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Unleashing Parallelism with Elastic-Barriers

AMIT TIWARI, Department of CSE, IIT Madras, India
V. KRISHNA NANDIVADA, Department of CSE, IIT Madras, India

With the rise of multi-core processors, parallel programming has become essential, and managing synchro-
nization overheads has become crucial for efficiency. Barriers, commonly used to synchronize threads, divide
the program into different phases. Existing scheduling schemes address intra-phase load imbalance to some
extent but do not fully resolve the issue of thread idling, especially in the context of programs with irregular
parallel for-loops. This paper proposes an innovative solution called the elastic-barrier, where threads that
arrive early at a barrier can execute iterations of the parallel-loop from the next phase, thereby reducing
the idle time, and reduce load imbalance. The approach guarantees safety by ensuring that before executing
any work𝑊 from the subsequent phase, all the works in the current phase that𝑊 depends on have been
executed. The paper presents a compilation scheme that integrates compile-time and runtime techniques to
optimize execution. We implemented our proposed scheme in the IMOP framework. Experimental results on
graph-based benchmarks show that our approach improves the performance significantly.

CCS Concepts: • Software and its engineering → Compilers; Parallel programming languages.
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1 Introduction

With the emergence of multi-core processors, exploiting parallelism has become a necessity rather
than a choice. In modern parallel programming languages like Chapel [7], Cilk [2], OpenMP [4],
X10 [8], Go [13], and so on, achieving efficient execution requires managing synchronization
overheads, with barriers playing a crucial role. These barriers introduce two main challenges. First,
barriers lead to significant communication overhead. Second, threads perform no useful work while
waiting at the barrier. While several prior barrier implementations [6, 12, 20, 32] have addressed the
issues related to communication overhead, the issue of thread idling, which stems due to the load im-
balance before the barrier, remains an important research domain. This issue becomes more critical
in the context of irregularworkloads, where work done by different threads may vary considerably.

Besides the standard scheduling schemes like static, dynamic, and guided, various scheduling
mechanisms [5, 18, 21, 23, 26, 40, 45, 54, 57] have been proposed in the past to minimize load
imbalance in irregular parallel applications. Considering the challenges in irregular parallel pro-
grams, recently there has been increasing interest [52, 55] in using combined compile-time and
runtime approaches to handle the variability at runtime. The state-of-the-art in this space of loop
chunking is the idea of deep-chunking [46] that uses a mixed compile-time and runtime technique
to chunk the iterations of parallel for-loops, based on the estimated thread-workloads. While these
techniques reduce the load imbalance to some extent, threads often spend significant time waiting
at barriers, especially in irregular programs like graph analytics. Further, these techniques do not
provide much insights on how the waiting times of these threads can be better utilized. We will
illustrate these issues using an example.
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2 Tiwari and Nandivada

Fig. 1 shows a simplified snippet of code derived from the KC (K-Committee) kernel [16]. It has
two parallel-loops, ParLoop1 and ParLoop2, separated by a barrier, Barrier1. Each iteration in
ParLoop1 processes a unique vertex in the input graph. This involves a traversal of the respective
neighbors; thus, the work done by each iteration can vary significantly, and so can the workload
of each thread (irrespective of the scheme used to chunk the iterations of the loop among the
threads). Such imbalance can arise due to (i) high variance in the vertex-degree, (ii) limitations in
the scheduling algorithm, or (iii) various architectural and runtime system constraints [22, 45]. For
example, for the KC kernel running on the YouTube dataset [25], when using deep-chunking (the
best known chunking scheme), we observe that threads wait for 48.8% of the time at the barrier.
To address this issue, in this paper, we present the idea of an elastic-barrier, where instead of

simplywaiting for the last thread to arrive at a barrier, a thread that arrives early performswork from

1 #pragma omp parallel for nowait // ParLoop1
2 for (int i1=0; i1<g->N; i1++) {
3 node* cur = elem_at (&g->vertices , i1);
4 payload* data = cur ->data; ...
5 for (int j1=0; j1<cur ->degree; j1++) {
6 node* nbr = elem_at (&cur ->neighbors ,j1);
7 enqueue(Q, nbr ->label , &data ->min_active );}}
8 #pragma omp barrier // Barrier1
9 #pragma omp parallel for // ParLoop2
10 for (int i2=0; i2 < g->N;i2++) {
11 node* cur = elem_at (&g->vertices , i2);
12 payload* data = cur ->data; ...
13 data ->min_active = min(data ->min_active ,
14 dequeue(Q, i2)); ...}

Fig. 1. Snippet of KC kernel from IMSuite

the subsequent phase across the barrier,
in a safe and profitable manner. This can
help reduce the imbalance (and idling) sig-
nificantly at the target barrier, especially
in the context of irregular parallel-loops.
For example, for the snippet shown in
Fig. 1, we propose executing iterations
from the next phase (ParLoop2) instead of
idling. However, naively executing the iter-
ations from ParLoop2 may not be safe, as
it may read andwrite shared-memory loca-
tions (data->min_active) concurrently
accessed by iterations in ParLoop1, lead-
ing to potential data races. Note: In ParLoop1, the min_active field of each vertex 𝑣 is stored in the
queue of each neighbor of 𝑣 , and in ParLoop2, each vertex reads the values of those stored fields in
its queue. Thus, before executing any iteration i2 of ParLoop2 before the barrier, we must make
sure that all the iterations in ParLoop1 corresponding to the neighbors of i2 have been completed.
We address the issue of load imbalance in irregular parallel-loops by employing an approach

using which, instead of idling at a barrier, threads can continue to execute work from the next
phase (after the barrier), until the last thread has reached the barrier. This idea is fundamentally
different from any prior work that dealt with the scheduling of iterations (within the same phase),
as our proposed idea addresses the issue of load imbalance (and idling) by executing iterations from
the next phase (beyond the barrier). We term such barriers as elastic-barriers.

