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Abstract
Orthogonal persistence implemented with non-volatile mem-
ory (NVM) allows the programmers to easily create persis-
tent containers, which are container data-structures pre-
served even after the process terminations due to a system
crash. However, the state-of-the-art technique of its imple-
mentation in multithreaded languages rely on the MFENCE
instruction, which limits out-of-order execution. This over-
head is applied regardless of the use of persistent objects. We
propose a technique that does not disturb out-of-order exe-
cution. Instead, we let the thread that is attempting to make
an object persistent synchronize with all the other threads
by handshaking. Furthermore, we propose a technique to
eliminate the redundancy of that synchronization by a novel
static analysis called persistence-aware escape analysis. We
implemented both the proposed techniques in RBP (replica-
tion based persistency) implemented in the HotSpot VM of
OpenJDK. As a result of our evaluation, we observed that
the execution speed was faster than RBP by 23.0% when
a program did not use persistent objects, and it was only
10.6% slower than the standard HotSpot VM, which does
not support orthogonal persistence. When a program used
persistent objects, execution speed was almost the same as
RBP. These results demonstrate that orthogonal persistence
using NVM can be implemented in a practical way.

CCS Concepts: • Hardware→ Non-volatile memory; •
Software and its engineering→ Just-in-time compilers.
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1 Introduction
The objects in byte-addressable non-volatile memory (NVM)
can be accessed by the program in the same way as those in
DRAM, and they themselves are persistent after their data
are written back to NVM from the CPU cache. However,
NVM is not as fast as DRAM, though it is faster than SSDs.
Therefore, hybrid systems of DRAM and NVM are used in
practice where persistent objects reside in NVMwhile volatile
objects reside in DRAM.

Such hybrid systems bring an interesting challenge to the
software side to maintain the integrity and consistency of the
data in NVM so that whenever the system crashes during an
execution, we can recover (and resume) the execution using
the data in NVM. For example, programs must not create
pointers from objects in NVM to objects in DRAM, which
become dangling pointers after a crash. Therefore, programs
must place the objects that such pointers point to in NVM.
In addition, the programs must control the order of writes
to NVM, which involves writing back cache lines accord-
ingly. Manually controlling when and which objects must
be made persistent is a tedious and error-prone task for the
programmer. To address this problem, various programming
models [25, 30] have been proposed.
Orthogonal persistence model [3, 30] is one of the most

programmer-friendly programming models. In this model,
the persistence of objects is decided by reachability; objects
reachable from the user-defined persistent roots are persistent.
The locations of the data and the order of writes are managed
by the system accordingly based on the persistence of objects.
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In essence, the programmer only defines the persistent roots
to use persistent objects.

AutoPersist [31] and replication-based persistence (RBP) [25]
are the state-of-the-art of orthogonal persistence using NVM
in managed runtimes. They copy objects in DRAM to NVM
when they become reachable from the persistent roots. Un-
fortunately, both systems incur a large overhead at every
write to objects. As we will show in Section 5, programs suf-
fer from 43.7% overhead on average for RBP even when they
do not make any objects persistent. This is because they rely
on serialized memory accesses by the MFENCE instruction
executed in runtime checks that are carried out in write bar-
riers. These checks are to detect the case where the object to
be written is being copied to NVM by another thread in mul-
tithreaded environments under a weak memory consistency
model, such as x86 total store ordering (TSO) [16].
In this paper, we reduce the write barrier overhead by

combining two novel techniques. First, we remove MFENCE
from the runtime check. Instead, when a thread copies an
object, the threadwaits till all other threads acknowledge this
attempt using handshakes. Though threads have to answer
to handshakes, its overhead is negligible 1.
Second, we use a novel extension to the classical escape

analysis (called persistence-aware escape analysis) to reduce
these persistence-related overheads. We identify the field-
write instructions where no thread will write to the objects
that are made persistent. Further, to avoid the overhead of
expensive analysis at runtime, we take inspiration from prior
work [14, 37] and perform our proposed analysis during
static compilation time, and then use the analysis results in
the JVM.
We implemented the static components of our proposed

scheme in the Soot compiler framework [40], and the run-
time components of our scheme in RBP (replication based
persistence) implemented in the OpenJDK HotSpot VM. We
evaluated these implementations to verify that the proposed
write barrier reduces overhead for programs that do not use
persistent objects very often. As a result, we observed that
the execution speed was faster than RBP by 23.0% when a
program did not use persistent objects, and it was only 10.6%
slower than the standard HotSpot VM, which does not sup-
port orthogonal persistence. We also evaluated the penalty
of persistence-related overheads introduced by our write
barrier and the impact of the proposed static analysis. We
show that programs that do use persistent objects incurred
37.9% of persistence-related overheads on average. However,
52.0% of them were eliminated by our static analysis. These
results demonstrate that orthogonal persistence using NVM
can be implemented practically and efficiently.
The rest of the paper is organized as follows. Section 2

describes background and the the problem of orthogonal
persistence using NVM. In Sections 3 and 4 we present the

1Lin et al. [22] reported this overhead to be 1.9%.

1 class Program {
2 @durable_root static Pair assocList;
3 @durable_root static int count;
4 static void assoc(Object k, Object v) {
5 Pair p = new Pair(); / / p i s vo lat i le object
6 p.head = k;
7 p.tail = v;
8 Pair r = new Pair(); / / r i s vo lat i le object
9 r.head = p;
10 r.tail = Program.assocList;
11 Program.assocList = r; / / p and r become persistent
12 Program.count = Program.count + 1; } }

Figure 1. Program constructing a persistent association list.

proposed write barriers and static analysis, respectively. We
evaluate our proposal in Section 5, and discuss related work
in Section 6. Finally, we conclude in Section 7.

2 Background

2.1 Orthogonal Persistence

In the orthogonal persistence model [3, 30] the program-
mers specify the roots of persistent data structures. They are
called persistent roots. Objects reachable from the persistent
roots are guaranteed to be persistent by the system. In such
systems, objects are created as non-persistent, which we
say volatile. They dynamically become persistent when they
become reachable from the persistent roots.
Figure 1 shows a typical example of a Java program that

constructs a persistent association list comprising persistent
objects. It shows a common case where locally constructed
objects are stored in persistent containers. In the example,
the static fields assocList and count are the persistent roots.
The field assocList points-to the head of the association
list. It is a list of association cells, each of which contains a
key-value pair in its head and tail fields. The field count
holds the number of elements in the association list.

The assoc method creates a new association cell contain-
ing a key-value pair (k, v) and appends it to the list. Pairs
pointed-to by p and r are volatile when they are created at
lines 5 and 8. Therefore, assignments to their fields do not
make any objects persistent. Note that volatile objects can
have references to persistent objects. Thus, the assignment
at line 10 does not make the object pointed-to by r persistent,
though assocList points to a persistent object.

