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Many modern task-parallel languages allow the programmer to synchronize tasks
using high level constructs like barriers, clocks and phasers. While these high level
synchronization primitives help the programmer express the program logic in a
convenient manner, they also have their associated overheads. In this paper, we iden-
tify the sources of some of these overheads for task-parallel languages like X10
that support lock-step synchronization, and propose a mechanism to reduce these
overheads.
We first propose three desirable properties that an efficient runtime (for task-parallel
languages like X10, HJ, Chapel, and so on) should satisfy, to minimize the over-
heads during lock-step synchronization.We use these properties to derive a scheme to
called uClocks to improve the efficiency of X10 clocks; uClocks consists of an exten-
sion to X10 clocks and two related runtime optimizations. We prove that uClocks
satisfy the proposed desirable properties. We have implemented uClocks for the X10
language+runtime and show that the resulting system leads to a geometric mean
speedup of 5.36× on a 16-core Intel system and 11.39× on a 64-core AMD system,
for benchmarks with a significant number of synchronization operations.
KEYWORDS:
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1 INTRODUCTION

1.1 Motivation
The powerwall has been effectively bringingmulti-core systems and the associated task-parallel programming to themainstream.
Task-parallel languages like X101, HJ2, Chapel3, and so on, allow the programmer to specify task synchronization, using high
level constructs like clocks, phasers and barriers. These languages also provide the necessary runtime libraries to facilitate low
level synchronization and thread management.
For example, X10 provides light-weight tasks, (a.k.a asynchronous activities); the runtime maps these tasks to threads and

schedules them efficiently. In addition, X10 supports fine-grained synchronization using the feature of clocks (similar to that of
phasers in HJ, barriers in Chapel), which lets tasks make progress in lock-step synchrony. Yuki et al.4 show that these constructs
help write arguably more natural and readable codes. However, these high level constructs (and their implementations) can lead
to some overheads. We explain the same using an example.
Figure 1 shows a snippet of X10 code that computes parallel one-dimensional iterative averaging; a minor variation of code

shown by Shirako et al5. In X10, an async creates an asynchronous task that can run in parallel with the parent task. The
clocked construct registers the task to the list of clocks (c). Here each of the n tasks execute a serial loop and synchronize
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delta = epsilon+1;

iters = 0;

finish{

c = Clock.make();

for (j in 1..n ) {

async clocked (c) {

while ( delta > epsilon ) {

newA[j] = (oldA[j-1]+oldA[j+1])/2.0 ;

diff[j] = Math.abs(newA[j]-oldA[j]);

c.advance();

atomic {

delta += diff[j];

...

}

if (j==1) {

iters++;

temp = newA; newA = oldA; oldA = temp;

}

c.advance();

}

}

}

}

FIGURE 1Motivating example. A snippet of X10 code.

with each other using clocks by calling c.advance, which brings in the notion of phases. Here, each of the n tasks execute
the statements before the advance (compute diff[j]), and wait for each other (for phase completion), before proceeding to
the next phase. The atomic construct enforces mutual exclusion among the tasks of the program. Thus, the variable delta is
updated in a mutually-exclusive manner by each task. See Section 2 for detailed X10 syntax.
Executing codes like the one shown in Figure 1 exposes a number of interesting insights and their corresponding issues related

to performance. We focus on three of them.
1. Lock-contention: The implementations of advance and atomic need to execute some code in a critical section and that

part can be implemented in the runtime by using a commonmutual-exclusion library. For example, in XRX (X10 Runtime
implemented in X10)6 the mutual exclusion part in advance is achieved by executing the critical section code inside an
atomic block. Though the design looks harmless at the first glance, this leads to an unintended contention among the
tasks executing atomic (updating delta, in Figure 1) and advance that may otherwise run in parallel.

2. Excessive thread context-switching: The X10 runtime initially creates X10_NTHREADS number of threads to execute the n
tasks; each thread runs a task to completion (without switching to any other task in between), and then picks up the next
task to execute. However, when a thread executing a task reaches an advance, it blocks itself (no switching), and starts
a new thread to execute the remaining tasks. Finally, when the last task executes the advance, all the blocked threads
(total n, in Figure 1) are woken up and may start executing in parallel. This can lead to large context switching overheads
because n could be much larger than the number of available hardware cores.

3. Eager waking: In the current X10 runtime, every time a thread executes advance it wakes up the blocked threads (O(n),
in Figure 1), who in turn check if the phase is complete. Otherwise, they go back to being blocked. This scheme has an
advantage that at the time of completion of the phase, all the threads are ready to move to the next phase without any
delay. However, in the worst case, it can result in a large number of redundant operations (O(n2)), and the redundantly
woken up threads may compete with the critical thread for CPU time.
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(a) Speedup of async-finish over X10 clocks (b) Speedup of async-finish over HJ phasers

FIGURE 2 Speedups for some IMSuite kernels (those with a a significant number of atomic and clock operations) written using
only async-finish constructs, over their counterparts written using X10 clocks or HJ phasers.

As a consequence of the overheads discussed above, many times we have found that programs written using
Clock-async-finish (though arguably more readable4) have a prohibitively high performance penalty as compared to their
counterparts written using only async-finish constructs. For example, compared to four kernels from the IMSuite7 bench-
marks that use a significant number of atomic and clock-operations, their async-finish counterparts run on average (geometric
mean) 16.46× faster on a 16-core Intel machine (See Figure 2a). A similar observation can bemade in the context of the IMSuite7
kernels and HJ phasers (similar to X10 clocks). As shown in Figure 2b, the same four HJ kernels written with phasers ran on
average (geometric mean) 4.25× slower than their async-finish counterparts on the same 16 core Intel system. This shows that
even HJ phasers have a similar performance penalty that discourages their use, even though programs written with phasers are
more readable.
Prior researchers8,9 also have recognized the high cost of barriers in task-parallel languages and have proposed newer types of

barriers/extensions to address these issues. For example, Shirako et al.9 fix this issue by using hierarchical barriers for scalable
synchronization. Imam and Sarkar8 use one-shot delimited continuations and event-driven controls to reduce the overheads and
improve the efficiency of HJ phasers.
In this paper, we address the efficiency issues of X10 clocks by using a mixed language and runtime based approach. We

first propose three desirable properties that an efficient runtime (for languages like X10) should try to satisfy. To satisfy these
properties, we introduce new operations on X10 clocks and propose two runtime optimizations to overcome the overheads
discussed above. We call this overall scheme to improve the efficiency of lock-step synchronization uClocks. For the above
discussed four IMSuite Kernels, we have observed that over varying number of hardware cores (1, 2, 4, 8, and 16) of the Intel
system our proposed scheme is able to bring down the performance gap between the async-finish-clocks versions and async-
finish versions from 6.75× to 1.26×. This paper focuses on the efficient implementation of lock-step synchronization in the
context of shared-memory non-preemptive task-scheduled systems (single place, in X10 parlance).
Though we present uClocks in the context of X10, the set of desirable properties and the proposed optimizations are also

meaningful in the context of other task-parallel languages (like HJ and Chapel) that allow lock-step synchronization among tasks
(see Section 6, for a further discussion on this topic).

1.2 Contributions
1. We identify three desirable properties that an efficient task-parallel language and runtime system (with support for lock-

step synchronization) should have. We also describe how these properties apply to X10 clocks and why the current
implementation does not satisfy these properties.
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2. We use the three desirable properties as a basis to design a scheme called uClocks that consists of an extension to X10
clocks, and two runtime optimizations, to improve the efficiency of X10 clocks. Importantly, we prove that the uClocks
scheme satisfies the three desirable properties. To the best of our knowledge, we are not aware of any other prior work
that gives a proof of such efficiency properties for runtimes, especially those supporting lock-step synchronization.

3. We have implemented uClocks as an extension to the X10 2.6.1 (language + runtime) and evaluated it against the current
implementation of X10 clocks. We show that on benchmarks with a large number of atomic and clock-operations, uClocks
led to significant speedups: up to 28.18× (geomean 11.39×) on a 64 core AMD system, and up to 22.18× (geomean 5.36×)
on a 16-core Intel system.

2 BACKGROUND

We now briefly describe some features of the X10 language and its XRX (X10 Runtime in X10) runtime, pertinent to this
paper. Interested readers may see the language reference manual10 and the runtime implementation6, for details. The proposed
techniques/optimizations are focussed on a single-hardware-node (typically mapped to a single X10 ‘place’).