We present a scheme to identify elastic-barriers in input programs, and a transformation pass to
generate efficient code for the same. Our proposed pass focuses on two key dimensions: Profitabil-
ity: Naively executing iterations from the next phase can even lead to performance degradation.
Specifically, if a waiting thread continues executing such iterations beyond the arrival of the last
thread, it may degrade performance. Thus, it is crucial for a waiting thread to accurately assess the
waiting time, and estimate the amount of work that can be profitably executed. Further, the emitted
auxiliary code should not lead to overheads masking the possible gains. Safety: Another important
requirement is maintaining correct program semantics while executing iterations elastically. The
waiting thread must ensure that it elastically executes an iteration i2 from the subsequent phase
only when all iterations of the current phase that i2 depends on have been completed. Additionally,
the elastically executed iterations should not be executed again in the next phase. These targets
are achieved by maintaining the runtime state of all the threads, which, in turn, is achieved in two
steps: (i) by statically emitting the required code, and (ii) executing this emitted code at runtime to
derive the necessary information.
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Unleashing Parallelism with Elastic-Barriers 3

We present our scheme in the context of OpenMP C programs. However, we believe that the
scheme can be extended to other parallel languages as well.
Contributions.
• In this paper, we present the idea of an elastic-barrier, where awaiting thread can execute iterations
of the subsequent phase profitably, safely, and efficiently before the barrier, thereby utilizing the
waiting time at the target barrier. Such a scheme can be beneficial for irregular parallel-loops.
•We propose a compilation scheme involving a mixed compile-time and runtime approach such
that (for input codes with elastic-barriers) it leads to performant codes.
•We have implemented our proposed scheme in the IMOP [36] compiler framework. We evaluate
our proposed scheme on three shared-memory graph benchmark programs from IMSuite [16]:
K-committee, Bellman-Ford, and Dominating Set, and two other popular benchmarks: Pagerank
and Perceptron [24, 29]. Our study of these benchmarks on three different inputs shows that
our proposed scheme led to significant gains (in 479 of a total 540 configurations with varying
benchmarks, number of threads, and real-world inputs) in the context of irregular workloads.

The rest of the paper is organized as follows. Section 2 gives a brief background of the workload-
based deep-chunking technique, along with some minor extensions to handle OpenMP programs.
Section 3 gives an outline of our technique, explaining how elastic-barriers are detected, followed
by the intuition on how elasticity is realized. Section 4 provides an in-depth explanation of the
proposed mixed compile-time and runtime approach for emitting code to exploit elasticity. Section 5
presents a discussion on some of the salient points of our proposed approach. Section 6 provides
a detailed evaluation of the proposed techniques with performance analysis on five benchmark
programs, focusing on execution time and barrier waiting time. Section 7 discusses the related
work, and Section 8 concludes the paper.
2 Background
In this section, we give a brief background of two of the key ideas used from prior work [46, 52],
along with some insights on adapting the same in the context of OpenMP. One main takeaway
from these prior works is the use of a mixed compile-time and runtime approach to address the
challenge arising out of the difficulty to statically estimating the workload of different threads and
iterations of parallel-loops.

2.1 CostExpGen: Generating Cost-Expressions and Emitting the Workload Loop

Given a parallel for-loop, CostExpGen generates the cost-expression for each iteration of the loop,
and emits a workload loop that computes these costs at runtime. We will use an example to
illustrate how the generated cost-expressions may look like (interested reader may refer prior
work [46] for details).

1: S1
2: for (j=0;j < G[i].neighbors; ++j) {
3. S2
4. if (v) S3 else S4
5. }

Fig. 2. Sample body of a parallel for-loop it-
erating over the nodes of a graph G. Assume
that the neighbors field gives the number
of neighbors of the vertex G[i].

Fig. 2 shows the body of a sample parallel for-loop,
iterating over the loop index variable i; the code for the
parallel for-loop is omitted for brevity. Assume that S1,
S2, S3, and S4 represent one or more statements with
input-independent execution times. Say, after profiling
it is identified that the cost of S1, S2, S3, and S4, are
C1, C2, C3, and C4, respectively. Further, if the predicate
of the if-statement is found to be true p% of the time
during profiling, the cost-expression for the body would
be: C1 + G[i].neighbors * (C2 + 0.01*(p * C3 +
(100-p)*C4)). It may be noted that the cost-expression
has (i) constant literals derived from profiling, and (ii) expressions derived from the input program.
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ParLoop2 

ParLoop1 
(thread i iterates over chunk Chi )

(a)

Barrier1

Barrier0

Barrier1

Barrier2 Barrier2

Barrier0

ChunkedWLLoop1

Q}

P}

R}
S}

 = getChunk(WLArray2, T, i, N)

 = getChunk(WLArray1, T, i, N)

ChunkedLoop1 
(thread i iterates over chunk                        )

ChunkedWLLoop2
(thread i iterates over the same                        )

ChunkedLoop2 
(thread i iterates over the same                        )

(b)

Fig. 4. (a) A sample input MPL code, (b) Code after invoking the loop-chunk emitter. We highlight four parts
in the code to be emitted between Barrier0 and Barrier1 to perform: (P) initialization, (Q) chunk execution,
(R) cost computation, (S) elastic-work execution.

Thus, during runtime, we can estimate the cost of any iteration i using the above cost-expression.
In cases where we won’t be able to ‘extract’ a closed form expression (like G[i].neighbors) as
the loop bound (say, in case of a while-loop), CostExpGen underestimates the cost of the loop and
assumes the loop bound to be 1. In Section 4.2, we show how we deal with such an underestimation.

Emitting WLLoops. For each such parallel for-loop 𝐿 of an ELoop, CostExpGen emits a workload

#pragma omp for
for (i = 0; i < eN; ++i) {

WLArray[i] = ⟦ 𝐶𝐿 ⟧;
}

Fig. 3. Sample WLLoop

loop (WLLoop) in the preceding phase to compute the workload of
the iterations of 𝐿 (stored in an array WLArray). We show a sample
WLLoop in Fig. 3. Here, we assume that (i) eN is the expression giving
the number of iterations of 𝐿, and (ii) ⟦𝐶𝐿⟧ gives the cost-expression
for any iteration i of 𝐿. Note that WLLoop is also a parallel for-loop,
and its iterations are shared between the same set of threads executing
the current parallel-region.

2.2 ChunkGen: Loop Chunk Emitter

We first transform the input code using ChunkGen before invoking our optimization. For illustration,
a typical program pattern is shown in Fig. 4(a), on which ChunkGen is applied. The transformed code
is shown in Fig. 4(b). Themethod getChunk (executed by thread 𝑖) returns the chunk ⟨𝑠𝑡𝑎𝑟𝑡1𝑖 , 𝑒𝑛𝑑1𝑖⟩,
as proposed by deep-chunking. This method takes WLArray, total number of threads 𝑇 , current
thread ID 𝑖 , and the total number of iterations 𝑛 of the parallel for-loop as arguments. We can see
that the original parallel-loops of Fig. 4(a) have been replaced by chunked equivalents iterating
over the chunk ⟨𝑠𝑡𝑎𝑟𝑡1𝑖 , 𝑒𝑛𝑑1𝑖⟩.
Note: For each emitted WLLoop, ChunkGen uses the chunk of the preceding parallel for-loop.