At line 11, a volatile object (pointed-to by r) is assigned to
the persistent root assocList. Therefore, the object pointed-
to by r is made persistent before the assignment. The object
pointed-to by p is also made persistent because it is reachable
from r. At line 12, another persistent root count is updated.
In these systems, writes to persistent roots and persistent
objects are reflected in NVM in an order that does not con-
tradict the happens-before order [23], which includes the
program order. Therefore, whenever the system crashes, it
is guaranteed that at least the first count elements in the
association list are valid.
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Another typical use case is minimally ordered durable
data structures [15], which are variants of immutable data
structures, such as hash-array mapped tries [4], compressed
hash-array mapped prefix-trees [34], and relaxed radix bal-
anced trees [36]. Immutable data structures cannot be up-
dated in place. Rather, a new version is created by copying
unchanged parts from the existing version to be updated
while sharing totally unchanged nodes among the old and
new versions. The newly created nodes are initialized while
they are volatile. They are made persistent when the root
of the immutable data structure is assigned to the persistent
root.

From our experience, we have observed that (i) writing to
persistent objects, which may make some objects persistent,
is not frequent, and (ii) objects tend to be initialized while
they are thread-local.

2.1.1 Efficiency Issues with Orthogonal Persistence.
The hybrid memory systems discussed earlier in this section
create objects in DRAM and copy them to NVM to make
them persistent. We call the thread that copies the object
a copier thread. The copier thread copies without stopping
the world. Therefore, it is possible that another thread may
write to the object being copied. We call this writing thread
a writer thread.
To resolve the race, both PBR and AutoPersist use an

MFENCE instruction on the execution path that is (almost)
always executed, or hot path, of the write barrier. This ap-
plies a large overhead to programs regardless of whether the
programs create persistent objects.
In the rest of this subsection, we explain why MFENCE

is necessary. RBP relies on the writers to write the same
value to both DRAM and NVM. However, this double-write
is conditional; the writer writes only when the object that
it is writing to has a replica. The replica is installed by the
copier concurrently with the writer. MFENCE is necessary
for the writers to acknowledge that the copier has installed
the replica.
AutoPersist [31] makes the copier fail when this race is

detected. The copier sets a copying flag on the object to be
copied. The writer thread resets it before it writes to the
object. After copying, if the copier finds the flag reset, the
copier retries. The copying bit must be accessed using an
expensive atomic instruction. Although an optimization to
eliminate atomic instructions in most cases is also proposed,
the optimization needs to read the object header after writ-
ing to a volatile object (see Section 6.3 in Shull et al. [31],
for details). In a weak memory consistency model, such as
x86 TSO, the load instruction of the object header may be
reordered with the preceding store. To ensure memory order,
an MFENCE instruction is required every time it writes to a
volatile object.

1 putfield(o, f, v): / / performs o.f = v
2 o[f] = v
3 MFENCE
4 o ′ = o.replica
5 if o ′ == NULL: return
6 make_persistent(v)
7 v ′ = v.replica
8 o ′[f] = v ′

9 CLWB(&o ′[f])

Figure 2.Write barrier of RBP.

2.2 Replication Based Persistence

2.2.1 Overview. RBP makes objects persistent by creat-
ing their replicas in NVM while continuing to use objects in
DRAM. We call an object in DRAM a DRAM copy of the ob-
ject. A DRAM copy and its replica are loosely synchronized;
except during being updated, their primitive type fields have
the same values and reference type fields have references to
the DRAM copies and replicas of the same objects.

To keep them synchronized, RBP uses write barriers that
write to both the DRAM copy and the replica for persistent
objects. Furthermore, RBP does not use read barriers. Read-
ing from either object yields the same value or a reference
to the same object under the assumption that the program is
data-race-free. RBP does not support programswith data race
on normal fields; racy access is allowed only to volatile fields
and through the java.util.concurrent.atomic package.
Because reading from NVM is slower than reading from
DRAM, the program reads from DRAM copies. To do that,
RBP maintains that the thread stacks and registers always
have references to DRAM copies.

2.2.2 Write Barrier. Figure 2 shows the write barrier of
the RBP. The putfield function writes v to the field f of the
object o. putfield assumes that v is a non-null reference.
The thread is a writer while it is executing putfield. The
writer writes to the DRAM copy at line 2, and writes to the
replica at line 8. In this paper, we consistently use the name
𝑥 ′ for the replica of 𝑥 .

Before writing to the replica, putfield checks if the object
has a replica or not at line 5. This check depends on the value
read on line 4. To prevent this read from being reordered
with the write at line 2, the MFENCE instruction is necessary.

Because v may be volatile, the writer ensures that v is
persistent so that a persistent object cannot have references
to volatile objects. The make_persistent function called
at line 6 makes v persistent. The thread is called a copier
when it is executing make_persistent. After writing to the
replica, which is in NVM, the writer writes the cache line
back to NVM using the CLWB instruction2.

2.2.3 Traversing Transitive Closure. Figure 3 shows the
pseudo code to make objects persistent. make_persistent

2We do not present SFENCE instructions to complete CLWB in this paper
because it is not relevant to our proposal.
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1 make_persistent(r):
2 local worklist
3 if shade(r) == TRUE:
4 worklist.add(r)
5 while not worklist.empty():
6 o = worklist.remove()
7 copy_to_replica(o)
8 SYNC()
9
10 shade(o):
11 o ′ = alloc_NVM(sizeof(o))
12 set_responsible_thread(o ′, current_thread)
13 if CAS(&o.replica, NULL, o ′) == SUCCESS: return TRUE
14 o ′ = o.replica
15 t = responsible_thread(o ′)
16 / / Thread t i s making o persistent
17 if t != current_thread: depends_on(t)
18 return FALSE

Figure 3. make_persistent of RBP.

traverses the object graph from the given argument r and
makes all reachable objects persistent. We call this r a clo-
sure root. Like tracing GC, it traverses using a mark stack
worklist. The objects that have replicas are considered vis-
ited. The function shade called at Line 3 creates a replica for
the given object, r. If it successfully installs a pointer to the
replica, it returns TRUE. Otherwise, it means that the object
already has a replica.
After it successfully installs the replica pointer, the func-

tion copy_to_replica called on line 7 fills the contents
of the replica by copying from the DRAM copy. The func-
tion copy_to_replica implements the Transactional Sap-
phire’s concurrent copying protocol [39] to resolve the race
between the copier making an object persistent and the
writer writing to the object. This protocol guarantees that
any write made by the writer is eventually propagated to
NVM. That is, the writer writes the same value to NVM
(line 8 in Figure 2), or the copier copies the written value
to NVM (in copy_to_replica). For ensuring correctness,
copy_to_replica includes a verify step which ensures that
the object being copied was not modified by another thread.
The function copy_to_replica also calls the function shade
on the objects that are directly pointed-to by the fields of the
object being copied, and adds them to the worklist.

This protocol relies on the writers work, which is enabled
after the writer recognizes that the replica pointer is installed.
That is why it uses MFENCE instruction in the write barrier.