2.1 X10 Parallel Constructs
1. async S creates a new asynchronous task that may execute S in parallel with the current task.
2. finish S waits for all the tasks created in S. It gets translated to ‘startFinish(); S; stopFinish();’.
3. atomic S enforces mutual exclusion. Here Swill execute atomically (i.e. in a single step), with respect to all other atomic

blocks in the program.
4. when (c) S blocks until the condition c becomes true, and then S will be executed atomically with respect to other

atomic-blocks. We refer to the bodies of both atomic and when statements as atomic-blocks.
5. Clocks help realize lock-step synchrony among tasks. A task may register on zero or more clock-objects. Each clock-

object has a phase number associated with it. Tasks registered on a clock-object can wait for all other tasks registered on
that clock-object to complete their work in the current phase.

Some of the pertinent clock related operations are given below:
1. Clock.make() returns a new clock-object and registers the current task on that clock. In the statement async clocked

(list-of-clocks) S, the child task gets registered to the list of clocks.
2. c.resume(): is used to declare (to other tasks registered on clock c) that the task has completed the current phase, and

other tasks need not wait for it anymore to go to the next phase.
3. c.advance(): For a clock c, the statement c.advance() first makes an implicit call to resume(), if it has not already

been already called in the current phase. Then, it blocks till all the tasks registered on the clock have executed a resume()
in the current phase.

4. Clock.advanceAll(): This statement calls a resume() on all the clocks that the task is registered on, followed by an
advance() on all the clocks the task is registered on.

5. c.drop(): This statement de-registers the current task from the clock c, and the task is no longer considered for any
synchronization on c.

2.2 X10 Runtime Implementation
Before executing the main function, the X10 runtime creates X10_NTHREADS (an environment variable) number of worker
threads (or, threads in short). Typically it is set to the number of cores on the processor. The X10 runtime uses a work-stealing
scheduler11, where each thread has a deque (short for double-ended queue) of tasks to execute.
At any point of time a thread can be in one of the following two states:
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FIGURE 3 State transition at runtime. Solid lines: state transition for the current X10 implementation. Dashed lines: added
states/transitions for uClocks – discussed in Section 4.2.

1. executing - the thread is executing some code and could be in one of the two sub-states:
(a) u-executing - the thread is executing some user code.
(b) s-executing - the thread is scanning deques to execute/steal tasks.

2. parked - the thread is not executing any code (not considered for scheduling). A parked thread could be in one of the
following sub-states:
(a) idle - an idle-thread is ready for work and can be assigned a new task if it comes up.
(b) blocked - a blocked-thread is waiting at an advance, finish, or when.
(c) spare - to avoid the overheads of repeated thread creation/termination operations, the runtime marks a thread as

“spare”, instead of killing it. And in future, if a new thread is to be created, a spare thread is “re-started”, if available.
Otherwise, a new thread is created.

At startup, the main thread is in executing-state and the rest are in idle-state. For a quick glance, we show the thread-state
transition in Figure 3.
We now briefly discuss how the X10 runtime handles certain pertinent runtime events. On encountering an async-statement,

the runtime checks if there are any idle threads. If there is at least one idle thread, the task is assigned to it. Otherwise, the
new task is put on the deque of the current thread. In either case, the current thread continues to execute the statement after the
async. On completion of a task, the thread starts executing the next task from its deque. If the deque is empty, it will attempt to
steal a task from other threads. If unsuccessful, it will mark itself as an idle thread.
On encountering the stopFinish(), the thread will park itself until all the tasks created in the body S of the finish have

terminated. The thread to complete the last available task in S, unparks the thread parked in the stopFinish() to continue the
execution beyond the finish statement.
To implement the atomic construct, the runtime maintains a shared lock (amLock). The statement ‘atomic S’ gets compiled

into ‘enterAtomic(); S; exitAtomic();’. The function enterAtomic blocks till it acquires amLock and exitAtomic releases
amLock. Further, exitAtomic also unparks all tasks parked in a when statement.
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1 enterAtomic();
2 while cond ≠ true do
3 amLock.unlock();
4 park(); /* may start a new thread */

5 amLock.lock();
6 S;
7 exitAtomic();

FIGURE 4 Compiling when(cond)S

def resume()
enterAtomic();
alive = alive − 1 ;
if alive==0 then

alive = count;
current clock phase++;

exitAtomic();
FIGURE 5 Implementation of resume

def advance()
call resume() if not already called in this phase;
ph = current phase of the task;
when (ph < current clock phase);
Increment the phase of the current task;

FIGURE 6 Implementation of advance

Figure 4 shows the translation of the when statement by the X10 compiler. This code also uses amLock, discussed above. If
cond is false, the thread releases the lock and parks. The thread is unparked by another thread executing exitAtomic.
We draw attention to 2 subtle points in this implementation:
(i) Every park operation is accompanied by the starting of a thread, in order to ensure that the number of actively running

threads remains the same, and the computation makes progress.
(ii) When a thread is blocked, it cannot execute any other task as it holds the context to execute the code following the

“blocking” statement. Thus in parts of the program with clocks, there is a one-to-one mapping between the tasks and
threads, and we use these terms interchangeably in such contexts.

2.3 X10 Clocks Implementation
Each clock-object includes three counters: (i) phase records the current phase number of the clock. (ii) count records the
number of tasks registered on the clock. (iii) alive records the number of tasks registered on the clock which have not executed
resume() in the current phase.
We now discuss the implementation of the resume and advance functions. Figure 5 shows the pseudo code for resume().

This code (executed atomically) decrements the alive count by 1 and increments the clock phase if rest of the tasks registered
on this clock have executed resume.
Figure 6 shows the pseudo code for advance(). It first calls resume(), if the current task has not already called resume()

explicitly. Next, the thread blocks in the when statement until the phase of the clock changes (done by the last task executing
resume).

3 DESIRABLE PROPERTIES FOR AN EFFICIENT RUNTIME

One of the critical overheads incurred by the runtimes of task-parallel languages that support fine-grain synchronization of tasks,
is related to the inefficient implementation of synchronization primitives. Additionally, this can lead to a situation where a large
number of active threads (≫ # available cores) are present – leads to performance deterioration. Based on our observation of
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the implementation of many task-parallel languages like X10, HJ, Chapel, Java and so on, and general efficiency considerations,
we first describe some of the properties that are desirable in such runtimes, so as to reduce these overheads. We then discuss the
conformance of the current X10 runtime, which is the focus of our paper, to these properties.

3.1 Desirable Properties to hold during program execution
1. (DP1) Instances of lock-unrelated parallel constructs should not share locks.We define two instances of executions of one

or more parallel constructs to be lock-related if (1) their underlying semantics require that they must access some shared
runtime-internal data, and (2) these accesses must be performed in a mutually-exclusive manner to avoid data-race. For
example, in X10, all the instances of atomic constructs are lock-related; their execution must acquire a common lock
to ensure mutual-exclusion as guaranteed by the X10 language. However, an instance of any atomic construct and any
clock-related operation are lock-unrelated; the clock-related operations may run in parallel with the atomic blocks. Using
shared locks in the implementation of lock-unrelated constructs may lead to unnecessary serial executions. In addition,
such usages may lead to additional overheads (see Section 3.2).

2. (DP2) At runtime, the user must specify a value for maxThreads (> 0), signifying the desired number of worker threads.
And during the execution of the program, the number of actively running threads should be as close to the value of
maxThreads as possible, but no more. Typically, users set the value of maxThreads to the number of CPU cores on the
system (to ensure that each thread is more or less mapped to one core). If the #active-threads < #cores, we are not fully
utilizing the available resources, and if we have too many threads, then the overheads due to thread context switching
negate the benefits of parallelism.

3. (DP3) At each barrier, the total number of operations executed (by all the tasks) should be proportional to the number
of tasks registered on the barrier. At each barrier, the set of performed operations must ensure that if there are tasks
with pending work in the current phase, then the other threads must wait at the barrier. Otherwise, all the tasks should
be informed about the completion of the current phase. DP3 would guarantee that the average number of operations
performed (per thread) at a barrier is a constant and is independent of the number of tasks, number of threads, or any other
such factors.

3.2 Conformance of X10 to the desirable properties.
In this section, we look at how the above discussed desirable properties apply to the current X10 runtime (XRX). Interested
reader may refer to Section 8, for a brief discussion on how other task-parallel languages conform to the desirable properties.