However, for a parallel for-loop that has no preceding parallel for-loop, the emitted WLLoop will
use the default static schedule of OpenMP.
3 Overview of the Proposed Solution
Informally, we say that a barrier exhibits elasticity if there is a subsequent parallel-loop from which
some iterations can be executed before the barrier. To reduce the idle waiting of threads at such
barriers, we present (i) a scheme to identify such elastic-barriers and (ii) a translation mechanism
that emits efficient code to reduce the idle waiting of threads at elastic-barriers, by enabling those
threads to execute a subset of the iterations of the subsequent parallel-loop. We call the threads
that complete their work early as the early-finishing threads (EFTs, in short), and the thread that
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Unleashing Parallelism with Elastic-Barriers 5

reaches the barrier at the end the last-finishing thread (LFT, in short).
We start the presentation of our scheme by defining a subset of a language (MPL) in Section 3.1,

that we will use to explain our approach. In Section 3.2, we discuss various compatibility checks
for identifying opportunities for exploiting elasticity in barriers, in programs in MPL form. In
Section 3.3, we explain the overall execution flow of our proposed technique. Then, in Section 3.4,
we provide an intuition of our proposed technique, by focussing on the profitability and safety of
the generated code.

3.1 MPL: Multi-parallel loops

ERegion ::= #pragma omp parallel EStmt
EStmt ::= ELoop ELoop+ | SEQ (EStmt)
ELoop ::= SeqStmt? ParLoop SeqStmt? Barrier
ParLoop ::= #pragma omp for nowait forLoop
Barrier ::= #pragma omp barrier

Fig. 5. Syntax ofMPL. X+ represents one ormore occurrences
of X, and X? represents zero or one occurrence of X.

Fig. 5 shows the syntax of a subset of
OpenMP C language (called MPL) that
forms the basis for identifying elastic-
barriers. The non-terminal ERegion repre-
sents a parallel-region that encloses multi-
ple parallel-loops; its body is represented
by the non-terminal EStmt. An EStmtmay
be enclosed inside sequential constructs,
denoted by SEQ (EStmt); for example, it may be present inside sequential blocks (like loops,
if-statements, compound statements, and so on). Importantly, an EStmt always contains two or
more ELoops. Each ELoop consists of a ParLoop followed by a Barrier, with optional sequential
code before and after the ParLoop. The non-terminal SeqStmt denotes any sequential statement,
and forLoop denotes a sequential for-loop.
In this section, we will assume that the input is in MPL form. Later, in Section 5.1, we describe

how we preprocess any input program to expose parallel-loops in MPL form.

3.2 Opportunities For Exploiting Elasticity In Barriers

Consider a pair of consecutive ELoops, say ELoop1 and ELoop2, represented as “S11, ParLoop1,
S21, Barrier1”, and “S12, ParLoop2, S22, Barrier2”, respectively. We assume that there is some
inter-thread dependence between both the ELoops, because of which Barrier1 is not redun-
dant. Otherwise, such a barrier can be simply elided. To mark such a non-redundant barrier (like
Barrier1) as an elastic-barrier, we perform the following three checks.
Check#1: Independence of the sequential parts. There should be no data-dependence between
ParLoop2 and any of the preceding sequential statements (S12, S21, and S11). Note that we enforce
this restriction even for S11 and S21, even though they are sequential statements. This is because in
the input program, they are present inside a parallel-region, and hence may be executed by multiple
threads in parallel with the iterations of ParLoop2 that we plan to execute before Barrier1.
Check#2: Dependence between the parallel-loops. Since the independence of the sequential parts has
been established via Check#1, we now assume that the dependence is arising due to one or more
iterations of ParLoop2 having inter-thread dependences with one or more iterations of ParLoop1.
We require that the dependence may arise due to their conflicting accesses to common elements of
the shared array(s) (allocated statically or dynamically) and not shared non-arrays (e.g., scalars). If
the dependence is not on array elements, we conservatively assume that each iteration of ParLoop2
depends on all the iterations of ParLoop1. Consequently, no iterations of ParLoop2 can be executed
elastically until all the iterations of ParLoop1 have been completed.
Check#3: Similarity between the parallel-loops. For ease of exposition, we will also assume that both
ParLoop1 and ParLoop2 iterate over the same iteration space (say, 𝐼 ). Note that the iterations of
ParLoop1 and ParLoop2 may further iterate over a sub-list of 𝐼 . For example, in a graph benchmark
program the outer loop may traverse over the nodes, and the inner loop traverses over the neighbors.
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Profile-based 
Cost Estimator

Profile
Information

Elastic-Work
 Emier

Modified Loop2 
 Emier

MPL-Compatibility
Checker

1 2 3

4

8

5 6 7

Preprocessor

Cost-Expression
 Emier

Runtime Data 
Monitor Emier

Scope Evaluator
 Emier

Loop
Chunk Emier

9

Fig. 6. Components of the proposed translation scheme.
The blocks with white background are directly extended
from the prior work [46], and the gray-shaded blocks
indicate our contribution.

elastic-scope >= 
   scopeLimit 

Pick the next iteration i from eCh

Execute i

Revisit eCh

safe and profitable
to execute i ?

eCh has iterations
to be executed?

not available

Y

eCh

available
Y

YN

N
N

Begin

End

Fig. 7. Overview of the various components
before performing the elastic-work, until the
last thread has arrived.

When ELoop1 and ELoop2 satisfy all these three checks, we mark Barrier1 as an elastic-barrier.
For ease of exposition, we assume that there exists a barrier before each such pair of ELoops (as
part of a preceding ELoop or a standalone one); if no such barrier exists, we insert one. We refer to
this pattern of a barrier followed by a pair of ELoops as an elasticPattern. A simple depiction of
such a pattern can be seen in Fig. 4(a).

3.3 Process flow

We now briefly summarize our proposed scheme to translate elastic-barriers in OpenMP programs
efficiently. Our scheme has two components: (i) compile-time, and (ii) runtime.
Compile-time component (see Fig. 6). During compilation, we first invoke a preprocessing

pass (discussed later in Section 5.1) that tries to transform any given OpenMP program to an
equivalent MPL form (Step 1). Next, we verify the transformed program’s compatibility based on
the rules in Section 3.2 (Step 2).
If found compatible in Step 2, then we profile the program (Step 3) to identify the parts of the

program with input-independent costs and then run the program on a small input to compute the
costs; for this, we extend the techniques described by Prabhu and Nandivada [46], for OpenMP.
For each MPL-compatible program, we use its profiler-generated costs to emit (parallel) code
that computes the costs of the iterations of the parallel-loops (Step 4; described in Section 2.1).
Next, we transform the parallel-loops such that the work-division code (via the state-of-the-art
deep-chunking [46]) is emitted (Step 5; described in Section 2.2).
We now list our steps to exploit elasticity in the barriers: First, we emit code that updates the