In a multi-threaded program, multiple copiers may call
make_persistent on different closure roots simultaneously.
It is possible that the transitive closures of these closure
roots have an intersection. In such cases, two copiers create
a thread group and perform a barrier synchronization by
calling SYNC at the end of make_persistent so that neither
thread completes thewrite barrier before the reachable object
becomes persistent.

Vars = Set of variables.
SplObj = {𝐸obj }
AObjs = Set of abstract objects ∪ SplObj
𝐸𝑠𝑐𝑎𝑝𝑒 = Set of explicitly thread-escaping objects
𝜌 : Vars → 𝑃 (AObjs)
𝜎 : AObjs × Fields → 𝑃 (AObjs)

Figure 4. Sets and maps used to maintain points-to + escape
information at each program location.We use 𝑃 (𝑋 ) to denote
the power set of 𝑋 .

In shade, the copier thread installs the replica using an
atomic compare-and-swap (CAS) instruction because a dif-
ferent copier may attempt to install a replica on the same
object. The copier that successfully installs the replica is
called the responsible thread of the object and is responsi-
ble for copying the object. The thread ID of the responsible
thread is recorded in the replica on line 12. This thread ID
is used to detect the intersection of transitive closure on
line 15.

2.3 Escape Analysis

Escape analysis [9, 42] is a very popular data-flow analysis.
With the help of escape analysis, it is possible to identify
objects that are guaranteed to be thread local. We now give
a brief idea about the standard escape analysis relevant to
this paper.
In this manuscript, we identify each abstract object allo-

cated at Line 𝑥 , by the symbol𝑂𝑥 (for example, the variable p
in Figure 1 points to 𝑂5). Thus, 𝑂𝑥 represents all the objects
that may be allocated at that line, during program execution.
In addition to these abstract objects, we use an additional
special abstract object 𝐸obj that summarizes all the objects
that are explicitly passed to other threads.

An interesting property of the special objects is that deref-
erencing any field of such object returns the same object. We
will look at flow-sensitive analysis to handle cases where an
object may be thread-local for a part of the program. In the
analysis, at each program point, we maintain points-to infor-
mation using the maps abstract-stack (𝜌) and abstract-heap
(𝜎) as shown in Figure 4. The 𝐸𝑠𝑐𝑎𝑝𝑒 set contains the objects
that may escape to other threads via the arguments passed
to the thread constructor.
Figure 5 summarises the standard set of flow-functions

used for the combined points-to and escape analysis. The
𝜌𝑜𝑢𝑡 (𝑥) is set to the 𝜌𝑖𝑛 (𝑦), after processing a copy statement.
When a field of an object is dereferenced (in a statement like
𝑥 = 𝑦.𝑓 ), 𝜌𝑜𝑢𝑡 (𝑥) will include all the objects that may be
reachable from 𝑦.𝑓 . If 𝑦 may point to the special object 𝐸obj
then 𝜌 (𝑥) will also point to those special object(s).
In the case of field writes (of the form 𝑥 .𝑓 = 𝑦), we add

the objects pointed by 𝑦 to the points-to set of 𝑥 .𝑓 in the
𝜎 map. If the object pointed to by 𝑥 may-escape, then this
information is propagated to all the objects in the points-to-
closure of 𝑦. The macro ‘propagate’ (Var 𝑣 , Set 𝑆 , Obj 𝑜) can
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Statement Rule
(copy) 𝑥 = 𝑦 𝜌𝑜𝑢𝑡 (𝑥) = 𝜌𝑖𝑛 (𝑦)

(load) 𝑥 = 𝑦.𝑓

∀𝑜 ∈ 𝜌𝑖𝑛 (𝑦),
if 𝑜 ∈ SplObj then 𝜌𝑜𝑢𝑡 (𝑥)

⋃
= {𝑜}

else 𝜌𝑜𝑢𝑡 (𝑥)
⋃

= 𝜎𝑖𝑛 (𝑜, 𝑓 )

(store) 𝑥 .𝑓 = 𝑦

1.∀𝑜 ∈ (𝜌𝑖𝑛 (𝑥) − SplObj),
𝜎𝑜𝑢𝑡 (𝑜, 𝑓 )

⋃
= 𝜌𝑖𝑛 (𝑦)

2.if 𝜌𝑖𝑛 (𝑥) ∩ 𝐸𝑠𝑐𝑎𝑝𝑒 ≠ 𝜙 then
propagate(𝑦, 𝐸𝑠𝑐𝑎𝑝𝑒 , 𝐸obj )

(static load) 𝑥 = 𝐴.𝑔 𝜌𝑜𝑢𝑡 (𝑥) = {𝐸obj}
(static store) 𝐴.𝑔 = 𝑥 propagate(𝑥 , 𝐸𝑠𝑐𝑎𝑝𝑒 , 𝐸obj )

(alloc) 𝑥 = new A(args)

if (A is a thread class)
𝜌𝑜𝑢𝑡 (𝑥) = {𝐸obj}
propagate(arg, 𝐸𝑠𝑐𝑎𝑝𝑒 , 𝐸obj )
// invoked for each arg

else 𝜌𝑜𝑢𝑡 (𝑥) = {𝑂𝑙 }
// say the line number is 𝑙

Figure 5. Flow functions for different statements to perform
combined points-to and escape analysis. Assume that 𝜌𝑖𝑛 ,
and 𝜎𝑖𝑛 are the 𝜌 and 𝜎 maps, respectively, before processing
the statement. Similarly, 𝜌𝑜𝑢𝑡 , and 𝜎𝑜𝑢𝑡 are the 𝜌 and 𝜎 maps,
respectively, after processing the statement.

be defined by the two-step procedure defined below:
(a) 𝑆

⋃
= ptsToClosure(𝜌𝑖𝑛 (𝑣))

(b) ∀𝑜 ∈ ptsToClosure(𝜌𝑖𝑛 (𝑣)),∀𝑓 ∈ Fields, 𝜎 (𝑜, 𝑓 ) ⋃= {𝑜}
The method ptsToClosure(𝑋 ) computes the union of the
points-to-closures for each object present in the set 𝑋 .
Handling of static fields: Reading a static field always

returns 𝐸obj . Writing to a static field, leads to the propagation
of escape information on the points-to-closure of the rhs.
An object allocation (at line number 𝑙) can lead to the

creation of a regular object (𝜌𝑜𝑢𝑡 (𝑥) includes𝑂𝑙 ), or a thread
object (the escape information is propagated to the points-
to-closure of the arguments).