3.2.1 X10 and DP1
Multiple instances of the finish statement are lock-unrelated to each other and multiple instances of atomic and when con-
structs are lock-related. In the X10 runtime, each instance of the finish construct uses a separate lock and the implementation
of atomic and when constructs share a common lock across all the instances (see Section 2.3). Thus, X10 programs that use
only finish-async-when-atomic constructs to harness parallelism conform to DP1.
The implementation of the clock-related operations, such as advance(), resume(), and so on, use the X10 atomic and

when constructs underneath. An important point to note is that these clock-related operations on different clock-objects are
lock-unrelated, but since atomic-blocks are used to implement the above clock-related operations, it leads to sharing of locks
between lock-unrelated operations – a violation of DP1. Similarly, the atomic-blocks in the user-code share locks with the above
atomic-blocks invoked by the clock-related operations – again, a violation of DP1.
Note: the violation of DP1, by the X10 runtime, causes overheads even beyond those resulting from lock contention. For

example, for the code shown in Figure 7 after every execution of the atomic-block (in the while loop), the X10 runtime unparks
(see Section 2) every thread parked on a when statement. Since the advance construct is implemented using the when construct,
if a thread is parked at the advance construct (unrelated to the operations performed inside the atomic-block) it gets unparked
unnecessarily, only to go back to park mode again, till the other thread reaches the advance(). Similar issues can be observed
in the presence of when statements in user-code. Such dependencies between unrelated constructs are purely an artifact of the
implementation and should be avoided.
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async {

c = Clock.make();

clocked async (c) {

S1;

c.advance();

S2;

}

S3;

c.advance();

S4;

}

while(i<n){

atomic{ ... }

}

FIGURE 7 Example to show how DP1 can be violated

Advice: To ensure that DP1 is not violated: 1) we need to make sure that the runtime does not use atomic-blocks; note: the
runtime does not share any variables with the atomic-blocks in the user-code. Instead, the required mutual exclusion among the
operations performed in the runtime should be realized using a separate (set of) lock(s). 2) Further, all the clock-objects can
have their own locks, as they are independent of each other.

3.2.2 X10 and DP2
In the current X10 Runtime, the user specifies an environment variable X10_NTHREADS, indicative of maxThreads. When the
last task registered on a clock executes resume() (as shown in Figure 5), the phase variable of the clock is incremented. On
executing exitAtomic(), all the tasks registered on the clock move to the next phase simultaneously and all their threads are
in ‘active’ state. Hence, the number of active threads is O(Number of tasks), which typically is much larger than X10_NTHREADS
– hence, a violation of DP2. A similar violation is observed during the execution of when statements (see Figure 4), where the
runtime creates an additional thread, every time a thread is blocked on a when construct. When any other thread executes the
exitAtomic() at the end of any atomic- or when- construct, all the threads (O(#num-tasks)) parked at the when construct are
unparked – a violation.
Note: the DP2 second requirement – maximizing the number of active threads – is satisfied by the current X10 runtime.
Advice: Thus to ensure that DP2 is not violated, (1) the number of active threads (≤ maxThreads) should be maximized

and (2) the maximum number of threads unparked during the phase change operation, should be bound by the expression
(maxThreads−number of active threads).

3.2.3 X10 and DP3
In the current X10 implementation, the resume function ends with an exitAtomic() function (see Figure 5), which unparks
every thread parked in the when construct (called from an advance() or explicitly). Each such unparked thread blocked at the
advance() barrier checks if the phase has changed, or else it goes back to park mode. Thus, if there are p tasks registered on
a clock, in every phase, in the worst-case scenario, the qtℎ resume() triggers (q − 1) unpark and park operations – worst case
O(p). Thus the total number of operations performed, at the barrier, across all the p tasks is O(p2) - a violation of DP3.
A consequence of unnecessarily unparking these parked threads is that they compete with the critical thread(s) for CPU time,

which in turn may lead to deterioration of performance.
Note that unless all the tasks (one per thread) have completed the phase, the when condition, in the advance(), will not

become true and hence all the threads need not be unparked every time a task executes a resume() operation.
Advice: To ensure that DP3 is not violated, either (i) only the last instance of the resume() operation of a phase should unpark

all the tasks (threads) parked at the advance() – Lazy scheme, or (ii) the threads are eagerly unparked but they proceed to the
next phase, without having to re-park (or busy wait) – Eager scheme. The latter is possible when the threads are waiting for
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tasks executing small jobs: even if the parked threads get unparked, before they can even check the condition for phase-change
the “small” tasks complete the phase.

4 UCLOCKS: AN EXTENSION

We use the three desirable properties as a basis to design a scheme called uClocks to improve the efficiency of X10 clocks. It
consists of (i) an extension to X10 clocks that helps satisfy DP3 by leading to an efficient implementation of the resume and
advance operations. (ii) Two runtime optimizations to help satisfy DP1 and DP2. We now discuss the extension to X10 clocks
and discuss the proposed optimizations in Section 4.2.

4.1 Extending Clock operations for Efficiency
4.1.1 uClocks - Motivation for extending the syntax
As discussed in Section 2, the current X10 runtime (implementation of clocks), unparks every parked thread at each resume()
call. Each such unparked thread (when scheduled by the underlying OS) checks if there is a phase change, else it goes back to
park mode. We refer to such a scheme of eagerly unparking every thread as the Eager scheme. An advantage of such a scheme
is that when the last task finishes the current phase, in the best case scenario, the other threads are already unparked and are
ready to execute in the next phase – no delay incurred to unpark, after the phase completion. Further, in tasks without much
load imbalance, every such eagerly unparked thread may end up checking for phase change, only after the phase has actually
changed (no further parking/unparking) – satisfies DP3, as every thread performs at most one park/unpark operations. We call
such scenarios as eager-friendly.
However, such a scheme may lead to large overheads, due to DP3 violation, when the tasks are more in number than the cores

(a common case), and have significant load imbalance.
As discussed in Section 3.2.3, another way to satisfy DP3, is to unpark every thread parked in an advance() only when it

is ready to go into the next phase. Hence, only the last task to execute the resume() for the current phase, will unpark all the
parked threads mapped to tasks registered on that clock. We refer to such a scheme as the Lazy scheme. In contrast to the Eager
scheme, even though the Lazy scheme always satisfies DP3, it incurs additional delay that results from unparking the threads
after the completion of the phase. In the presence of unbalanced workloads, this delay usually gets masked by the gains resulting
from avoiding the overheads due to the scheduling of the prematurely unparked threads.
We have observed that programsmay contain code that has phaseswith both balanced and unbalanced loads.We have observed

that using a single synchronization scheme (all Lazy, or all Eager) for all the cases is not optimal. Further, considering the
individual advantages and disadvantages of the Lazy and Eager schemes, and the difficulty in statically/dynamically estimating
phases of tasks with significant load-imbalance, we present an extension to X10 clocks to let the programmer take advantage
of both the schemes depending on the requirement (more load-imbalance - use Lazy scheme). This motivation of our proposed
extension is similar to that of the well understood OMP_WAIT_POLICY of OpenMP12.

4.1.2 uClocks - Extended Syntax
We now propose an extension to X10 clocks that allows the user to specify the synchronization scheme (Eager or Lazy), at each
synchronization point. In place of the default resume and advance functions our proposed extension admits four new operations:
resumeEager(), resumeLazy(), advanceEager(), and advanceLazy(). The latter two functions, call their corresponding
variants of resume. By explicitly naming the synchronization primitives, we encourage the programmers to explicitly use the
specific synchronization scheme at each synchronization point.We discuss the implementation details of the proposed extensions
in Section 4.2.3.

4.2 Runtime Optimizations for uClocks
We now describe two optimizations for the X10 runtime (to satisfy DP1 and DP2). These optimizations also pave the way for
an efficient implementation for the extension to X10 clocks discussed in Section 4.1.
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1 def advance()
2 Call resume() if not already called in this phase;
3 ph = current phase of the task;
4 clLock.lock() ;
5 while ph==current clock phase do
6 record current thread in clk-blocked-threads ;
7 clLock.unlock() ;
8 park(); // Don't busy wait.

9 clLock.lock() ;
10 clLock.unlock() ;
11 Increment the phase of the current task.

