
(21)

Machine states:

` C : Ψ ` D : ∆ ` R : Γ Ψ ` I : (Γ ′ ×∆′) (Γ ×∆) ≤ (Γ ′ ×∆′)

` (C, D, R, I)
(22)

Fig. 6. Type System of sFORD

3.2 Typing Rules

We define the following types for values:

value types t ::= p | Const

We define three typing environments:

(Code heap type) Ψ ::= {L1 : (Γ1 ×∆1),
. . . , Lk : (Γk ×∆k)}

(Register bank type) Γ ::= {r1 : p1, . . . , rm : pm}
(Data heap type) ∆ ::= {l1 : p1, . . . , ln : pn}

Operands that have no effect on the register allocation process are given the type
Const. The type of a machine location (register or memory address) is determined
by the pseudo that is stored in that location. The environment Γ contains the
types of the machine registers, and the typing environment ∆ contains the types
of locations in the data heap. We will refer to Γ and ∆ as location environments.
The environment Ψ determines the type of each instruction block. The type of
an instruction sequence is given by the minimum configuration of the bank of
registers and data heap that the sequence must receive in order to be able to
execute properly. We consider instructions as functions that modify the location
environments, that is, an instruction i expects an environment (Γ × ∆) and
returns a possibly modified environment (Γ ′ × ∆′). We define an ordering on
location environments as follows:

Γ ≤ Γ ′ if ∀r, r : p ∈ Γ ′ then r : p ∈ Γ (23)

∆ ≤ ∆′ if ∀l, l : p ∈ ∆′ then l : p ∈ ∆ (24)

(Γ ×∆) ≤ (Γ ′ ×∆′) if Γ ≤ Γ ′ ∧∆ ≤ ∆′ (25)

The type rules for sFORD programs are given in Fig. 6. According to rule 11,
the type of a register binding such as (r, p) is the temporary p, but, only if p is
the type of r in the Γ environment, otherwise it does not type-check. Similarly,
Rule 12 determines the type of memory bindings. Rules 13, 14 and 16 change
the location environment. The ordering comparison in the premises of Rules 15
and 17 is necessary to guarantee that all the registers alive at the beginning of
an instruction block have well defined types.

None of the programs in Fig. 4 type-check. In Fig. 4(a), r1 is not declared
with type p0, thus the premise of Rule 11 is not satisfied. In Fig. 4(b), the
type of r0, before the execution of instruction 3, is p1, not p0, as expected
by the type annotation. Again, Rule 11 is not satisfied. Fig. 4(c) presents a
similar case, but using a memory location instead of a register: the type of l0
in instruction 3 is not p0, as expected, but p1. The type of the used operand
would not satisfy the premise in Rule 12. In Fig. 4(d), r1 has type ⊥ before
the execution of instruction 3, which is different from the expected type p1.
Finally, in Fig. 4(e) Ψ(L2) = ([r0 : p0] × ∆), but the type of instruction 4 is
([r0 : p1]×∆) 7→ ([r0 : p1]×∆). This would not satisfy the inequality in Rule 17.

3.3 Type Soundness

We state the lemmas and theorems that constitute our soundness proof. Our
soundness proof assumes that the sMIRA program defines each pseudo p before
p is used. If the sFORD program type-checks, then it preserves the values alive
in the original sMIRA code.

Theorem 1. (Preservation) If ` M , and M → M ′, then ` M ′.

Lemma 1. (Canonical Values) If ` C : Ψ , ` D : ∆ and ` R : Γ then:

1. If Ψ ` L : (Γ ×∆), then L ∈ domain(C), C(L) = I and Ψ ` I : (Γ ×∆).
2. If ∆;Γ ` o : p, then o = r, or o = l. If o = r, then r ∈ domain(R), else if

o = l, then l ∈ domain(D).
3. If ∆;Γ ` o : Const, then o = •.

Theorem 2. (Progress) If ` M , then M is a final state, or there exists M ′

such that M 7→ M ′.

Corollary 1. (Soundness) If ` M , then M cannot go wrong.