We briefly illustrate the rules using the example in Figure 1.
Assume that before reaching line 5, 𝜌 = {k → {𝑂𝑘 }, v →
{𝑂𝑣}}, and both the 𝐸𝑠𝑐𝑎𝑝𝑒 set and 𝜎 map is empty. Af-
ter Line 5, only the 𝜌 map is updated to {k → {𝑂𝑘 }, v →
{𝑂𝑣}, 𝑝 → {𝑂5}}. Line 6 and Line 7 are store statements and
hence only𝜎 map is updated to {𝑂5.ℎ𝑒𝑎𝑑 → {𝑂𝑘 }, 𝑂5.𝑡𝑎𝑖𝑙 →
{𝑂𝑣}} after Line 7. After processing the static-load at Line 10,
we update the 𝜎 map to {𝑂5 .ℎ𝑒𝑎𝑑 → {𝑂𝑘 }, 𝑂5 .𝑡𝑎𝑖𝑙 →
{𝑂𝑣}, 𝑂8 .ℎ𝑒𝑎𝑑 → {𝑂5}, 𝑂8.𝑡𝑎𝑖𝑙 → {𝐸obj}} after Line 10.
Finally after the static-store at Line 11, the 𝜎 map is updated
to {𝑂5.ℎ𝑒𝑎𝑑 → {𝑂𝑘 , 𝐸obj}, 𝑂5.𝑡𝑎𝑖𝑙 → {𝑂𝑣, 𝐸obj}, 𝑂8.ℎ𝑒𝑎𝑑 →
{𝑂5, 𝐸obj}, 𝑂8.𝑡𝑎𝑖𝑙 → {𝐸obj}} and Escape to {𝑂5,𝑂8,𝑂𝑘 ,𝑂𝑣}.

3 Copier-Wait Write Barrier
In the original RBP, the writer thread waits for its write to
the DRAM copy to become visible. We call this approach
the writer-wait approach. In this section, we propose the
copier-wait approach, where we shift the overhead from the
writers to the copiers.

3.1 Overview

In the copier-wait approach, we remove MFENCE at line 3
from the write barrier in Figure 2. Instead, the copier marks
objects to be copied and waits for the other threads to rec-
ognize the mark. Here, we say that a thread recognizes a
mark when the mark becomes visible to the thread and all
the in-flight stores of the thread become globally visible.

Except for the absence ofMFENCE, the writer’s code of the
writer barrier is the same as the writer-wait approach. In con-
trast, the copier’s code, make_persistent, is different. Fig-
ure 7 shows its pseudo code. shade and copy_to_replica
are the same as the writer-wait approach, shown in Figure 3.
In the copier-wait approach, make_persistent consists

of the mark and copy phases. The mark phase (from line 7)
determines the transitive closure of the given closure root,
r. The objects in the transitive closure are marked, and the
copier waits for the other threads to recognize the marks.
Because the object graph may be mutated by other threads
while the copier is waiting, the copier keeps tracks of the
marked objects by using an array called gray array.
In the copy phase (from lien 12), it copies the contents

of the objects marked in the mark phase one by one. Each
object is copied in the same way as the writer-wait approach
using copy_to_replica shown in Figure 3.

3.2 Write Barrier

Instead of introducing a separate mark bit, we use the pres-
ence of the replica to indicate that the object is being copied.
If the replica pointer field is not null, the object is regarded
as marked.
In the writer-wait approach, the presence of the replica

pointer means that the copier may be copying the contents
because the copier starts copying as soon as it installs the
replica pointer. Therefore, MFENCE is necessary for the
writer to see the latest value in the replica pointer field in a
weak memory consistency model.

In the copier-wait approach, the presence of the replica
does not mean that the copier is copying. The copier starts
to copy after the replica pointer is recognized by the writer.
Thus, if the writer reads an old value of the replica pointer
field, it can behave on the basis of the old value because the
copier is waiting. Therefore, MFENCE is not necessary on
the hot path.

If the writer observes a replica pointer on line 4 in Figure 2,
the copier may be copying. In this case, the writer writes
to the replica at line 8 in Figure 2 following the concurrent
copying protocol.

3.3 Ragged Synchronization

The copier performs a handshake with all the other threads.
This ensures that the installed replicas are recognized by the
threads. This mechanism is similar to the ragged synchro-
nization of the Staccato concurrent copying GC [26].



SLE ’24, October 20–21, 2024, Pasadena, CA, USA Yilin Zhang, Omkar Dilip Dhawal, V. Krishna Nandivada, Shigeru Chiba, and Tomoharu Ugawa

1 handshake():
2 foreach t in all_threads:
3 if t != current_thread: t.handshake_request = TRUE
4 foreach t in all_threads:
5 if t != current_thread:
6 wait until t.handshake_request == FALSE

Figure 6. Handshake.

Figure 6 shows the pseudo code of the copier side of the
handshake. The copier sends a handshake request to all other
threads by setting the handshake_request flag in the thread
structures on line 3. All threads periodically check the re-
quest and send an acknowledgment by toggling the flag. The
handshake flag is checked at the GC safe points.
In the implementation, we used a handshake infrastruc-

ture of the HotSpot VM. Although the infrastructure is more
sophisticated to deal with suspended threads, threads that
execute native functions, and other waiting threads, it is the
same as the pseudo code in essence.

3.4 Determining Transitive Closure

The mark phase determines the transitive closure of the
closure root, r. In the rest of this section, we use the colors of
the tri-color abstractions [12] to denote the states of volatile
objects; unmarked objects are white, marked objects that
may have references to white objects are gray, and the other
marked objects are black. We do not use color for persistent
objects.

mark_transitive_closure called on line 9 in Figure 7 is
the central function in the mark phase. It traverses the object
graph from the objects in the worklist. At the first call,
worklist has only the closure root. It uses the worklist as
a mark stack and terminates when the worklist becomes
empty. Note that the replica is installed on the object by
shade at line 22 (see Section 2.2.3 for details).
At line 10 the mark phase performs handshaking. From

now on, the writers recognize all replicas installed by
mark_transitive_closure.

3.5 Concurrent Mutation

During the traversal, all visited objects are accumulated in an
array gray_array. We call this array the gray array because
during themark phase, all objects in this array are considered
gray.

In a multi-threaded environment, another thread may in-
stall a reference to a white object into a marked object while
mark_transitive_closure is traversing. The mark phase
scans the gray array to find such white object by calling
find_unmarked on line 11. Unmarked objects discovered are
added to the worklist. If some objects are added to the gray
array, the mark phase repeats; mark_transitive_closure
traverses from the added objects. Note that, in our evaluation
in Section 5, it was very rare and at most three times in a
single run of a benchmark program that unmarked objects
are found.

1 make_persistent(r):
2 local worklist
3 local gray_array
4 if shade(r) == TRUE:
5 worklist.add(r)
6 gray_array.add(r)
7 / / mark phase
8 while not worklist.empty():
9 mark_transitive_closure(worklist, gray_array)
10 handshake()
11 find_unmarked(worklist, gray_array)
12 / / copy phase
13 foreach o in gray_array: copy_to_replica(o)
14 SYNC()
15
16 / / mark objects in worklist and their transi t ive closure
17 mark_transitive_closure(worklist, gray_array):
18 while not worklist.empty():
19 p = worklist.remove()
20 foreach f in p.fields:
21 o = p[f]
22 if shade(o) == TRUE:
23 worklist.add(o)
24 gray_array.add(o)
25
26 find_unmarked(worklist, gray_array):
27 foreach p in gray_array:
28 foreach f in p.fields:
29 o = p[f]
30 if o.replica == null:
31 / / o i s not marked
32 if shade(o) == TRUE:
33 worklist.add(o)
34 gray_array.add(o)

Figure 7. Copier-wait version of make_persistent; func-
tion shade is from Figure 3.