FIGURE 8 Implementation of uClocks-Opt1 advance
1 def resume()
2 clLock.lock() ;
3 alive = alive − 1 ;
4 if alive==0 then
5 alive = count ;
6 Increment the phase of the current clock.
7 unpark threads in clk-blocked-threads ;
8 clLock.unlock() ;

FIGURE 9 Implementation of uClocks-Opt1 resume

4.2.1 uClocks-Opt1 - Optimization to satisfy DP1
As discussed in Section 3.2.1, the resume and advance operations use X10 atomic and when constructs underneath. We use
the given advice in Section 3.2.1 and (i) define a separate lock with each clock-object (field named clLock), (ii) use these
locks instead of atomic and when constructs. Recall (see Section 2) that the when operation is a blocking operation, where a
number of tasks may be waiting for a certain condition to be true (for example, if all the tasks have completed a phase). The
implementation of the when construct, records these tasks in an internal list. To mimic this behavior, we maintain a new list
called clk-blocked-threads per clock, to record all the threads that are blocked at the corresponding advance operation.
Figure. 8 shows the proposed advance function. In contrast to the code shown in Figure. 6, Lines 4-10, mimic the behavior

of the substituted when statement.
The implementation of resume (see Figure. 9) is similar to that shown in Figure. 5, except that the enterAtomic() and

exitAtomic() calls are replaced by invocations to clLock.lock() and clLock.unlock(), respectively. For each clock-
object, its clLock field, protects accesses to all its shared fields. Further, before invoking clLock.unlock, to mimic the behavior
of exitAtomic, we unpark all the threads present in clk-blocked-threads.

4.2.2 uClocks-Opt2 - Optimization to satisfy DP2
To satisfy DP2, we use the advice given in Section 2 and during all the Clock related operations, we maintain the following
invariant on idle threads (say, IT=number of idle threads) and executing threads (say, ET=number of executing threads); see
Section 2 for their definitions.

IT + ET = X10_NTHREADS (1)
This invariant helps us maintain ET ≤ X10_NTHREADS. Since the current runtime already minimizes the number of idle threads,

Eq (1) does not lead to any loss in parallelism.
Maintaining the above invariant would lead to a situation where even after all the tasks have completed the current phase,

only some of the tasks start executing in the next phase, while others are waiting in park mode; we call the threads mapped to
these waiting tasks as pending. We record these pending threads in a new list called pending-threads.
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1 def resume()
2 clLock.lock() ;
3 alive = alive − 1 ;
4 if alive==0 then
5 alive = count ;
6 Increment the phase of the current clock. ;
7 i = min(no of tasks registered on clock, IT) ;
8 mark i idle threads as “spare”;
9 unpark i threads from clk-blocked-threads ;
10 Add the remaining threads of clk-blocked-threads to pending-threads ;
11 clLock.unlock() ;

FIGURE 10 Implementation of uClocks-Opt2 resume

To enforce the above invariant, we modify the resume function, as shown in Figure. 10. Here, at Lines 7-9, a task executing
resume, does not wake up all the tasks parked at the corresponding advance. Instead, it only unparks at most as many threads as
the number of idle threads. These idle threads are marked as “spare” (see Section 2) – this step reduces the number of idle threads,
to match the increase in ET at Line 9. At Line 10, the remaining tasks blocked on that clock get added to the pending-threads
list, and will get unparked later on, when an executing thread is about park.
The code for advance() (not shown) is exactly the same as that shown in Figure. 8, except that before invoking the park

method, the thread first attempts to unpark one thread from pending-threads (if size > 0, that is). The corner case of all other
threads having dropped the clock and a single thread is ‘pending’ is handled separately, by checking pending-threads, when
a thread has no tasks to steal.
To ensure that DP2 is satisfied in the presence of the when construct, we modify its implementation (given in Section 7)

so that the thread reaching the exitAtomic() unparks k threads parked at when constructs, where k = min (IT, number-
of-threads-parked-at-when-constructs). The remaining parked threads are moved to pending-threads. These threads in
pending-threads will get unparked at a later point in time, when another thread is parking itself (in the when / advance, or
stopFinish()).
Similarly, within a finish, when the last task completes, the executing thread T marks an idle thread as spare and unparks

the thread waiting at stopFinish. If idle threads are unavailable, then the T becomes a spare thread itself.

4.2.3 Implementation of the proposed extension
Figures 11 and 12 show our proposed implementation for the resumeLazy and advanceLazy functions, respectively. We
discuss these implementations in conjunction with the proposed optimizations in Sections 4.2.1 and 4.2.2. In contrast to
the implementation of resume shown in Figure. 10, in the implementation of resumeLazy, the unparking of threads from
clk-blocked-threads is done inside the if statement – the unparking is done lazily only once, at the end of the phase. Simi-
larly, in contrast to the advance() implementation discussed in Section 4.2.2 (which in turn, is a minor modification of the code
shown in Figure. 8), in the implementation of advanceLazy the while statement is replaced with an if statement, because
every thread will now park-unpark only once inside the advance().
The implementations of resumeEager and advanceEager functions are exactly the same as the resume and advance

functions discussed in Section 4.2.2.

5 PROVING PROPERTIES OF UCLOCKS

To establish the confidence on the proposed uClocks scheme, we now prove that uClocks satisfy the desirable properties dis-
cussed in Section 3, and briefly discuss the semantic equivalence of uClocks and X10 clocks. To the best of our knowledge, we
are not aware of any other prior work that gives a proof of such efficiency properties for runtimes, especially those supporting
lock-step synchronization.
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1 def resumeLazy()
2 clLock.lock() ;
3 alive = alive − 1 ;
4 if alive==0 then
5 alive = count ;
6 Increment the phase of the current clock ;
7 i = min(no of tasks registered on clock, IT) ;
8 mark i idle threads as “spare”;
9 unpark i threads from clk-blocked-threads ;
10 Add the remaining threads of clk-blocked-threads to pending-threads ;
11 clLock.unlock() ;

FIGURE 11 Implementation of resumeLazy.
1 def advanceLazy()
2 Call resumeLazy() if not already called in this phase;
3 ph = current phase of the task;
4 clLock.lock() ;
5 if ph==current clock phase then
6 Add thread to clk-blocked-threads ;
7 clLock.unlock() ;
8 park() ;
9 Increment the phase of the current task.

FIGURE 12 Implementation of advanceLazy.

5.1 uClocks and DP1
Each instance of the finish construct and each individual clock-object now have an individual lock. Each instance of the
atomic and when constructs share the common atomic lock, since they are lock-related. Hence, we satisfy the condition that
instances of lock-unrelated parallel construct have separate locks – satisfies DP1.

5.2 uClocks and DP2
We first prove that Eq (1) holds by using induction on the runtime-events that change the number/status of threads.
Base case: At startup, the Runtime has exactly one executing-thread and (X10_NTHREADS − 1) idle-threads. Here the Eq (1)

holds.
Induction step: Say Eq (1) holds at some point during the execution. That is, IT = n− ET, where n = X10_NTHREADS. There are

nine possible cases, depending on which runtime-event (that may modify ET or IT) occurs next. We now describe each of these
cases and show their impact on the value of the expression ET+ IT. We use the notation n ↑k (or n ↓k) to indicate that value of n
increases (or decreases) by k.
1) Event - new task creation: There are two sub-cases:
i. Currently, IT = 0. As discussed in Section 2, the task is put on the deque of the current thread, and no parking or unparking

of threads is done (no change to IT or ET).
ii. Currently, IT ≠ 0. As discussed in Section 2, the new task is assigned to one of the idle threads and that idle thread gets

unparked (IT ↓1 and ET ↑1).
2) Event - task termination: There are two sub-cases:
i. Last task within a finish completes: As explained in Section 4.2.2, when the last task completes, (a) it either converts one

idle thread to spare (IT ↓1) or marks itself as spare (ET ↓1), and (b) unparks the thread waiting at the stopFinish (ET ↑1).



Akshay Utture and V Krishna Nandivada 13

ii. Otherwise: the thread starts scanning deques to execute/steal tasks. This does not impact ET and IT.
3) Event - advance: The thread executing the advance is parked (ET ↓1) and another thread is unparked (ET ↑1).
4) Event - resumeEager: In Figure 10, the reduction in IT at Line 8 is compensated by the increase in ET at Line 9.
5) Event - resumeLazy: In Figure 11, the reduction in IT at Line 8 is compensated by the increase in ET at Line 9.
6) Event - when: (see Figure 4) If the associate condition e evaluates to true then the thread simply continues executing (status

of no thread changes). Otherwise, the current thread parks (ET ↓1), and another thread is unparked (ET ↑1).
7) Event - exitAtomic:As explained in Section 4.2.2, at the exitAtomic k threads parked at when statements are unparked,

and k idle threads are converted to spare. (ET ↑k and IT ↓k), where k = min (IT, number-of-threads-parked-at-when-constructs).
Note: The enterAtomic() event does not impact ET and IT.
8) Event - stopFinish: As discussed in Section 2, the thread parks at stopFinish (ET ↓1), and unparks another thread

(ET ↑1). Note: The startFinish() event does not impact ET and IT.
9) Event - a thread T is scanning for work: There are two sub-cases.
i. pending-threads is non-empty. As discussed in Section 2, T marks itself as ‘spare’ and parks itself (ET ↓1), and unparks

a thread from pending-threads (ET ↑1).
ii. pending-threads is empty. If T is unsuccessful in finding a new task to execute then it marks itself as idle (ET ↓1 and

IT ↑1). Otherwise, it executes the found task – no change to ET or IT.
In all the nine cases, since Eq (1) held before the event, it will hold even after the event as the value of IT + ET remains

unchanged.
As discussed in Section 3.2.2, besides satisfying equation 1, DP2 requires that ET be kept as high as possible. The X10 runtime

already ensures that IT is minimized. This fact in conjunction with Eq (1) ensures that DP2 is satisfied.