progress of each thread at regular intervals (Step 6; Section 4.1). Then, we emit a function that can
be used by any EFT to compute the maximum of the estimated remaining workloads of the other
threads in the team (Step 7). Next, we emit code that elastically executes one or more iterations
from ParLoop2 before Barrier1, if it is deemed to be “safe” and “profitable” (Step 8); these two
steps are discussed in Sections 4.2, 4.3, and 4.4. As we will discuss later, each thread will find a fixed
chunk (called elastic-chunk) of such iterations from ParLoop2 to execute elastically. Finally, we
modify ParLoop2 to ensure that elastically executed iterations are not repeated (Step 9; Section 4.5).
Runtime component. During execution, each thread computes the total workload of the

parallel-loop and identifies (and starts the execution of) the chunk of iterations assigned to that
thread (based on the code emitted in Steps 4, 5 and 6, Fig. 6). The code emitted in Steps 7 and
8 is executed only by the EFTs; this is done as long as it is deemed profitable. First, the EFTs
estimate their waiting time based on the maximum remaining workload of other threads to perform
elastic-work (Step 7). We refer to this estimated waiting time as the elastic-scope, indicating the
opportunity it provides to the EFT to execute elastic-work (some iterations of ParLoop2). Each
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Unleashing Parallelism with Elastic-Barriers 7

such EFT then executes one iteration from ParLoop2 at a time, if it is deemed safe (Step 8). All the
threads, including those that performed elastic-work and otherwise, meet at Barrier1 and then
proceed to execute the modified ParLoop2 that skips the iterations that have already been executed
elastically (code emitted in Step 9).

To better understand the iterative process between blocks 7 and 8, we present a brief explanation
of the underlying interactions in Fig. 7. The EFT starts with an elastic-chunk 𝑒𝐶ℎ, and first checks
that the thread’s elastic-scope is significant (greater than a predefined constant scopeLimit). If so,
the EFT executes safe and profitable iterations from 𝑒𝐶ℎ, one at a time. After making a full pass
over the iterations of the 𝑒𝐶ℎ, the EFT may restart the processing of 𝑒𝐶ℎ to execute the iterations
of 𝑒𝐶ℎ that were not executed before (due to the safety constraints).

We now give details about Steps 6 to 9 before briefly discussing the preprocessing step.

3.4 Intuition Behind the Proposed Solution

Using the code emitted by the loop chunk emitter in Fig. 4(b), each thread first executes its chunk
of iterations in ChunkedLoop1. After that, to elastically execute iterations from the next phase, it
must check for profitability and safety, as explained below.
Profitability. For any EFT, a naive way to do elastic-work would be to simply execute the

iterations of ChunkedLoop2 (one at a time) whenever it finds that there are other threads still
working in the current phase, and it is safe to execute that iteration. However, this can be coun-
terproductive as the naively executed iteration from ChunkedLoop2 may lead to an increased
critical path in the first phase. For example, consider Fig. 8(a), which shows a possible execution
scenario consisting of two parallel for-loops separated by a barrier (shown by the horizontal
solid black line). Assume that at runtime there are two threads T1 and T2. The chunk assigned
to each thread is shown using a box, and the numbers above the box give the time taken to ex-
ecute that chunk. The dotted lines below the chunks indicate waiting times. The vertical lines
inside the boxes of ParLoop2 indicate the iterations of the corresponding chunk, and the numbers
above these lines indicate their respective execution times. In this example, after completing
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Fig. 8. Impact of overshooting: (a) A runtime scenario involving two
threads, (b) naively performing elastic-work may lead to increased
critical path length, (c) our proposed approach.

its chunk, T1 sees that T2 is yet
to complete its chunk; hence, T1
can perform elastic-work. Assume
that T1 can safely execute any of
the iterations from its chunk in
ChunkedLoop2. Now, if T1 naively
picks up the first iteration from the
second loop as the elastic-work (see
Fig. 8(b)), then the threads take a
longer time to complete the first
phase, and the critical path length
increases (from 220 units to 260
units).We term such a scenariowhere
the elastic-work done is more than
the elastic-scope, as “overshooting”. To prevent overshooting, we identify the iterations of
ChunkedLoop2 to be performed based on the current elastic-scope. Please see Section 5.6 about
the overheads of the possible design choice, where in case of overshooting, the LFT also starts
performing elastic-work.

Safety. Say the barrier present between ParLoop1 and ParLoop2 is not redundant – otherwise,
the programmer or some other compiler pass can elide it. That is, assume that one or more iterations
of ParLoop2 have dependence on one or more iterations of ParLoop1. Thus, before executing any
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8 Tiwari and Nandivada

iteration 𝑗 from ParLoop2, we have to satisfy the safety requirement: make sure that the list of all
the iterations of ParLoop1 that iteration 𝑗 depends on (called depItersList) has been executed by
their respective threads. To achieve this: (i) For each iteration in ParLoop2, we need to identify the
corresponding depItersList, and (ii) For each thread executing ParLoop1, we need a way to query
the progress of each thread (in terms of the executed iterations), so that any EFT trying to execute
an iteration from ParLoop2, as part of elastic-work, can ensure that iterations in the corresponding
depItersList have been executed.
The code to populate different data structures required to efficiently compute profitability and

safety is emitted in Step 6 (in Fig. 6); these data structures are used in Steps 7 and 8. We explain
these steps in the following sections.
4 Transformations to Exploit Elasticity
4.1 Runtime Data Monitor Emitter

We now explain how we maintain different data structures to track the runtime state of the program,
which helps compute elastic-scope and monitor thread progress. Our scheme involves emitting
code to initialize and update two arrays: threadRemWLArray and threadProgress.

4.1.1 Maintaining threadRemWLArray. To compute elastic-scope, we maintain a global array called
threadRemWLArray (size = number of threads), whose 𝑖𝑡ℎ element holds the remaining workload
of thread 𝑖 in ChunkedLoop1. Each EFT iterates over the elements of threadRemWLArray to get the
remaining workload of the LFT – this gives an estimate of the elastic-scope.

After invoking getChunk to determine its chunk, each thread 𝑖 initializes threadRemWLArray[𝑖]
using the WLArray array that holds the iteration costs for all the iterations (see Section 2.1). This
code is emitted in the “initialization (P)” part in Fig. 4(b) immediately after the call to getChunk.