If no objects are added to the worklist, the mark phase
ends. This is safe because, once the copier performs a hand-
shake, no more references to white objects are written to
the objects that are marked before the handshake. When a
writer thread writes such a reference to an object 𝑂 , it finds
that 𝑂 has a replica pointer on line 5 in Figure 2. Therefore,
the writer makes the white object persistent before writing
the reference to 𝑂 .
It is also possible that a reference to a marked object is

overwritten and the marked object becomes stray object.
However, the copier can find those stray objects because of
the gray array.

3.6 Correctness Argument

In RBP, all writes to the DRAM copy of an object must even-
tually be propagated to the NVM copy. We show that this
also holds in the copier-wait approach, under the x86 TSO
memory consistency model, where two reads or two writes
made by the same thread are not reordered.

Under x86 TSO, in our proposed scheme, writes made be-
fore a handshake are guaranteed to be visible to other threads
after the handshake. This is because during handshake, the
writer and the copier, both write to the handshake_request
flag, and ensure that they are visible to each other.
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The copier performs the handshake between the installa-
tion of the replica pointer and copy of the fields. Therefore,
in the case where the writer writes before answering the
handshake, the write is visible to the copier when the copier
copies. In the case where the writer writes after answering
the handshake, the replica pointer is visible to the writer,
and the writer propagates the write. In either case, the write
is propagated to the NVM copy (by the copier or writer).

4 Reducing the Overheads of Write Barriers
using Static Analysis

In this section, we present a static analysis based technique
to reduce the overheads of write barriers by reducing the
cost of the copier-wait write barriers discussed in Section 3.
We first describe the motivation for using static analysis for
scheme, and then present the details of our proposed static
analysis components.

4.1 Motivation

In the copier-wait approach we discussed in Section 3, when-
ever a thread tries to make objects persistent in a putfield
instruction, it performs handshake with all the remaining
threads, because some of those threads may write to the ob-
ject being made persistent and may miss the installed replica
pointers. However, if all the objects we are trying to make
persistent are thread-local or already persistent, then this
handshake can be skipped. This is because, if the objects are
thread-local, no other threads can write to them, and if the
objects are already persistent, the putfield does not have
to make them persistent again.

In this situation, we can further elide two other overheads
in make_persistent: (i) we can simplify the procedure
to copy the contents of an object from DRAM to NVM in
copy_to_replica called on line 7 in Figure 3. (ii) We can
also simplify the shade function in Figure 3 so that we do
not manage the responsible thread and elide the SYNC opera-
tion on line 14 in Figure 7 because no other thread may be
making the same object persistent simultaneously. We call
these three overheads as the persistence-related overheads.

For example, in Figure 1, let us assume that all the objects
reachable from parameters k and v are thread-local. The field
writes for the Lines 6, 7 and 9 do not take the slow path in the
write barrier as the object beingwritten to is thread-local (not
persistent). The assoc function writes to a persistent object
at line 11, and tries to make objects reachable from its right-
hand-side (rhs), r. However, we can avoid the persistence-
related overheads here because the object pointed by r and
all the objects reachable from its head field are thread-local,
and the value in its tail field is the reference loaded from a
persistent root Program.assocList at line 10, which points
to a persistent object. Note that all the objects reachable
from a persistent object are persistent by the invariant of
orthogonal persistency.

However, in the same example, say the object pointed to
by p is passed to a different thread (not shown) before line 9,
then we cannot avoid the persistence-related overheads at
lines 9, and 11. In general, our target is not just the object
pointed to by the right-hand-side (rhs) of such a field-store
instruction, but the list of all the objects that are reachable
from the rhs. We call this list as the points-to-closure, which
abstracts the transitive closure of the reachable objects at
runtime.

Note that the traditional thread-escape analysis is insuffi-
cient to reduce the persistence-related overheads, because
for us to do so, the points-to-closure of the rhs should con-
tain only thread-local objects. For example, for the code
shown in Figure 1, as discussed in Section 2.3, the tradi-
tional thread-escape analysis will infer that the static field
Program.assocList will point to a thread-escaping object,
and hence we cannot elide the overheads at Lines 10 (or 11).

4.2 Persistence-Aware Escape Analysis

In this section, we extend the idea of classical escape anal-
ysis, discussed in Section 2.3, to handle persistent objects.
We call this analysis, persistence-aware escape analysis. Be-
sides tracking the objects that may explicitly escape to other
threads (via the reachable objects to the thread-objects), we
also track which objects are reachable from the persistent
roots via, one or more field dereferences; such objects are
also referred to as persistent objects.

In addition to the abstract objects defined for the standard
escape analysis, we use one additional special abstract object
𝑃obj ∈ 𝑠𝑝𝑙 , that summarizes all the persistent objects. Static
loads from the persistent roots returns 𝑃obj as it is guaran-
teed that object was made persistent earlier when it became
reachable via a persistent static field.
In addition to the sets and maps shown in Figure 4, at

each program-point, we maintain a set named 𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡

that contains the objects which may be reachable from the
persistent roots. Note that the sets 𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡 and 𝐸𝑠𝑐𝑎𝑝𝑒 will
never include the special objects 𝐸obj , and 𝑃obj , respectively.

In Figure 8, we give brief details of flow functions, where
we differ from the standard rules shown in Figure 5. Further,
note that we use the above modified SplObj set for the rules
in Figure 5, as well.
In case of field writes (of the form 𝑥 .𝑓 = 𝑦), in addition

to the rules shown in Figure 5, if the object pointed to by 𝑥
may be persistent, then this information is propagated to all
the objects in the points-to-closure of 𝑦.
While the rules for handling of (non-persistent) static

reads/writes do not differ from that shown in Figure 5, the
persistent ones do. Reading a persistent static field always
returns 𝑃obj . Writing to a persistent static field, leads to the
propagation of persistence information on the points-to-
closure of the rhs. If the static field was not marked as a
persistent field, we handle the operations in the standard
way: the objects may thread-escape.
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Statement Rule

(store) 𝑥 .𝑓 = 𝑦
3. if 𝜌𝑖𝑛 (𝑥) ∩ 𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ≠ 𝜙

propagate(𝑦,𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ,𝑃obj )
(persistent static rd) 𝑥 = 𝐴.𝑔 𝜌𝑜𝑢𝑡 (𝑥) = {𝑃obj}
(persistent static wr) 𝐴.𝑔 = 𝑥 propagate(𝑥 , 𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡 , 𝑃obj )

Figure 8. Flow functions for the persistence-aware escape
analysis; to be used in addition to the rules in Figure 5.