5.3 Deadlock due to reduction in ET

The previous section shows that DP2 is satisfied by proving that Eq (1) holds. We now present an argument to reason about the
absence of deadlocks due to uClocks; that is, during execution ET is always a positive number (> 0). Similar to the argument in
Section 5.2, we prove the current argument by using induction on the runtime-events that change the number/status of threads.
Base case: At startup, the Runtime has exactly one executing-thread and (X10_NTHREADS−1) idle-threads. Here ET > 0 holds.
Induction step: Say ET > 0 holds at some point during the execution. As discussed in Section 5.2, there are nine possible

runtime-events that can occur and impact the value of ET. Of these nine cases, the first eight either increase the value of ET, or
do not modify it. Only the ninth case decreases ET and is detailed below.
9) Event - a thread T is scanning for work: There are two sub-cases.
i. pending-threads is non-empty. As discussed in subsection 5.2, this case does not modify ET

ii. pending-threads is empty. There are 2 further subcases.

• If T is successful in finding a new task to execute (either from its deque or from another thread’s deque), it simply
executes that task, and there is no change in ET.

• If T is unsuccessful in finding a task to execute, it marks itself as idle (ET ↓1 and IT ↑1). There are further 3 subcases
– If ET > 1 before the thread marks itself as idle: Since ET reduces by 1 and even after this step ET > 0.
– If ET = 1 before the thread marks itself as idle: the thread is the last executing thread. We already are in the
subcase where there are no new tasks to execute, and pending-threads is empty (no tasks stuck in advance,
when or stopFinish). This means that there are no more instructions left to execute, and the program will end
after after this step. That is ET remained a positive number, during program execution.

– ET < 1 before the thread marks itself as idle: a contradiction to the assumption that ET > 0 before the step.

Since none of the nine runtime-events can violate the condition of ET > 0 during program execution, and the program
execution starts off with ET = 1, we can ensure that the condition ET > 0 continues to hold during program execution.
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5.4 uClocks and DP3
We now show the conformance to DP3 by discussing the number of operations performed in the contexts of resumeEager in
eager-friendly conditions (Section 4.1.1), and resumeLazy.
Case 1: resumeEager() in eager-friendly scenarios - Assuming that resumeEager() gets called only in eager-friendly

scenarios, each thread (one per task) gets unparked and parked just once, at the advance, and in the advance function, it
executes a constant number of operations. Since every thread t unparks only 1 thread in resumeEager(), t executes a constant
number of operations. Thus, the total work done by k tasks in resumeEager (and advanceEager) functions is O(k).
Case 2: resumeLazy() - Assume that there are k tasks registered on the clock. The algorithm in Figure 11, ensures that

each task invokes a resume (and advance) operation only once per phase. Each call to resumeLazy (except the last one in the
phase) involves just O(1) operations – total O(k).
The last task to invoke resumeLazy(), in the phase, performs a few additional operations; shown in lines 5–10, in Figure 11.

Since, IT less than X10_NTHREADS (Eq (1)), the number of operations in any of the statements is at most MAX(k, X10_NTHREADS).
Since, in general k is greater than X10_NTHREADS, the work done by the last task is O(k).
The number of additional operations (beyond that of resumeLazy) performed by advanceLazy functions is O(1). Thus, the

total work done by k tasks in resumeLazy (and advanceLazy) functions is O(k).
Thus in both cases, DP3 is satisfied.

5.5 Semantic equivalence of uClocks and X10 clocks, and deadlock gurantees
(Brief sketch) uClocks Opt1 (Section 4.2.1) simply replaces the amLock lock, with individual locks of the same type, for every
clock, and the functionality of the atomic and when constructs are simply replicated using these individual locks. Since clock-
objects are independent of each other, this change maintains the equivalence.
uClocks Opt2 (Section 4.2.2) has the modification that the last resume unparks only IT threads parked at the advance. Each

of the unparked threads will either reach a barrier, in which case they will unpark a thread from pending-threads, or they will
complete their task, scan for work, and finally end up unparking a thread from the pending-threads list. Hence, in either case,
the parked threads at the pending-threads list eventually get unparked and the overall computation always makes progress.
Importantly, for any program, the schedule of threads realized in the uClocks scheme is one of the permissible schedules as
observed when the program is run using X10 clocks.
For uClocks Extension to clocks (Section 4.2.3), the Eager scheme is the one followed in the original X10 Clocks implemen-

tation, and hence is trivially equivalent. The Lazy scheme simply postpones the unparking of threads parked at the advance to
the last resume, and since all tasks can only move to the next phase after the last resume, the equivalence holds, in this case as
well.
Since the two optimizations and language extension do not change the semantics of X10 clocks, we can say that the uClocks

scheme on the whole preserves the semantics of X10 clocks. Further, since the deadlock semantics are a part of the X10 clocks
semantics, a preservation of the semantics of X10 clocks implies a preservation of the deadlock semantics of X10 clocks. In
other words, a program using uClocks will deadlock if and only if the program using X10 clocks deadlock. Interested reader
may refer to X10 specification10 to understand the cases where the usage of clocks may lead to deadlocks.

6 BARRIERS IN OTHER TASK-PARALLEL LANGUAGES

In this section, we describe the barrier constructs present in other task-parallel languages like HJ2, Chapel3, and Java13. The
proposed desirable properties (introduced in Section 3.1) are applicable to all these three languages because they all support
task-level lock-step synchronization. An analysis of their barrier implementations shows that they do not satisfy all the desirable
properties (summarized in Figure 13). Though X10 does not satisfy DP1 (see Section 3.2), languages like HJ, Chapel and Java
do satisfy DP1. None of the languages fully satisfy DP2 or DP3; Java (in the java.util.concurrent.Phasers package) satisfies DP3
partially – it supports only the ‘Lazy’ scheme (discussed in Section 3.2) – which can lead to inefficiencies sometimes.
In this paper, we used the X10 language as the vehicle to discuss the conformance issues of the desirable properties in

detail, propose schemes to ensure that these properties are satisfied and study the impact of the proposed schemes. The
importance of satisfying these properties is highlighted in the significant performance improvement we achieve for X10 (see
Section 7). Since HJ, Chapel and Java have barrier constructs which are very similar to those in X10 clocks, and their runtime
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Desirable Property X10 clocks HJ Phasers Chapel Barriers Java Phasers
DP1 Not Satisfied Satisfied Satisfied Satisfied
DP2 Not Satisfied Not Satisfied Not Satisfied Not Satisfied
DP3 Not Satisfied Not Satisfied Not Satisfied Partly satisfied

FIGURE 13 Conformance of various task-parallel languages to the Desirable Properties

implementations do not satisfy at least some of the desirable properties, we believe that similar schemes can be successfully
extended to these task-parallel languages; the actual impact may vary depending on the specific runtime internals. A full fledged
implementation/evaluation for these languages and their runtime-internals is left as future work.
In additions to the clock related functionalities discussed in this paper, lock-step synchronization in some of these languages

supports additional features. For example, HJ Phasers and Chapel Barriers get implicitly dropped when the barrier object goes
out of scope. HJ Phasers can, apart from the default mode of both signaling and waiting, be run in two special modes: signal
only or wait only. HJ Phasers also support a variation of the next statement (counterpart of X10 advance) called the next
single Stmt, which executes a single instance of Stmt when performing the phase transition. Phasers in HJ and Java have
an additional feature wherein phasers may be organized in a tree hierarchy to reduce lock contention9. The ideas proposed in
this paper are also applicable in the context of these additional features, all of which require accessing some shared resources
(work-lists, queues, locks, and so on).
Some older explicitly-parallel programming languages like Unified Parallel C14, Split-C15, Co-array Fortran16 and Tita-

nium17 have support for barriers, but these languages require the programmer to express parallelism directly in terms of threads
and not using the abstraction of tasks. OpenMP12 is a task-parallel language that supports synchronization of worker-threads
(but not tasks) using barriers. There has been prior work18,19,20 on introducing task barriers and phaser type barriers among
threads for OpenMP. Expressing parallelism directly using threads (as in Unified Parallel C, Split-C, and so on) or program-
ming thread-barriers in a task-parallel language (as in OpenMP), arguably makes it hard to write code that efficiently utilizes
the multi-core architecture, and hence we do not focus on this class of languages in this paper.