A naive way to keep threadRemWLArray[𝑖] up-to-date would be to reduce the current value of
threadRemWLArray[𝑖] after the execution of each iteration in ChunkedLoop1. Since the elements
of the array threadRemWLArray may be accessed concurrently by multiple threads, these must be
accessed atomically and, in turn, brings in two types of overheads: (i) contention at the atomic blocks
– which may impact the execution of the LFT. (ii) false sharing among threads as threadRemWLAr-
ray is a global array. To avoid such overheads, each thread maintains an up-to-date version of
threadRemWLArray[𝑖] in a local variable (localRemWorkLoad). Once the remaining workload of
any thread becomes less than the maximum cost of the iterations of ParLoop2 (denoted by max-
IterCostLoop2), thread 𝑖 starts copying the value of localRemWorkLoad to threadRemWLArray[𝑖],
after executing each iteration of ParLoop1. Note that the EFTs do not need the remaining workload
information of the LFT when it is greater than maxIterCostLoop2. This is so because no elastically
executed iteration would have a cost greater than maxIterCostLoop2, and updating progress once
the remaining workload is equal/below maxIterCostLoop2 is sufficient.

4.1.2 Maintaining threadProgress. To monitor thread progress, we use a global array threadProgress
(one element per thread) for each parallel-loop, where threadProgress[𝑖] stores the index of the last
iteration executed by thread 𝑖 . In the “initialization (P)” part of Fig. 4(b), we emit the code to initialize
threadProgress after the call to getChunk, such that each thread 𝑖 , sets threadProgress[𝑖] = 𝑠𝑡𝑎𝑟𝑡1𝑖 −1
(indicating no progress). We also emit code such that after executing each iteration in the “chunk-
execution (Q)” part of Fig. 4(b), each thread 𝑖 updates its progress (by setting threadProgress[𝑖] to
the value of the chunk index variable).

Similar to threadRemWLArray, accesses to the elements of threadProgressmust be atomic. Further,
we reduce the overheads due to such atomic updates by updating the shared array after processing
those iterations, on which a significant number of threads (≥ totalThread/4) depend; we obtain this
information by processing the depItersList arrays.
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Unleashing Parallelism with Elastic-Barriers 9

1 while safeScope ≥ scopeLimit AND last thread has not arrived do
2 profitableIterFound = false;
3 for eIter=start1𝑖 to end1𝑖 do // elastic-loop
4 if WLArray2[eIter] = 0.0 then // already executed
5 continue;
6 if safeScope < WLArray2 [eIter] + DEPCOST then continue ; // not profitable
7 profitableIterFound = true;
8 . . . ; // Dependence check for safety. See Fig. 13.
9 if isSafe == true then
10 body of ChunkedLoop2; // execute elastically
11 safeScope = safeScope −WLArray2[eIter];
12 WLArray2 [eIter] = 0.0; // mark eIter as done

13 safeScope = safeScope − DEPCOST;
14 if safeScope < scopeLimit OR last thread has arrived then break;
15 if profitableIterFound == false then break ;
16 safeScope =MAX(threadRemWLArray);

Fig. 9. Code emitted by elastic-work emitter. We can categorize the predicates in the algorithm into
two groups: ones related to profitability (lines 1, 6, 14, 15) and safety (lines 4, 9).

4.2 Scope-evaluator and Elastic-work Emitter

In this section, we first describe how we emit code so that each thread can compute the available
elastic-scope at any point of time during execution. We emit code that lets EFTs find the maximum
value in threadRemWLArray and store it in a variable safeScope. This code is a serial for-loop
(#iterations = #threads) placed immediately after the ChunkedWLLoop2, in the part “(R)” in Fig. 4(b).

Next, we describe the details of elastic-work-emitter (Step 8, Fig. 6). We now describe the emitted
code for elastic-work execution, along with its profitability and safety-checks; all this code is
emitted in the “elastic-work execution (S)” part in Fig. 4(b).
Fig. 9 shows a sample code inserted by the elastic-work-emitter. The code consists of a serial

for-loop that goes over all the iterations of the elastic-chunk (at Line 3); we call this loop as elastic-
loop. To avoid overshooting (see Section 3.4), an EFT performs a check at Line 6. Here, it checks
if executing the current iteration is profitable by comparing safeScope against the cost of the
iteration that is being planned to be executed elastically, and the cost (DEPCOST) to perform a
safety-check to be executed later at Line 8. Also, the value of safeScope is reduced by DEPCOST
(at Line 13), irrespective of whether the iteration is executed elastically or not - as we do pay the
cost of dependence check. The value of DEPCOST is obtained by separately profiling the code used
to perform the dependence check.

For example, for the scenario illustrated using Fig. 8(a) (ignoring DEPCOST for simplicity), the
thread T1, which computes the safeScope to be 40 units, will skip the iteration with higher cost
(100 units) and instead elastically execute the next iteration with lower cost (40 units), as the latter
will not lead to increased critical path length; this is illustrated in Fig. 8(c).

Next, we emit code such that for each iteration eIter of ChunkedLoop2 that is deemed safe,
(a) eIter is executed, (b) safeScope is updated, and (c) WLArray2[eIter] is reset to zero (Lines 9-12).
We note two salient points about these four lines (Lines 8-12): (i) an iteration that may not be safe
to execute at one point of time (as its dependences may not have been satisfied) may become safe
later. Hence, the for-loop to execute the iterations elastically is emitted within a while-loop (Line 1),
(ii) in the emitted body of ChunkedLoop2 for elastic execution, all the free occurrences of its loop
induction variable have been replaced with eIter. Note that before executing an iteration elastically,
the EFTs use the code in Fig 13 (discussed in Section 4.4) to ensure safety.
Before entering the body of the while-loop (starting at Line 1) and after executing an iteration

elastically (Line 14), we emit an important profitability-related condition to ensure that safeScope >
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Loop1: for (i=0;i<N;i++) {
... access vertex V[i] }

Loop2: for (j=0;j<N;j++){
... access vertex V[j] }

(a)

Loop1: for (i=0;i<N;i++){
... access vertex A[i] }

Loop2: for(j=0;j<N;j++){
for(k=0;k<Nbrs(V[j]);k++){
... access k-th neighbor }}

(b)

Loop1: for (i=0;i<N;i++){
for (k=0;k<Nbrs(V[i]);k++){
... access k-th neighbor }}

Loop2: for (j=0;j<N;j++){
... access vertex V[j] }

(c)

Fig. 10. Sample codes to depict the challenges in computing dependences. Say, at least one of the accesses in
each of the figures is a write operation.

scopeLimit and the LFT has not yet completed its assigned chunk; the thread will stop executing
the elastic-work if the condition fails.

We use a shared variable that is atomically incremented (in part Q, Fig. 4(b)) by each thread after
executing ChunkedLoop1. When the value of this variable equals the total number of threads, it
indicates that all the threads have arrived at the barrier.