We have checked the proof using Twelf [32], and this proof can be found at
http://compilers.cs.ucla.edu/ralf/twelf/

3.4 Preservation of callee-save registers

Our type system is intra-procedural, and it assumes that a function call preserves
callee-save registers. This must be verified for each procedure, after its type-
checking phase, when every instruction has a well know type. If we assume that
a machine register is either caller-save or callee-save, this verification step can be
done via a simple test. Let L0 be the label of the first instruction in the procedure,
and let Le be an exit point. Let Ψ(L0) = (Γ0 ×∆0), and let Ψ(Le) = (Γe ×∆e).
Callee-save registers are preserved at exit point Le, if Γe � CallerSave ≤ Γ0 �
CallerSave.

Along with the preservation of callee-save registers, our type systems has a
set of consistency requirements, which can be carried out as a sequence of table
lookup verifications. These checks are explained in the full version of this paper,
available at http://compiler.cs.ucla.edu/ralf.

4 Experimental Results

Figure 1 presents a high-level block diagram of RALF. RALF interfaces the
transformation between the RTL and LTL intermediate representations used by
gcc. RALF’s front end consists mainly of gcc’s parser, gcc’s optimization phases,
and code to produce a MIRA program from a RTL program. The back end
consists mostly of a type checker, code for producing LTL instructions, and gcc’s
code generation engine. RALF interacts with the implementation of a register

allocator via ordinary ASCII files. Given a RTL program P , RALF translates
P into a MIRA ASCII program M, which is then fed to the plugged-in register
allocator. The register allocator outputs a set of FORD directives F , which are
then given back to RALF. RALF checks that (M,F) is a correct mapping via
the type system described in Section 3, applies the directives F on the original
RTL program, and generates gcc’s LTL code. RALF’s back end does not need
the original MIRA file in order to produce the LTL program. When producing
the RTL code, RALF inserts loads and stores for callee save registers at the
entrance and exit of each function (a smart register allocator might decide to
take on that responsibility itself and RALF has an option for that).

We have tested RALF with eight different register allocators: (1: gcc -O2)
the allocator present in the gcc compiler, which has two main phases: (a) aggres-
sive register allocation for local variables within basic blocks, (b) conservative
allocation for the whole function. (2: Naive) The naive register allocator, which
spills all the pseudos. (3: UBC) usage count based register allocator [11], (4:
IRC) iterated register coalescing [13], (5: Chordal) register allocation via color-
ing of chordal graphs [27], (6: LS) linear scan [28], (7: RA) integer linear program
(ILP) [23], (8: SARA) stack location allocation combined with register allocation
(SARA) [23].

Five of the register allocators have been implemented in Java (2, 3, 4, 5 and
6). Algorithms 7 and 8 have been implemented in AMPL [10]. The interface
provided by RALF is extremely simple, and most of the code used to parse and
output MIRA/FORD files could be reused among the different implementations.
Table 7 compares the size of each implementation; (J) stands for Java, and (A)
for AMPL. We do not compare the execution speed of the allocators, because
they have been implemented in different languages.

RA #LOC

RA Interface

Naive 48 (J) 773 (J)

UBC 2766 (J) 773 (J)

IRC 3538 (J) 773 (J)

Chordal 4134 (J) 773 (J)

LS 385 (J) 1100 (J)

RA 495 (A) 298 (A)

SARA 731 (A) 400 (A)

Fig. 7. Comparison between different register allocators plugged on RALF

We have plugged each of the eight algorithms into RALF and then tested the
produced code on a StrongARM/XScale processor, with 64MB SDRAM, and no
cache. We have drawn our benchmark programs from a variety of sources. We
chose these benchmarks in part because the more traditional ones (for example,

SPEC) have a huge memory print, and cannot be run in our resource constrained
ARM hardware.

LOC RTL gcc-O2 LS RA SARA Chordal IRC UCB Naive
Bench mem csr mem csr mem csr mem csr mem csr mem csr mem csr mem csr

Stanford 307 1082 20 81 171 107 22 63 24 69 34 134 70 100 44 133 854 0
yacr2 3979 10838 1078 289 3035 335 1003 123 1109 142 2121 357 1957 314 2200 361 8181 0
ft 2155 3218 299 130 538 151 225 87 230 106 371 162 561 100 360 169 2184 0
c4 897 40948 187 123 715 301 176 145 179 151 416 170 453 145 394 170 3531 0
mm 885 3388 386 92 2494 68 375 116 380 92 591 93 648 93 687 93 2590 0
url 652 1264 102 54 313 16 120 56 120 58 155 61 201 51 203 63 860 0
md5 790 3464 519 110 1869 433 500 120 500 120 570 228 697 174 580 229 2714 0

Fig. 8. Compile time statistics.