7 IMPLEMENTATION AND EVALUATION

We extended the X10 2.6.1 language with our proposed extension and implemented it in the XRX runtime, along with optimiza-
tions proposed in Section 4.2. Instructions for downloading and running the software, and repeating the experiments from this
section, are specified in the appendix. The X10 compiler supports the generation of code to two target languages: Java and C++.
Both of them use the same XRX runtime. For brevity, we detail the performance measurements for only one backend (Java);
the results with the C++ backend are similar (briefly summarized at the end of this section). The goal of our evaluation is to
study the impact of the proposed extension to clocks and optimizations, and establish the importance of the desirable properties
(Section 3).
While the proposed desirable-properties are relevant both in the context of single-node and multi-node systems, in the context

of X10 (and other similar languages), their impact/gains are only from individual nodes. Hence we present a single-place based
evaluation.
We performed the evaluations on two shared memory systems: a 16 core Intel system (2 Intel E5-2670 2.6GHz processors,

8 cores/processor, 64GB RAM), and a 64 core AMD system (4 AMD Abu Dhabi 6376 processors, 16 cores/processor, 512GB
RAM). We ran the benchmarks for varying number of cores (in powers of two); for running on a system with k cores, we set
X10_NTHREADS to k. We take inspiration from the insightful paper of Georges et al.21 and report numbers as an average over 30
runs to account for any runtime fluctuations.
We performed the evaluation using the iterative kernels of IMSuite7. These kernels (listed in Figure 14) encode some of the

popular distributed algorithms in use: breadth first search (BF and DST), committee creation (KC), leader election (DP, HS, and
LCR), maximal independent set (MIS), minimum spanning tree (MST), byzantine consensus (BY), dominating set (DS) and
vertex coloring (VC). For all the benchmark kernels, we use input size = 512 nodes, except for BY and DS (takes too long a
time), for which we set input size = 128 nodes.
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LOC I/P Size #advances #atomics #advances per sec #atomics per sec
KCL 562 512 9216 107182 318 3696
HSL 500 512 1046528 0 2072 0
LCRL 322 512 262144 0 1273 0
BYL 556 128 4352 537064 14 1684
BFE 370 512 1536 9214 24 146
DSTE 566 512 5120 14694 35 100
MISE 421 512 6144 44320 23 164
MSTE 923 512 81408 7246 72 6
VCE 464 512 2048 0 55 0
DSL 612 128 5232 599 77 9
DPLE 474 512 16896 102772 24 147

FIGURE 14 Statistics for the benchmark kernels used. The superscript on the benchmark denotes the type of barriers used:
Lazy (L), Eager (E) or both (LE).

Figure 14 shows some statistics about the chosen kernels. Static: lines of code and the type of synchronization used. Dynamic:
used input, and the number of sync-ops (advance-operations and atomic-operations) and sync-ops per second. The latter is
computed using the execution time of the default X10 runtime, on the Intel system using a single core.
We partition the kernels into two groups based on whether the kernels have a large number of sync-ops per second at runtime

(top part – High-sync-op kernels) or not (bottom part – Low-sync-op kernels), and present our evaluation for both the groups
separately.
The intuition behind using sync-ops per second as the basis of the split is that uClocks only optimizes synchronization opera-

tions, and naturally if synchronization operations do not a occupy a significant proportion of the execution time in a benchmark,
then the effect of the optimization will not be visible in that benchmark. Sync-ops per second is a proxy for the proportion
of the time spent by a program in executing synchronization operations, and hence compared to the Low-sync-op kernels, the
High-sync-op kernels can be expected to benefit more from uClocks.
For each of the benchmarks, depending on the context in which the advance methods are called, we manually replaced the

calls individually to their eager or lazy variant to obtain a code that satisfies DP3.

7.1 Evaluation on High-sync-op kernels
We now discuss the impact of uClocks on High-sync-op kernels to show that in kernels with many atomic- and clock-operations
per second, the performance improves significantly.

7.1.1 Overall impact of uClocks
Figure 15 shows the raw execution times obtained by using uClocks (includes the proposed extension to X10 clocks, discussed in
Section 4.1, and optimizations, discussed in Section 4.2) and Baseline (the original benchmark kernels using the default runtime)
on the Intel system. Figure 16 shows the resulting speedup, where Speedup=Time-taken-for-Baseline-version/Time-Taken-for-
uClocks-version. The graphs show that we get significant improvement in performance: geomean across varying number of
cores between 3.27× - 10.65×; overall geomean = 5.36× on the Intel system.
In general, we find that with increasing number of cores, the improvements more or less increase. In the case of HS and

LCR, we see that improvement is quite high for 8-cores. This is because for some reason the Baseline version performs poorly
for 8-cores on these benchmarks, because of which our gains for 8-cores look amplified. A similar argument holds for the
improvements of KC and BY for 1-core.
The impact of uClocks on the AMD system is similar to that on the Intel system; see Figure 17 for the raw execution times

and Figure 18 for speedups. The geomean improvements varied from 5.85× to 12.98× (overall geomean = 11.39×). As shown
by evaluations on both the AMD and Intel systems, uClocks lead to improved scaling of the input kernels.
In general, the actual improvement depends on a number of factors such as the input graph, the amount of parallelism present

in the input program and the number of advances- and atomic-operations per second.
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1 core 2 core 4 core 8 core 16 core
B U B U B U B U B U

KC 29 10 16 7 14 4 19 2 27 2
HS 505 84 401 56 309 37 441 23 466 24
LCR 206 50 198 31 156 21 209 11 221 10
BY 319 194 188 131 89 59 59 37 55 24

FIGURE 15 Raw execution times for uClocks (U) and Baseline (B) on the Intel system in seconds.

FIGURE 16 Speedups for High-sync-op kernels (Intel system).

1 core 2 core 4 core 8 core 16 core 32 core 64 core
B U B U B U B U B U B U B U

KC 81 12 44 12 70 6 59 4 56 3 62 3 65 4
HS 1421 107 1476 119 1980 110 1209 83 1036 66 1221 71 1790 82
LCR 548 62 710 62 964 55 577 35 441 28 525 28 764 27
BY 738 252 403 178 215 105 171 63 141 47 126 48 117 45
FIGURE 17 Raw execution times for uClocks (U) and Baseline (B) on the AMD system in seconds.

7.1.2 Impact of the extension to X10 Clocks and proposed optimizations
We now discuss the impact of the extension to X10 clocks and the optimizations. In Figures 19a and 19b, Column 2 (Speedup
from Opt1 only) shows the geomean speedups (across a varying number of cores) achieved due to Opt1 alone, on both the Intel
and AMD systems, respectively, for the High-sync-op kernels. Column 3 (Speedup from Opt2 only) shows the incremental
speedup obtained by adding Opt2 to this system (X10 clocks + Opt1), or in other words, the speedup which can be attributed
to Opt2 alone. Column 4 (Speedup from Language Ext. only) shows the incremental speedup obtained by adding the Language
Extension to this system (X10 clocks + Opt1 + Opt2), or in other words, the speedup which can be attributed to the Language
Extension alone.
Finally, Column 5 (Overall Speedup) gives a combined speedup of uClocks (X10 clocks + Opt1 + Opt2 + Language Exten-

sion) over the original X10 clocks. Hence, as expected, the product of Columns 2, 3 and 4, matches the value in this column.
Overall, we see that the proposed extension to the X10 clocks and the optimizations lead to significant improvements, to justify
the importance of DP1, DP2, and DP3.



18 Akshay Utture and V Krishna Nandivada

FIGURE 18 Speedups for the High-sync-op kernels (AMD system).

1 2 3 4 5
Speedup
from
Opt1 only

Speedup
from
Opt2 only

Speedup from
Language
Ext. only

Overall
Speedup

KC 2.07 1.27 1.83 4.81
HS 1.00 1.47 7.25 10.66
LCR 0.99 1.41 6.85 9.56
BY 1.52 1.05 1.05 1.68

(a) Intel system.