In Fig. 9, we emit a check (Line 15) that exits the while-loop, if the EFT encountered no profitable
iterations in the elastic-loop. This is based on the premise that after executing the elastic-loop,
it is beneficial to continue the iterative process only if there remain profitable iterations of the
ChunkedLoop2 that are yet to be executed (and not executed because of some dependences).
Besides handling iterations that may become safe to execute in the future, the outer loop at

Line 1 is also useful to handle imprecision in computing the cost-expressions (and consequently
the values stored inWLArray). For instance, consider a ChunkedLoop1, where the body of the loop
contains a while-loop. As discussed in Section 2.1, the cost of a while-loop is set to the cost of its
body, conservatively. Consequently, in such a scenario, safeScope is an underestimation of the
actual available scope. Thus, it may so happen that despite reducing safeScope at Lines 11 and 13,
safeScope may not match the actual current scope, as the LFT may take more time than estimated.
In such situations, the recomputation of safeScope (at Line 16) and the outer loop at Line 1 can
help perform elastic-work despite the possible underestimation of costs.

Furthermore, to reduce the overheads, instead of recomputing safeScope by iterating over thread-
RemWLArray after every iteration of the elastic-loop, we recompute safeScope after executing each
instance of the elastic-loop at Line 16. Note that, inside the elastic-loop, if in any iteration, it is found
that safeScope is less than scopeLimit, then we exit the loop (Line 14) and recompute safeScope
again (Line 16). We set scopeLimit to be the cost of the lowest-cost iteration of ChunkedLoop2.

4.3 Dependence Check

As discussed in Section 3.4, before elastically executing an iteration 𝑗 of ParLoop2, we must ensure
that all the iterations of ParLoop1 that it depends on have been executed. In this section, for ease
of exposition, we will assume that the dependences are arising out of both the chunked-loops
accessing the elements of some shared list 𝑠𝐿, and at least one of the access is a write.
As discussed in Section 3.2, we consider only those cases where both ParLoop1 and ParLoop2

iterate over the same iteration-space 𝐼 . Say, in any iteration 𝑗 of ChunkedLoop2, the program accesses
𝑠𝐿[𝑒2], where 𝑒2 is any arbitrary expression involving 𝑗 . Thus, before elastically executing iteration
𝑗 of ChunkedLoop2, all the iterations of ChunkedLoop1 that access 𝑠𝐿[𝑒2] must be completed. Let
(i) iteration 𝑖 of ChunkedLoop1 accesses 𝑠𝐿[𝑒1], where 𝑒1 is any arbitrary expression involving 𝑖 ,
and (ii) there exists an inverse function 𝑒1𝑖𝑛𝑣 , such that 𝑒1𝑖𝑛𝑣 (𝑎) = {𝑥 |𝑥 ∈ 𝐼 ∧ 𝑒1 [𝑖/𝑥] = 𝑎}. We use
the notation 𝑒1 [𝑖/𝑥] to denote that every free occurrence of 𝑖 in 𝑒1 has been replaced by 𝑥 . Thus, the
iteration 𝑗 of ChunkedLoop2 can be elastically executed if the set of iterations (depItersList) present
in 𝑒1𝑖𝑛𝑣 (𝑒2) have already been executed in ChunkedLoop1. We illustrate this with an example.

Consider the example code shown in Fig. 10(a), which shows two parallel-loops, separated by a
barrier (OpenMP directives skipped). The two loops access the vertices of a graph, stored in a shared
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Unleashing Parallelism with Elastic-Barriers 11

list V. Based on the above discussion, 𝑒2 = j, 𝑒1 = i, and depItersList = 𝑒1𝑖𝑛𝑣 (𝑒2) = [j]. Thus, before
elastically executing any iteration j from ChunkedLoop2, the iteration j of ChunkedLoop1 must
have been completed. As another example, say Loop2 accesses V[j+1]; let us ignore the corner
case where j=N-1, for simplicity. Here, 𝑒2 = j+1, 𝑒1 = i, and 𝑒1𝑖𝑛𝑣 (𝑒2) = j+1. Thus, before elastically
executing any iteration j in ChunkedLoop2, the iteration j+1 of ChunkedLoop1 must have been
completed. Note that the list of iterations in depItersList for an iteration j in ParLoop2 may have
been assigned to a thread that is different from the thread intending to elastically execute j.

While it is easy to compute the inverses for such simple accesses, in general, this can be a very
challenging problem. For example, see the code shown in Fig. 10(b). This is a typical graph analytics
code where each iteration of Loop2 iterates over the neighbors of the vertex V[j]. Fig. 10(c) shows
another variation of the same challenge. We have seen that load imbalance in graph analytics
codes is typically very high, and hence, in the next section, we discuss ways to handle such graph
analytics code so that we can efficiently execute elastic-work.

4.4 Specializing the Dependence Checks for Graph Analytics

Typically, parallel graph analytics codes with load imbalance have the following properties: (i) they
may have many loops that iterate over the nodes of graphs, (ii) while iterating over the nodes of
the graph, the codes may iterate/access over their neighbors, (iii) the list of neighbors of a node is a
subset of the nodes of the graph, (iv) each node has a unique id, and (v) a parallel-loop iterating
over the nodes of the graph, in iteration i processes the node with id i.

We now discuss how we can efficiently compute the inverse functions (discussed in the previous
section) for such graph analytics codes in MPL form. We first define two types of common access
patterns based on which we present our intuition about efficient dependence checks.

Self-Access. We define a parallel-loop to be performing self-access if it iterates over the nodes of
the graph, and iteration i of any loop accesses at most one node, and that node has id i.
Neighbor-Access. We define a parallel-loop to be performing neighbor-access if it performs

self-access, and the iteration i of the loop may also access the neighbors of the i𝑡ℎ node.
Based on these access patterns, depending on the number of data-dependences between the

iterations of ChunkedLoop1 and ChunkedLoop2, we highlight three key types of dependences
(between the ChunkedLoops), for which we have identified efficient schemes to compute the inverse
functions. In all the three cases, the accesses involve one or more common fields of the graph nodes,
such that at least one of the accesses is a write.
(i) One-One Dependence. Both the chunked-loops perform only self-access (see Fig. 10(a), for

example). (ii) One-Many Dependence. ChunkedLoop1 performs only self-access, and ChunkedLoop2
performs neighbor-access (see Fig. 10(b), for example). (iii) Many-One Dependence. ChunkedLoop1
performs neighbor-access, and ChunkedLoop2 only performs self-access (see Fig. 10(c), and Fig. 1,
for example). Note that irrespective of the dependence between the parallel-loops, they may
additionally include loop(s) to access neighbors (without leading to any dependence between the
parallel-loops). For ease of explanation, if two ChunkedLoops have one of the above dependences,
then we say that the enclosing elasticPattern (defined in Section 3.2) exhibits the same dependence.
Please see Section 5 for a discussion on handling many-many dependence.