Using the Analysis Results For a putfield instruction
of the form 𝑥 .𝑓 = 𝑦, if the points-to-closure of 𝑦 contains
only objects that are either thread-local, or persistent then
we elide the instructions corresponding to the persistence-
related overheads.
For example, for the code shown in Figure 1, the object

returned by the persistent static read (Program.assocList)
is 𝑃obj , and the persistence-related overheads can be elided
for Lines 10. Similarly, for Line 11, let us focus on the part
of the abstract stack and heap reachable from r: 𝜌 = {r →
{𝑂8}}, 𝜎 = {𝑂8.head → 𝑂5,𝑂8.tail → 𝑃obj,𝑂5.head →
𝑂𝑘 ,𝑂5.tail → 𝑂𝑣}. It can be seen that all of these objects are
either thread-local or persistent, and hence the persistence-
related overheads can be elided here as well.

4.3 Implementation

Wenow describe some details in our implementation tomake
our analysis sound when we cannot analyze certain parts
of the code (for example, library calls), or when we cannot
track the precise points-to graph (for example, arrays).

Modelling arrays Modelling objects stored in an array
is challenging as statically it is difficult to precisely model
the array index. To address this complexity, we associate a
type-less abstract field summaryF with each array. This field
may point to any object that may be stored in the array.

Handling Librarymethods Analyzing Java library classes
during static analysis has one main issue: the available li-
brary during static analysis may not match that available
during the program execution (as the program may be run-
ning on an entirely different system than that used by the
static analyser). This difference in implementations restricts
us from statically analyzing library methods precisely. Han-
dling the library methods naively (all objects reachable from
the arguments are assumed to escape) may lead to overly
conservative results. To handle such a scenario, we came up
with an approach that depends on the inputs of the program-
mer. For analyzing each benchmark, our tool takes two lists
as input: list of safe, and updateFree librarymethods.We call a
library method as safe if it does not change the escape status
of objects passed as parameters from thread-local/persistent
to escaping. Similarly, we call a library method as update-
Free, if it does not update the heap of any object reachable
from the parameters. If a library method is marked as safe
then we can summarize the effect on all the objects reach-
able from the parameters, by adding a special object called

𝑆obj (∈ AObjs) to the points-to set of all the fields of these
objects. This summarizing can be skipped for library meth-
ods which are marked as updateFree. If the method is not
marked as safe or updateFree, we mark all objects reachable
from parameters as escaping and add 𝐸obj to the points-to
set of all the fields of these objects. Finally the return value
of safe library methods is set to 𝑆obj ; for all the remaining
library methods, the return value is 𝐸obj .

Special treatment of 𝑆obj : Like we maintain a set for escap-
ing/persistent objects at each program point, we also main-
tain a set of summarized objects. If 𝑆obj is marked as escaping,
we mark all the summarized objects as escaping. While pro-
cessing the load and store statements (Figure 8), we handle
𝑆obj and the Summarized object set like we handle 𝐸obj/𝑃obj
objects, and Escape/Persistent sets (rules not shown).

4.4 Persistence-Aware Escape Analysis for a JVM

Considering the prohibitively high costs of points-to and es-
cape analyses none of real world JVM include these analyses
(in an elaborate manner) as part of their JIT compilation; at
most they use some rough heuristics to compute the same,
which leads to highly imprecise results. To address this issue,
we take inspiration from prior work [37], and propose to
perform these analysis as part of the static compilation and
use the analysis results in the JIT compiler to reduce the
overheads of the write barriers, without impacting the cost
of JIT compilation time.

To maintain the correspondence between the static analy-
sis results and the JVM, we use the method and the byte-code-
index (instead of source code line number) to distinguish the
abstract objects allocated in each method.

5 Evaluation
We implemented the runtime components of our proposed
scheme (copier-wait approach) in the OpenJDK HotSpot
VM extended with replication based persistence (RBP). We
implemented the static components of our proposed scheme
in the Soot compiler framework [40]. We use Tamiflex [8] to
handle reflection and make it usable by Soot.
We present an evaluation answering the following re-

search questions:

RQ1 Can the proposed copier-wait write barrier scheme
improve the performance of programs that rarelymake
object persistent?

RQ2 What is the overhead of the handshaking scheme for
programs that frequently make object persistent?

RQ3 What is the impact of static analysis towards the elision
of reduction of the handshaking overheads?

5.1 Benchmark Programs

We developed three benchmark programs (XML, HAMT, and
CHAMP) representing our typical use cases of the proposed
system [4, 15, 34, 36].
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XML represents programs that use a persistent container
structure. It parses a protein database [27] in a semi-stream
manner where it parses a subtree for a single protein to a
DOM using the Java API for XML Processing (JAXP). For
each subtree, it creates a blob of object containing some
information extracted from the DOM, and stores the object
in a persistent container. The DOMs and the blobs of objects
are created in DRAM and only the blobs objects are made
persistent when they are stored in the persistent container.
Handshakes are not needed for making the blobs persistent,
because the blobs consist only of thread-local objects before
they are stored.

HAMT uses an immutable data structure, hash-arraymapped
tries (HAMT) [4], as a persistent container. It excessively
adds key-value pairs to the HAMT. A new HAMT with
added key-value pairs shares objects of the old version of
HAMT, which are persistent. Therefore, the transitive clo-
sure of the rhs of the assignment that makes the HAMT
persistent contains persistent objects as well as thread-local
objects. Handshakes are still not needed. To assess the ef-
fect of volume of objects made persistent at once (more
precisely, the volume of objects made persistent per call to
make_persistent in Figure 7), we varied the number of
key-value pairs added in batch; HAMT-𝑛 adds 𝑛 key-value
pairs in batch, which are made persistent at the same time.
We ported the implementation[38] from the Functional Java
project [18] CHAMP is similar to the HAMT benchmark,
but it uses the compressed hash-array mapped prefix-trees
(CHAMP) [34] instead of HAMT. We used the library in the
Capsule Hash Trie Collections Library [35] for the imple-
mentation of CHAMP. For both HAMT and CHAMP, we use
two values for 𝑛 (1 and 10) for the evaluation.

We also used theDaCapo benchmarks [6] (versionDaCapo-
9.12-MR1-batch) to examine the performance of a wider
range of applications. We used the default settings of the
DaCapo except for the number of iterations noted below.
Note that we excluded batik, eclipse, tomcat, tradebeans,
and tradesoap because RBP [25] reported that they were
unable to run them with the version of the standard HotSpot
VM to which they implemented RBP.

Table 1 shows the statistics of the benchmark programs,
showing the elapsed times for a single iteration of the bench-
mark programs, the number of calls to make_persistent,
the volume of objects made persistent, and the average num-
ber of threads involved in a handshake; this is the number
of threads to which a handshake request is sent. Note that
all the numbers in this table are collected from the copier-
wait approach implementation with no analysis and the all-
durable setting.