1 2 3 4 5
Speedup
from
Opt1 only

Speedup
from
Opt2 only

Speedup from
Language
Ext. only

Overall
Speedup

KC 2.88 1.47 2.70 11.43
HS 1.00 1.45 10.99 15.94
LCR 1.00 1.35 11.63 15.70
BY 2.09 1.21 1.02 2.58

(b) AMD system.
FIGURE 19 Speedups due to the proposed optimizations and language extension, for High-sync-op kernels.

Vs Baseline Vs uClocks
KC 5.57 1.16
HS 14.89 1.40
LCR 14.29 1.49
BY 1.75 1.04

(a) Intel system.

Vs Baseline Vs uClocks
KC 16.49 1.45
HS 42.08 2.65
LCR 38.60 2.46
BY 2.62 1.01

(b) AMD system.
FIGURE 20 Speedup of async-finish kernel versions compared to the Baseline and uClocks versions, for High-sync-op kernels.

7.1.3 Comparison of code with and without clocks
Even though clocks can be helpful in writing more natural and readable codes4, a common complaint regarding code using X10
clocks is that it runs significantly slower22 than its counterparts written without the use of clocks (using only async-finish).
For example, The ‘Vs Baseline’ column in Figures 20a and 20b shows the (geomean, across varying number of cores) speedup
of the High-sync-op kernels written without clocks to the Baseline versions – up to 14.89× on the Intel system, and 42.08×
on the AMD system. The ‘Vs uClocks’ column shows the corresponding numbers with respect to uClocks– up to 1.49× on the
Intel system, and 2.65× on the AMD system. In spite of clocks being helpful in writing more readable codes, the performance
gap between codes written with and without clocks has been prohibitively high until now, and our proposed uClocks scheme
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Intel system AMD system
BF 1.04 1.16
DST 1.06 1.21
MIS 1.02 1.21
MST 1.01 1.16
VC 1.03 1.20
DS 1.02 1.05
DP 1.12 1.19

FIGURE 21 Overall mean speedups for Low-sync-op kernels (mean speedups across varying number of cores).

Intel system (16 cores) AMD system (64 cores)
BF 1.20 (1.17, 1.24) 1.15 (1.13,1.18)
DST 1.08 (1.07,1.09) 1.24 (1.22,1.26)
MIS 1.10 (1.09, 1.11) 1.36 (1.35,1.38)
MST 1.05 (1.04, 1.06) 1.16 (1.15,1.17)
VC 1.09 (1.08,1.10) 1.29 (1.20,1.38)
DS 1.15 (1.14, 1.16) 1.18 (1.18,1.19)
DP 1.21 (1.20,1.23) 1.19 (1.18,1.19)

FIGURE 22 Speedup ratios and their corresponding confidence intervals (reported in brackets) for Low-sync-op kernels on the
16-core Intel system and 64-core AMD system.

significantly reduces this gap, thereby making the use of clocks more attractive. However, even with our proposed optimization,
the code using clocks are still slower (geomean 35% slower). It remains an interesting future work to bridge this gap.

7.2 Evaluation on Low-sync-op kernels
We now discuss the impact of uClocks on Low-sync-op kernels to show that in kernels with not many atomic- and clock-
operations per second, the performance does not deteriorate.

7.2.1 Overall impact of uClocks
We found that for the Low-sync-op kernels, the uClocks scheme does not lead to much difference in performance compared to
the Baseline. Figure 21 summarizes the geomean speedups achieved by the uClocks scheme, across varying number of cores,
for both the Intel and AMD systems. Note that the slightly higher geomean gains on the AMD system, as compared to the
Intel system, are due to the underlying differences in the architecture and such improved gains have been observed across all
the kernels (both High-sync-op and Low-sync-op). Since the speedups in Figure 21 are small (close to 1×), we also report the
confidence intervals for the speedup ratio (as defined by Kalibera and Jones23) for the 16-core Intel system and 64-core AMD
system in Figure 22. The narrow width of the confidence intervals shows that the execution time is fairly stable across different
runs.

7.2.2 Comparison of code with and without clocks
The ‘Vs Baseline’ column in Figures. 23a and 23b shows that in the Low-sync-op kernels, the deterioration due to clocks is less.
The ‘Vs uClocks’ column shows that in most cases, the uClocks scheme removes this minor deterioration and even improves the
performance. This makes uClocks an attractive option even for Low-sync-op programs. MST shows an interesting case, where
both the Baseline and uClocks versions perform better than the async-finish version. This is because the latter includes a series
of parallel-for-loops leading to significant task-creation and termination overheads, which is avoided in the former because of



20 Akshay Utture and V Krishna Nandivada

Vs Baseline Vs uClocks
BF 1.14 1.10
DST 1.02 0.97
MIS 0.96 0.94
MST 0.87 0.86
VC 1.04 1.01
DS 0.94 0.91
DP 1.04 0.92

(a) Intel system.

Vs Baseline Vs uClocks
BF 1.14 0.99
DST 1.08 0.89
MIS 1.10 0.91
MST 0.89 0.76
VC 1.00 0.83
DS 0.97 0.93
DP 1.13 0.95

(b) AMD system.
FIGURE 23 Mean speedup of async-finish kernel versions compared to the Baseline and uClocks versions, for Low-sync-op
kernels (mean speedups across varying number of cores).

Vs Baseline Vs uClocks
BF 1.42 (1.37, 1.47) 1.18 (1.16, 1.20)
DST 1.12 (1.11, 1.13) 1.04 (1.04, 1.05)
MIS 1.04 (1.03, 1.05) 0.95 (0.94, 0.96)
MST 0.87 (0.86, 0.89) 0.83 (0.82, 0.85)
VC 1.22 (1.20, 1.23) 1.12 (1.10, 1.13)
DS 1.10 (1.09, 1.12) 0.96 (0.94, 0.97)
DP 1.23 (1.22, 1.25) 1.01 (1.01, 1.02)

(a) Intel system (16 cores)

Vs Baseline Vs uClocks
BF 1.11 (1.09, 1.13) 0.96 (0.94, 0.98)
DST 1.16 (1.14, 1.18) 0.93 (0.93, 0.94)
MIS 1.28 (1.26, 1.30) 0.94 (0.93,0.95)
MST 0.87 (0.87, 0.88) 0.75 (0.75, 0.76)
VC 1.08 (1.01, 1.15) 0.84 (0.81, 0.86)
DS 1.07 (1.06, 1.08) 0.91 (0.90, 0.91)
DP 1.19 (1.18, 1.19) 1.00 (1.00,1.00)

(b) AMD system (64 cores)
FIGURE 24 Speedup ratios and their corresponding confidence intervals (reported in brackets) for the async-finish kernel
versions compared to the Baseline and uClocks versions, for Low-sync-op kernels on the 16-core Intel machine and 64-core
AMD machine.

the use of clocks. Since the speedups in Figure 23 are small (close to 1×), we also report the confidence intervals for the speedup
ratio (as defined by Kalibera and Jones23) of the async-finish kernel versions compared to the Baseline and uClocks versions,
for two of the highest configurations (the 16-core Intel system and 64-core AMD system in Figure 24).

7.3 Evaluation of the kernels on C++ backend
We have also evaluated the impact of our optimizations on the C++ backend of the X10 compiler. For brevity, in Figure 25, we
only show the geomean speedups across the number of cores for the High-sync-op kernels, on both the Intel and AMD systems.
Overall we find that the speedups are equally encouraging for the C++ backend as well.
Summary of Evaluation. The performance evaluation (across both the C++ and Java backends) shows that the uClocks scheme

provides substantial benefits for kernels with a significant number of synchronization operations per second, and minor benefits
(but no degradation) for benchmarks with fewer synchronization operations per second. On the whole, this makes it a desirable
implementation for both kinds of workloads. The large performance improvement empirically justifies the importance of the
properties mentioned in Section 3 for a Runtime implementation (for languages with fine-grained synchronization). We also
believe that the set of desirable properties and the proposed optimizations are also meaningful in the context of other PGAS
task-parallel languages (like HJ and Chapel) that allow lock-step synchronization among tasks.