– Stanford Benchmark suite: a collection of seven programs that test recursive
calls and array indexing.

– NetBench [19]: url is a network related benchmark that implements HTTP
based switching; md5 is a typical cryptographic algorithm.

– Pointer-intensive benchmark [7]: This benchmark suite is a collection of
pointer-intensive benchmarks. Yacr2 is an implementation of a maze solver
and Ft is an implementation of a minimum spanning tree algorithm.

– c4 and mm are taken from the comp.benchmarks USENET newsgroup at
http://www.cs.wisc.edu/~thomas/comp.benchmarks.FAQ.html. c4 is an im-
plementation of the connect-4 game, and mm is a matrix multiplication
benchmark.

The number of lines of C code (LOC) and the number of instructions in
the RTL for these benchmarks are presented in Figure 8. These benchmarks are
non-floating point programs. (We had to edit few of the programs to remove
some code that uses floating point operations; we did so only after ensuring
that the code with floating point operations is not critical to the behavior of
the program.) For each benchmark, Figure 8 presents two static compile time
statistics: the number of memory accesses (mem) due to spill/reload instructions,
and the number of callee save registers (csr) used by the register allocator (leads
to more memory accesses).

The chart in Figure 9 compares the execution times of the programs produced
by each of the register allocators. The execution times have been normalized
against the time obtained by programs compiled with gcc at the -O2 optimiza-
tion level. It can be noted that, although the gcc algorithm is heavily tuned
for the StrongARM architecture, Chordal, UBC, and IRC present comparative
performances. Also Chordal and IRC’s performances are similar, which confirms
the results found by Pereira et al [27]. Figure 9 suggests an upper limit on the
gains that any register allocator can make. Even in the most extreme case, the
code generated by the naive allocator is worse by a factor of 2.5 (as compared
to the optimal solution found by the ILP based allocator). An important point

Stanford yacr ft c4 mm url

GCC SARALS IRC NaiveChordal UBCRA

md5
0

50

100

150

200

250

300

350

N
or

m
al

iz
ed

 e
xe

cu
tio

n
 ti

m
e:

Fig. 9. Comparison of different register allocators using execution time of benchmarks
as the metric.

is that most of these benchmarks deal with structures and arrays that require
compulsory memory accesses, and it seems that these accesses overshadow the
spill cost and hence such a small (2.5 times) improvement. Another conclusion
is that the obtained execution time given by optimal solutions (SARA and RA),
that run in worst-case exponential time, is not much lower than that obtained by
polynomial time heuristics. It should be pointed that our experiments compare
specific implementations of the allocators, and are run on a specific target ma-
chine; however, it was our objective to be as faithful as possible to the original
description of each algorithm.

5 Conclusion

We have presented a framework that facilitates the development of register al-
location algorithms. Our framework consists of the two description languages
MIRA and FORD, plus a type system. Our framework is easy to use, and versa-
tile enough to support a wide variety of register allocation paradigms. In order to
validate this claim, we have developed RALF, an implementation of our frame-
work for the StrongARM architecture, and used it to compare eight different
register allocators.

Our framework has several limitations which may be overcome in future work:
FORD does not permit the register allocator to modify the control flow graph of
the target program; the grammar of MIRA supports only intra-procedural regis-
ter allocation; the validation algorithm does not handle bitwidth aware register
allocations [29]; and FORD does not support the concepts of re-materialization
or code-motion. The implementation of RALF itself has the limitations that it
targets only the ARM architecture, and RALF does not handle pseudos of type
float or double (we have opted for this restriction to keep the implementation
simple). So far we have experimented with only the C front-end of gcc; RALF

can be seamlessly used with any language supported by gcc. Currently, we are
extending RALF to allow the register allocator to do bitwidth-sensitive-analysis.

RALF, our benchmarks, our Twelf proof, and a collection of tools that we
have developed to aid in the design and test of register allocators are publicly
available at http://compilers.cs.ucla.edu/ralf.

5.1 acknowledgments

We thank the anonymous reviewers for comments on a draft of the paper. Fer-
nando Pereira is sponsored by the Brazilian Ministry of Education under grant
number 218603-9.