5.2 Methodology

To assess the effectiveness of removing the MFENCE in-
struction from the hot path of the write barrier, we exe-
cuted benchmarks in the non-durable setting where all the

@durable_root annotations are ignored and no objects are
made persistent. In this setting, the write barriers always
take the hot path.

To assess the overhead of handshakes and the effectiveness
of our analysis to reduce the persistence-related overheads,
we also executed benchmarks in the all-durable setting. The
all-durable setting considers all static variables as if they
were annotated as persistent roots. We used this setting
rather than following the @durable_root annotation be-
cause the DaCapo benchmarks are not annotated, and the
only static variables are the root of the persistent container
and a single Object for locking, whose effect is negligible.
For all benchmark programs, we executed 30 iterations

in a single run and computed the average elapsed times
for the last 25 iterations. For the number of events such as
the number of handshakes, we counted them in the second
iteration.
We configured OpenJDK 16 HotSpot VM to use the C1

compiler but not the C2 compiler.We also configured it to use
the serial GC because RBP only supported the serial GC. We
compiled it with GCC version 9.4.0 compiler and executed it
in Ubuntu 20.04.4 LTS running on a computer with two Intel
Xeon Gold 6354 processors (18 cores per socket) and 188 GB
of DRAM. The NVM hardware we used is the Intel Optane
DC persistent memory 200 series with 256 GB capacity per
module. To avoid the noise due to the memory access latency
caused by the interconnect in a NUMA environment, we used
a single CPU by setting thread affinity and the NVM directly
connected to the CPU. In our environment, a single NVM
module was connected to a CPU.

5.3 RQ1: Effectiveness of Removing MFENCE

Figure 9 compares the elapsed times for the writer-wait ap-
proach (RBP) and copier-wait approach (our proposal) in the
none-durable setting normalized to the standard HotSpot
VM. For this part of evaluation, we did not elide operations
causing persistence-related overheads. A lower number in-
dicates a more efficient performance. The overhead for the
writer-wait approach was 43.7% on average.

For all benchmarks, the proposed copier-wait approach
was consistently better than the writer-wait approach, al-
though the differences were within the 1× standard devia-
tion for immutable data structures, HAMT and CHAMP, and
jython. Performance improvements were 23.0% on average.

The remaining overhead for the copier-wait approach was
10.6% on average. There is no strong correlation between
the overhead for the writer-wait and copier-wait approaches.
Therefore, the cause of the remaining overhead was unlikely
to be write barriers. Presumably, it came from the per object
extra header word, which not only requires initialization at
object allocation but also affects GC. Addressing this over-
head is left as future work.
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Table 1. Statistics of benchmark programs. Numbers are counted using the copier-wait approach implementation with no
analysis and the all-durable setting.

program time [sec] make_persistent volume of persistent objs involved
×103 call ×103 call/sec ×106 word word/call ×103 word/sec threads (avg.)

XML 21.3 525.3 24.6 170.2 324.1 7981.2 35.0
HAMT-1 19.9 1000.0 50.1 189.1 189.1 9481.3 7.0
HAMT-10 10.4 100.0 9.6 144.6 1446.1 13940.0 7.0
CHAMP-1 21.4 1000.0 46.7 202.2 202.2 9435.6 7.0
CHAMP-10 11.1 100.0 9.0 151.3 1513.3 13679.6 7.0
avrora 21.6 305.5 14.1 2.4 7.8 110.7 11.0
fop 0.5 0.0 0.0 0.0 72.2 2.6 5.0
h2 27.7 1101.3 39.8 35.4 32.1 1276.8 32.8
jython 52.3 4893.5 93.5 126.5 25.9 2418.9 6.0
luindex 10.9 24.7 2.3 2.3 93.9 213.7 5.0
lusearch 15.9 672.7 42.2 12.2 18.1 763.3 37.2
pmd 1.2 15.8 12.9 10.0 634.9 8191.2 37.5
sunflow 0.6 0.3 0.4 0.2 601.5 264.0 19.8
xalan 19.3 760.8 39.4 95.3 125.3 4942.7 40.7
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Figure 9. Elapsed times in none-durable setting normalized
to the standard HotSpot VM. The error bars indicate the
standard deviation.

5.4 RQ2: Handshake Overhead

Figure 10 shows the breakdown of the elapsed times for the
copier-wait approach. The colored parts show the elapsed
times for implementations where all the handshakes, includ-
ing necessary ones, were omitted. Therefore, the remaining
parts (white parts) show the handshake overhead. Note that
the implementations without handshakes are not sound; al-
though we observed that incidentally executions completed
with correct answers.

The colored part can be below 1.0 in Figure 10 due to
the benefit of removing the MFENCE instruction that we
discussed in Section 5.3. Evenwith the all-durable settings,
write barriers writing to fields of non-persistent objects take

the hot path. Those that write primitive values also take the
hot path. Therefore, the removal of the MFENCE instruction
was effective in the case where the program makes objects
persistent.
In the rest of this subsection, we focus on the left bars,

where static analysis for reducing persistence-related over-
heads was not applied. We have observed that the overheads
due to handshaking, formed themajor part of the persistence-
related overhead, and hence we give additional focus to the
number of handshakes performed. In this evaluation, all calls
to make_persistent performed handshake exactly once; no
unmarked objects were found after handshake on line 11
in Figure 7. Therefore, the frequencies of the handshakes
were equal to the numbers of calls to make_persistent per
second shown in the fourth column of Table 1.

The handshake overhead was 37.9% on average; the aver-
age was 29.4% if we exclude fop, h2, and jython. Benchmarks
with high handshake frequencies showed large overheads.
For example, jython had the highest handshake frequency
and showed the highest overhead. Benchmarks with more
than 50% of handshake overhead (HAMT-1, CHAMP-1, h2,
jython, xalan) performed handshakes at 39.8 × 103 times per
second or more.
However, lusearch did not show high handshakes over-

head while performing handshakes at 42.2 × 103 times per
second. We think this is because the performance bottleneck
for lusearch was the bandwidth of the NVM module; hand-
shakes were completed during previous writes to persistent
objects (possibly by other threads) were being written to
NVM. Matsumoto [25] reported that lusearch wrote to per-
sistent objects excessively, at 25.7 × 106 writes per second
in their experimentation. Izraelevitz [17] reported that the
bandwidth for a single NVM device was around 2 GB/s at the
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access size of 256 bytes or larger for random writes, and the
NVM’s access granularity was 256 bytes. This implies that
a single NVM device is capable of processing up to 8 × 106
writes per second. Although Izraelevitz used the Optane
Persistent Memory 100 series while we used 200 series, the
bandwidth was likely to be saturated.