8 RELATEDWORK

Efficient Runtime design for languages that support fine-grain synchronization. There have been many prior efforts 24,25,26
on improving the runtime for task-parallel languages that support synchronization. There has also been prior work on making
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(a) Intel system. (b) AMD system.
FIGURE 25 Speedups for uClocks over X10 Clocks with the C++ backend, for the High-sync-op kernels.

the execution of async-finish constructs in X10 efficient. Guo et al.11 present two variations of the work-stealing scheduler
(help-first and work-first) for X10 (with async-finish constructs only), which improve on the performance of the work-
sharing scheduler. Both Kumar et al.27 and Tardieu et al.28 extend the work-stealing scheduler in X10. Kumar et al. improve the
performance by significantly reducing its sequential overheads. Tardieu et al. extend the idea of work-stealing to other constructs
like when, and clocks, by allowing suspension of tasks at the synchronization point (implemented using continuations – can be
expensive). We also believe that the abstraction of Fibers from the project Loom29, which enable the creation of lightweight
user-mode threads, can be used to efficiently implement the runtime for languages that support fine-grain synchronization.
Imam and Sarkar8 present a mixed (compile-time+runtime) approach for HJ2 that uses One-Shot-Delimited-Continuations to
store the context at the synchronization point (and switch to other pending tasks), and Event-Driven-Controls to efficiently
resume suspended tasks. Shirako and Sarkar9 use a hierarchical phaser organization to reduce lock contention and allow scalable
synchronization among tasks. In contrast, based on a set of desirable properties that are applicable across multiple task-parallel
languages, we present an extension to X10 clocks and design new optimizations to efficiently implement clocks in the work-
stealing scheduler without requiring switching of tasks (suspension) or storing of continuation contexts.
Efficient compilation of clocks and related operations. Vasudevan et al.30 present a compile time technique to identify
clock-objects that (i) do not throw ClockUseException10. (ii) do not call resume explicitly, and (iii) are only used at the cur-
rent X10 place10. Such clock-objects are replaced with instantiations of specialized clock classes that take advantage of the
above properties. Nandivada et al.31 present techniques to reduce the overheads of X10 clock (and HJ phaser) operations
by chunking parallel loops with synchronization operations. Feautrier et al.22 propose a technique to transform code written
using clocks-async-finish abstractions to code that does not use clocks. However, their scheme works for static-control-
programs; hence, it covers only for a restricted class of parallel-loops and unconditional advance operations. In contrast, we
propose a languages extension and an improved runtime that supports arbitrary X10 programs. Further, the existing compile
time optimizations can be used along with our proposed techniques in an orthogonal manner.
Barriers in task-parallel languages. Barriers in Chapel3, clocks in X10 and phasers32 in HJ allow fine grain synchronization
among tasks. Such barrier synchronization constructs have been formalized by prior researchers33,34,35,36, for languages like X10
and HJ. Languages like OpenMP12 support synchronization of worker-threads (but not tasks) using barriers. Since programming
thread-level barriers in a task-parallel language is tedious, Aloor and Nandivada18,19 introduce an extension to OpenMP called
UW-OpenMP which allows the programmer to specify barriers among tasks, and then use a source-to-source translation to
convert UW-OpenMP code to equivalent OpenMP code that does not require task-barriers. Shirako et al.20 propose the idea of
introducing Phasers (similar to that in HJ) to enable fine grain synchronization of OpenMP threads. In this paper, we extend
X10 clocks to additionally admit lazy resume and advance operations, which leads to significant performance gains.

9 CONCLUSION

While clocks provide a convenient, high-level abstraction to specify fine-grained synchronization in task-parallel programs, its
associated implementation overheads compared to the async-finish (fork-join) counter-parts can be prohibitively high. To
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bridge the gap, we propose three properties that an efficient runtime system for languages that support lock-step synchronization
should try to satisfy. Based on these desirable properties, we present a scheme called uClocks to improve the efficiency of X10
clocks; uClocks consists of an extension to X10 clocks and two optimizations to the X10 runtime.We prove that uClocks satisfies
the desirable properties. We have evaluated uClocks on two different hardware setups and found that for benchmarks that use a
large number of synchronization operations, uClocks leads to significant speedups (geomean 5.36× on a 16 core Intel system,
and 11.39× on a 64 core AMD system). Though we have implemented uClocks in the context of X10, we believe that it can also
be extended to other task-parallel programming languages like HJ and Chapel.
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APPENDIX

A | SETUP FOR RUNNING EXPERIMENTS

A.1 Abstract
This appendix describes how to replicate the experiments to evaluate the performance of uClocks as compared to the original
X10 Clocks implementation. It details the software and hardware requirements, installation instruction, steps to configure and
run the experiment, and the expected results.

A.2 Description
A.2.1 Overview

• Programming language: X10.
• Compilation: X10-2.6.1 compiler and runtime
• Data set: IMSuite Benchmarks (https://www.cse.iitm.ac.in/~krishna/imsuite/)
• Hardware: System with atleast 16 cores
• Output: Execution time of all Kernels on a) uClocks b) original X10 Clocks
• Experiment workflow: (i) Build original X10 compiler+runtime, (ii) Build X10 compiler+runtime extended with

uClocks, (iii) Run performance measurements on original X10 compiler+runtime, (iv) Run performance measurements
on X10 compiler+runtime extended with uClocks

• Experiment customization: Number of cores to run on, Number of runs for each benchmark
• Publicly available?: Yes

A.2.2 How software can be obtained
All required software can be downloaded from https://github.com/akshayutture/uClocks

A.2.3 Hardware dependencies
An active internet connection is required to download the necessary jar files and a multi-core system with at least 16 cores.

A.2.4 Software dependencies
The dependencies are given on the X10 website (http://x10-lang.org/x10-development/building-x10-from-source.html)

A.2.5 Datasets
We use the IMSuite benchmarks for simulating distributed algorithms, which are available at https://www.cse.iitm.ac.in/
~krishna/imsuite/. We use all the eleven Iterative FAC (Finish-Async-Clocks) Kernels for X10-2.5.0.
The input size used is 512 for all kernels except the byzantine and dominatingSet kernels which use an input size of 128.

A.3 Installation
Run the following two commands to quickly build the two versions of X10 (the first being the original X10 language+runtime,
and the second being the X10 language+runtime extended with uClocks)
$ cd uClocks

$ sh compile-X10Clocks.sh

$ sh compile-uClocks.sh

https://www.cse.iitm.ac.in/~krishna/imsuite/
https://github.com/akshayutture/uClocks
http://x10-lang.org/x10-development/building-x10-from-source.html
https://www.cse.iitm.ac.in/~krishna/imsuite/
https://www.cse.iitm.ac.in/~krishna/imsuite/
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A.4 Experiment workflow
A.4.1 Run benchmarks with original X10 clocks
Run the following command to get the readings of the IMSuite benchmarks (IMSuite-IterativeKernels) on the uClocks extended
runtime, in the file ’originaloutput.txt’.

$ python run-X10Clocks-on-IMSuite-kernels.py [numberOfCores] [numberOfRunsPerBenchmark] > originaloutput.txt

In case the benchmarks run intoOut of Memory or Out of Heap space errors, run the following command instead, which uses
smaller sized benchmarks, but will not give the same quality of results (recommended that you run on a more powerful system,
instead of using this).
$ python run-X10Clocks-on-IMSuite-kernels_small-Inputs.py [numberOfCores] [numberOfRunsPerBenchmark] > originaloutput.txt

A.4.2 Run benchmarks with uClocks extended runtime
Run the following command to get the readings of the IMSuite benchmarks (IMSuite-IterativeKernels) on the uClocks extended
runtime, in the file ’uClocksoutput.txt’.
$ python run-uClocks-on-IMSuite-kernels.py [numberOfCores] [numberOfRunsPerBenchmark] > uClocksoutput.txt

In case the benchmarks run intoOut of Memory or Out of Heap space errors, run the following command instead, which uses
smaller sized benchmarks, but will not give the same quality of results (recommended that you run on a more powerful system,
instead of using this).
$ python run-uClocks-on-IMSuite-kernels_small-Inputs.py [numberOfCores] [numberOfRunsPerBenchmark] > uClocksoutput.txt

A.5 Evaluation and expected result
The ratios of the execution time obtained from the two runs (with original X10 clocks and uClocks) in the output file, can be
plotted graphically, and the characteristics of the overall speedups may match (depending on the hardware used) those obtained
in Figure 16 or Figure 18. uClocks perform significantly better for the High-sync-op kernels described in Section 7.1.1.

A.6 Notes
For any further issues or queries in the installation, kindly refer the X10 website
http://x10-lang.org/x10-development/building-x10-from-source.html, the SourceForge page
https://sourceforge.net/p/x10/mailman/x10-users/ or the Stack overflow page
https://stackoverflow.com/questions/tagged/x10-language.

http://x10-lang.org/x10-development/building-x10-from-source.html
https://sourceforge.net/p/x10/mailman/x10-users/
https://stackoverflow.com/questions/tagged/x10-language
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