4.4.1 Emitting Dependence Checking Code For Key Dependences

Handling One-One Dependence. If ChunkedLoop1 and ChunkedLoop2 have one-one dependence,
then we can avoid emitting safety-checking code by ensuring that the elastic-chunk matches the
chunk in ChunkedLoop1. This is because, there will be a guarantee that any EFT, before executing
an iteration j elastically, would have completed the execution of the iteration j of ChunkedLoop1.
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Handling One-Many and Many-One Dependences. In case of one-many dependence, to elas-
tically execute a single iteration j of ChunkedLoop2, an EFT must ensure that all iterations in
ChunkedLoop1 corresponding to the neighbors of the node j have completed their execution. In
the case of many-one dependence, a naive way to resolve dependences before elastically executing
such an iteration j would be to iterate over all the iterations of ChunkedLoop1, and then ensure
that every such iteration accessing node j has been completed. But this can be expensive. Instead,
we can leverage the property of undirected graphs, and safely use the same check as that used for
one-many dependence. Thus, in both these cases, the depItersList for any iteration j is given by
the iterations in ChunkedLoop1, corresponding to the neighbors of node j.
For directed graphs, we treat the dependences differently. (a) one-many dependence: if the

neighbor-access is being done on the outgoing (or incoming) neighbors of node j, then EFT must
wait for the iterations of the outgoing (or incoming) neighbors of node j. (b) many-one dependence:
if the neighbor-access is being done on the outgoing neighbors of node j, then EFT must wait for
the iterations corresponding to the incoming neighbors of node j, and vice-versa.

j : 0 1  2  3  …     x-1

i

: eiter2 unresolved
: eiter1 resolved

x-1 2

0 1  2  3  …     x-1

✓ ✓ ✓ ✓ ✓ ✓
 …     y-1

✗ ✗ ✗
0 1  2  3

✓ ✓ ✓

Fig. 11. Safety-checks for performing elastic-work

We illustrate how the dependence check
works using a two-threaded system by
considering a runtime snapshot of the pro-
gram as shown in Fig. 11. Here, threads𝑇𝑥
and𝑇𝑦 iterate over their respective chunks
in ChunkedLoop1 denoted by chunk𝑇𝑥 and
chunk𝑇𝑦 . Here, 𝑇𝑥 acts as the EFT, and 𝑇𝑦
as the LFT, with 𝑇𝑥 completing its chunk
while 𝑇𝑦 has finished its 3𝑟𝑑 iteration. The
snapshot shows the threadProgress array
storing "x-1" for 𝑇𝑥 and "2" for 𝑇𝑦 . Fur-
ther, we demonstrate two cases when 𝑇𝑥
attempts to execute eiter1 and eiter2
(represented using a black and a dotted
circle, respectively), from elastic-chunk𝑇𝑥 .

For each such iteration, say j, 𝑇𝑥 identi-
fies depItersList in ChunkedLoop1 and the corresponding thread(s) that is/are expected to execute
them. For simplicity, we omit the details on depItersList and assume that eiter1 and eiter2
depend on 𝑇𝑦 for the completion of chunk𝑇𝑦 ’s 2𝑛𝑑 and 4𝑡ℎ iteration in ChunkedLoop1, respectively.
In such a case,𝑇𝑥 can look up the threadProgress array to identify eiter1 can be elastically executed,
but not eiter2 as 𝑇𝑦 has not yet completed the 4𝑡ℎ iteration in ChunkedLoop1.

4.4.2 Efficient Checking of Dependences As discussed in Section 4.4.1, in order to ensure safety
for one-many, and many-one dependences, elastic execution of an iteration may involve checking
the completion of many iterations of ChunkedLoop1, which may lead to prohibitively high costs.
See Fig. 12 (a) for an illustration. Say, an EFT attempts to elastically execute iteration 𝑘 from
ChunkedLoop2. The EFT can first compute the associated depItersList by applying the inverse
function, 𝑒1𝑖𝑛𝑣 , on 𝑘 . For each element in depItersList, the EFT then identifies the target thread
by inspecting the starting and ending indices of the chunks of all the threads in ChunkedLoop1.
Finally, as discussed in Section 4.4.1, the EFT ensures the safe elastic execution of iteration 𝑘 by
reading from threadProgress to determine whether each dependent iteration in depItersList has
been executed in ChunkedLoop1 by its corresponding target thread.
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ChunkedLoop1: ChunkedLoop1:

j0 j2j1 j3 j5j4 j6 j8j7 j0 j2j1 j3 j5j4 j6 j8j7

DIL:

Check threadProgress

check all

compressed
DIL:

(a) Straight-forward approach (b) Ordered-nodes approach

TTL:
compressed

TTL:

j0, j1, j2, j3, j4, j5, j6, j7 j0, j1, j2, j3, j4, j5, j6, j7

Check threadProgress

check only j2, j5, j7

Fig. 12. Straight-forward approach Vs. Ordered-nodes ap-
proach; time complexity: 𝑂(#Vertices) Vs. 𝑂(#Threads). Ab-
breviations used: DIL=depItersList. TTL=targetThreadsList.

While straightforward, this naive de-
pendence check can be inefficient, espe-
cially in graph analytics programs. For ex-
ample, if the depItersList corresponds to
the set of neighbors for node 𝑘 , the EFT
may need to perform a large number of
checks before executing iteration 𝑘 , which,
in the worst case, can be equal to the num-
ber of nodes in the input graph. The over-
heads of such dependence checks may out-
weigh the expected benefits of elasticity,
particularly in real-world graphs with mil-
lions of nodes. To address this issue, we
propose an efficient approach to perform
the dependence checks, discussed next.
Efficient Dependence Check. Our

proposed dependence check is illustrated
in Fig 12 (b). The first step in our proposed
scheme is a pre-pass that sorts the list of neighbors for each node as per their node-id’s (which
matches the order in which they are executed in ChunkedLoop). The key intuition behind our
proposed dependence check is that instead of inspecting the completion of execution of all the
dependent iterations (or neighbors) by their target threads in ChunkedLoop1, an EFT performs a
range-based check. Here, it inspects the completion status of only the last neighbor per target
thread – that is, the neighbor with highest node-id which is present in the chunk of the target
thread in ChunkedLoop1. For example, in the shown figure, checks are done by the EFT for only
iterations j2 for target thread 𝑇𝑎 , j5 for 𝑇𝑏 , and j7 for 𝑇𝑐 . This scheme ensures that the number of
dependence checks per iteration is bounded by the total number of target threads, unlike the total
number of neighbors in the naive approach.
Our efficient approach is facilitated by emitting code at compile-time, in two steps for each

elasticPattern: (i) initialization-step, which is executed during the first runtime instance of the
elasticPattern, and is used to populate the data structures needed to perform the dependence
checks, and (ii) inspection-step, which performs the actual dependence check for each iteration to
be executed elastically. In the initialization-step, we populate two compressed lists per iteration
(that is, per graph node): compressed depItersList and compressed targetThreadsList, as shown in
Fig 12 (b). For any iteration 𝑘 , the compressed depItersList contains only a subset of the indices that
need to be stored in the corresponding depItersList: at most one index per thread, indicating the
neighbor with the highest node-id present in the chunk of that thread in ChunkedLoop1. Naturally,
the compressed targetThreadsList will contain at most one entry per thread. Thus, the maximum
size of these lists is bounded by the number of target threads.