References

1. Standard ML of New Jersey. 2000. http://www.smlnj.org/

2. GNU C compiler. 2005. http://gcc.gnu.org

3. Ali-Reza Adl-Tabatabai, Thomas Gross, and Guei-Yuan Lueh. Code reuse in an
optimizing compiler. In OOPSLA, pages 51–68. ACM Press, 1996.

4. Johan Agat. Types for register allocation. Lecture Notes in Computer Science,
1467:92–111, 1997.

5. Christian Andersson. Register allocation by optimal graph coloring. In CC, pages
34–45. Springer, 2003.

6. Andrew W Appel and Lal George. Optimal spilling for CISC machines with few
registers. In PLDI, pages 243–253. ACM Press, 2001.

7. Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of all
pointer and array access errors. In PLDI, pages 290–301, 1994.

8. G. J. Chaitin. Register allocation and spilling via graph coloring. SIGPLAN
Notices, 17(6):98–105, June 1982.

9. K.M. Elleithy and E.G. Abd-El-Fattah. A genetic algorithm for register allocation.
In Ninth Great Lakes Symposium on VLSI, pages 226–227, 1999.

10. Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL A
modeling language for mathematical programming. Scientific Press, 1993.
http://www.ampl.com.

11. R. A. Freiburghouse. Register allocation via usage counts. Commun. ACM,
17(11):638–642, 1974.

12. Changqing Fu and Kent Wilken. A faster optimal register allocator. In MICRO,
pages 245–256. IEEE Computer Society Press, 2002.

13. Lal George and Andrew W. Appel. Iterated register coalescing. TOPLAS,
18(3):300–324, May 1996.

14. David W. Goodwin and Kent D. Wilken. Optimal and near-optimal global register
allocations using 0-1 integer programming. SPE, 26(8):929–968, August 1996.

15. Mary W. Hall, Jennifer-Ann M. Anderson, Saman P. Amarasinghe, Brian R. Mur-
phy, Shih-Wei Liao, Edouard Bugnion, and Monica S. Lam. Maximizing multi-
processor performance with the SUIF compiler. IEEE Computer, 29(12):84–89,
1996.

16. Yuqiang Huang, Bruce R. Childers, and Mary Lou Soffa. Catching and identifying
bugs in register allocation. In SAS. Springer, 2006.

17. Xavier Leroy. Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In POPL, pages 42–54. ACM Press, 2006.

18. Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global register allo-
cation based on graph fusion. In Languages and Compilers for Parallel Computing,
pages 246–265, 1996.

19. G. Memik, B.Mangione-Smith, and W.Hu. Netbench: A benchmarking suite
for network processors. IEEE International Conference Computer-Aided Deisgn,
November 2001.

20. Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to
typed assembly language. TOPLAS, 21(3):527–568, 1999.

21. Mayur Naik and Jens Palsberg. Compiling with code size constraints. Transactions
on Embedded Computing Systems, 3(1):163–181, 2004.

22. V. Krishna Nandivada and Jens Palsberg. Efficient spill code for SDRAM. In
CASES, pages 24–31, 2003.

23. V. Krishna Nandivada and Jens Palsberg. Sara: Combining stack allocation and
register allocation. In CC, pages 232–246, 2005.

24. George C. Necula. Translation validation for an optimizing compiler. In PLDI,
pages 83–95. ACM Press, 2000.

25. George C. Necula and Peter Lee. The design and implementation of a certifying
compiler. In PLDI, pages 333–344, 1998.

26. Atsuchi Ohori. Register allocation by proof transformation. Science of Computer
Programming, 50(1-3):161–187, 2004.

27. Fernando M. Q. Pereira and Jens Palsberg. Register allocation via coloring of
chordal graphs. In ASPLAS, 2005.

28. Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. TOPLAS,
21(5):895–913, 1999.

29. Sriraman Tallam and Rajiv Gupta. Bitwidth aware global register allocation. In
POPL, pages 85–96, 2003.

30. Omri Traub, Glenn H. Holloway, and Michael D. Smith. Quality and speed in
linear-scan register allocation. In PLDI, pages 142–151, 1998.

31. Raja Vallee-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. Soot - a Java bytecode optimization framework. In CASCON,
1999.

32. Frank Pfenning and Carsten Schürmann. System description: Twelf - a meta-
logical framework for deductive systems. In (CADE-16), pages 202–206, Springer,
1999.