5.5 RQ3: Effectiveness of persistence-related
Overheads Reduction

Figure 10 also shows the impact of static analysis. The right
bars in the figure show the breakdown of elapsed times
for the copier-wait approach with the compiler analysis to
reduce persistence-related overheads. For fop, h2, and jython,
we could not complete static analysis in 14 hours and hence
skipped.
Figure 11 shows the number of handshakes. To improve

the visibility all the numbers are divided by the elapsed time
for the run without handshake elision. Note that the number
of handshakes for the runwith static analysis are also divided
by the elapsed time for the run without it.
The static analysis removed 52.0% of the overheads and

improved overall performance by 18.5% on average. This im-
provement includes the benefit of eliding synchronizations.
As a result, the copier-wait approach with static analysis was
almost as fast as the writer-wait approach; the copier-wait
approach was slower by 2.4% on average.

The static analysis was effective to the benchmarks repre-
senting our targets: XML representing programs with per-
sistent containers and HAMT and CHAMP representing
programs with immutable data structures. For HAMT and
CHAMP, it elided almost all handshakes, and as a result,
all overheads were eliminated. For XML, half of the hand-
shakes were elided. Because XML used the JAXP library, we
could not analyze precisely. The conservative analysis left
the remaining handshakes.

For HAMT and CHAMP, the run with static analysis was
even faster than the run where all handshakes are omitted,
including the necessary ones (colored part in Figure 10). This
shows the effectiveness of the elision of synchronizations in
make_persistent.
The handshake elision was effective for some of the Da-

Capo benchmarks as well. lusearch showed an exceptional
behavior; although parts of handshakes were elided, the
run with static analysis was faster than the run where all
handshakes are omitted, including necessary ones (colored
part in Figure 10). We think this is because of the reduc-
tion of writes to NVM performed for synchronization in
make_persistent under the situation where the NVM band-
width was saturated. make_persistentwrites the thread ID
of responsible thread to replicas in NVM on line 12 in Fig-
ure 3 and clears it at the end in SYNC. The copy_to_replica
function also reads replica.
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Figure 10. Elapsed times for the copier-wait approach in
all-durable setting normalized to the writer-wait approach.
White parts indicate the elapsed time for handshakes. Results
for the rightward bars for fop, h2, and jython are unavailable.
These benchmarks are excluded from geometric mean for
both bars. The error bars indicate the standard deviation.
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Figure 11. The number of handshakes; to improve the vis-
ibility all the numbers are divided by the elapsed time for
the respective run without static analysis. Benchmarks for
which handshake reduction was not available are not shown.

5.6 Threats to Validity

We briefly discuss two main threats to validity and how we
mitigate them.

• The idea of the proposed copier-wait approach is based
on an intuition that the number of persistent writes are
typically not too many and thus using an expensive
handshake in the cold-path will not overley impact the
performance negatively. And further, among the per-
sistent writes, we can use static analysis to eliminate
the write-barriers (handshake) in many cases. One
can argue that we can write programs where most
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of the writes happen to persistent memory and the
static analysis may not be able to elide the handshakes.
While this is true in general, in practice we have found
that writes to persistent writes (e.g., objects reachable
via static fields) are not too frequent. Further, we argue
that such writes are typically grouped together and
our proposed static analysis can be used to elide the
handshakes.

• XML, HAMT and CHAMP are manually written codes
and may not represent the regular programs. Mitiga-
tion: These benchmarks are deliberately developed to
evaluate certain types of behaviors. Thus their not
being general purpose programs is not a major con-
cern, as we do use other general purpose benchmarks
(popular benchmarks from DaCapo) to give a broader
perspective.

6 Related Work
The orthogonal persistence model was proposed about 30
years ago [3] andwas explored further bymany researchers[1,
2, 13, 24]. Recently two Java VMs implementing orthogonal
persistence for NVMs were proposed, which extended the
work of Shull et al. [30]: AutoPersiste [31] and RBP [25].
They use NVM for storage and make updates to objects
persistent immediately, without programmers specification.
Furthermore, they make objects persistent on-the-fly, that is,
without stopping the world.

Although these properties are attractive, they come with
a large overhead applied to write barriers. QuickCheck [32]
addressed this problem by moving the slow path of the write
barrier away from the hot path to improve code locality. P-
INSPECT Kokolis et al. [20] used a bloom filter implemented
in a custom processor to handle checks in the write barrier
in hardware. However, both did not address the MFENCE
needed on the hot path in write barriers that we eliminate.
In our new write barrier, we use handshakes. In the con-

text of concurrent copying GC, similar techniques are used.
Staccato GC [26] performs handshakes to ensure that the
copying marks become visible to mutators in Power PC pro-
cessors, which have a weaker memory consistency model
than the x86 TSO. CHICKEN [29] used the handshake for
the same purpose in x86 computers. The handshake is also
used to eliminate an atomic instruction from the hot path of
the locking bytecode [19, 41].

Denny et al. [11] present a language extension called NVL-
C which can be used by the programmer to specify different
directives so that consistency of the persistent storage can
be maintained. In contrast, our compiler analysis can be used
to reduce the persistence-related overheads. We believe that
our technique can be (suitably extended and) used along
with NVL-C, to reduce the overheads in their programs.

There have been prior works that analyze and verify per-
sistent memory programs for different properties. For exam-
ple, Bansal [5] presents a static analysis tool to check that

in the user written program the persistent storage has no
pointers to the non-persistent storage. Dahiya and Bansal
[10] present a tool to verify the correctness of an intermit-
tent program, with respect to its continuous counterpart.
In contrast to these works, we present a novel analysis to
reduce the overheads of the write barriers.
There have been many prior works [7, 9, 21, 33, 37, 42]

that use points-to and escape analysis to optimize parallel
Java programs, by eliminating redundant synchronization
operation, stack allocation of objects, and scalar replacement.
Points-to analysis and escape analysis forms an important
basis for computing MHP analysis [28] which is used to
reason about data-races and deadlocks in parallel programs.
In this paper, we present a novel extension to escape analysis,
called persistence-aware escape analysis that can be used to
reduce the overheads of the write barriers.

7 Conclusion and Future Work
In this paper, we proposed two approaches to reduce the syn-
chronization overhead in the write barriers of modern imple-
mentations of the orthogonal persistence model. The first ap-
proach proposes a runtime technique (in terms of a newwrite
barrier), where we removed the expensive MFENCE from the
hot path of the write barrier. Although this new write barrier
reduced overhead for programs that rarely make objects per-
sistent, it introduced a new large overhead of handshake to
programs that frequently make objects persistent. The sec-
ond approach proposes an extension to escape analysis called
persistence-aware escape analysis to reduce the handshake
and related overheads. Our evaluation shows that when the
programmer does not specify persistent roots, our runtime
technique is able to improve the performance by an average
23.0%. We also show that when the programmer specifies
all the static variables as persistent roots, our static analysis
aided scheme leads to significant improvements (18.5% on
average). The actual impact depended on the specifics of the
benchmarks under consideration.
We believe that the proposed copier-wait approach can

also be used in the context of AutoPersist [31]. Further, the
proposed persistence-aware escape analysis can also be ap-
plied there, to elide the corresponding redundant handshakes,
along with possible read barriers and equality testing instruc-
tions. Considering the large engineering efforts involved in
this whole scheme, we leave it as a future work.
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