In Fig 13, we show the pseudocode emitted in the inspection-step to perform the dependence check
before elastically executing any iteration from ChunkedLoop2. In order to execute iteration 𝑘 , an EFT
first traverses over the two lists, compressed depItersList and compressed targetThreadsList, corre-
sponding to node 𝑘 . The elements of the two lists can be viewed as pairs of the form ⟨𝑇, 𝑖⟩ such that
before elastically executing iteration 𝑘 , the EFT has to ensure that thread𝑇 has completed executing
iteration 𝑖 of ChunkedLoop1. This is done by comparing the last neighbor’s ID against the value read
from the threadProgress array for the target thread, which represents the iteration number that has
been most-recently executed by the target thread in ChunkedLoop1 (Line 11).
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1 Function dependenceCheckAnalysis(threadId, k)
2 depCheckSucc := true;
3 compressedDepListSize := getCompDepItersSize(k);
4 compressedDepItersList := getCompDepItersList(k);
5 compressedTargetThreadsList :=

getCompTargetThList(k);
6 if compressedDepListSize ! = 0 then
7 for 𝑖 ← 1 to compressedDepListSize do
8 targetThId := compressedTargetThreadsList [𝑖 ];
9 lastVertexIndex := compressedDepItersList [𝑖 ];

10 if targetThId == threadId then continue ;
11 if lastVertexIndex > threadProgress [targetThId]

then
12 depCheckSucc := false;
13 break;

Fig. 13. Dependence-check emitted code to resolve de-
pendence for an iteration; time complexity:𝑂(#Threads).

If the read value is greater than the
last neighbor’s id, it implies that all the
neighbors corresponding to the target
thread have already been executed in
ChunkedLoop1. Note, in case the target
thread and the EFT are same, we bypass
the corresponding check as the depen-
dence is resolved implicitly (Line 10).

4.5 Modified Loop2 Emitter

In the earlier sections, we explained
how iterations are executed elastically
before reaching Barrier1. We have
to make sure that those iterations are
not executed again after Barrier1 in
ChunkedLoop2. This is done by emit-
ting a simple code as the first statement of ChunkedLoop2; if the loop index variable of
ChunkedLoop2 is j, we emit ‘if (WLArray2[j] == 0.0) continue;’ .

5 Discussion
In this section, we describe some of the salient points related to our proposed scheme.

5.1 Preprocessing: Transforming OpenMP programs to MPL form.

We have presented the transformation techniques for programs in MPL form. We now briefly
describe how we convert any general OpenMP programs to MPL form. (i) If a parallel-region is
present inside a function called from the main function, try to inline the method. (ii) If a parallel-
region is present inside a loop or an if-statement, try to interchange the loop/if-predicate and the
parallel-region (similar to the rules of Shirako et al. [51]) by adding an additional barrier at the
end if required. (iii) For sequential statements in the main function not inside a parallel-region,
enclose them inside an omp-master construct and then surround the omp-master construct inside a
parallel-region. (iv) If multiple parallel-region blocks are present next to each other, fuse them. (v)
Make the implicit barriers in ParLoops explicit (similar to the work of Tseng [56]).

5.2 Avoiding High Overheads

Avoiding Statically Determinable Overheads. We take cognizance of possible overheads in our
proposed scheme and add two heuristics to address them. (a) In Section 4.4, we discussed three
key types (one-one, one-many, and many-one) of dependences for which we provided specialized
safety-checking code. A natural extension of the three key types is the many-many dependence.
We have found that using the default scheme for many-many dependence can be very costly and
hence, we do not apply our proposed transformation in the presence of such a dependence. (b) If
we can statically prove that there is not much imbalance between the iterations of ParLoop1, then
again, we skip applying our technique.
Avoiding Too Many Redundant Dependence Checks. Consider a scenario where an EFT

is waiting for an iteration 𝑗 of ParLoop2 to be ready to be executed elastically by continuously
performing the dependence checks. If iterations of ParLoop1, on which the execution of 𝑗 depends,
take a long time to complete, then the EFTs may waste a lot of time in performing the dependence
checks. To avoid such a scenario, we let the EFT sleep for a fixed interval of time (=1ms, deduced
experimentally), if the EFT finds that less than𝐾% (a constant) of iterations are ready to be executed.
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Unleashing Parallelism with Elastic-Barriers 15

We experimented with various values of 𝐾 (1, 2, 4, 8, 10, 15, 20, 25, ... 75) and found that setting
𝐾 − 40 was most beneficial.

Avoiding Possible Overheads Due To Graphs With Uniform Degree Distribution. Our
proposed scheme targets loops that lead to irregular distribution of workloads among threads.
To avoid the overheads when the input does not lead to irregular workload, for graph analytics
programs, we propose a simple scheme based onmulti-versioning: emit code such that the optimized
code is executed only if the input is a power-law graph; otherwise, the original code is executed. We
approximate the power-law graph property with a simple heuristic predicate, checked at runtime:
Δ − 𝛿 > 𝑚𝜆/𝑛, where Δ is the maximum degree, 𝛿 the minimum degree, 𝑛 the vertex count, and
𝑚 the edge count. 𝜆 is a tunable constant controlling acceptable variation within a graph class.
Experimentally, we set 𝜆 = 20.

5.3 Extending Scope of Elasticity

The text discussed in Section 3 mainly focuses on ELoops organized as elasticPatterns. However,
The grammar for MPL supports ELoops organized in many other forms. We now discuss two such
forms that we encountered in our studies.
Cascaded Elasticity. Consider a sample snippet of a sequence of three ELoops (L1, L2, and

L3), which could be part of a larger program. In such a scenario, L2 can be identified as part of
two elasticPatterns: “L1; L2” and “L2; L3”. Using the techniques discussed in the Sections 3 and 4
L2 may be identified as part of only one of these two elasticPatterns. However, we note that the
parallel-loop in L2 can be translated as ParLoop2 for the first elasticPattern and as ParLoop1 for
the second elasticPattern. We refer to this scenario as cascaded elasticity and the resulting patterns
as cascaded elasticPatterns.
Circular Elasticity. Consider a sample serial-loop, which encloses an ELoop L1 as its last

statement, and there is syntactically no ELoop after L1 in the serial loop. We found that we can
apply the idea of elastic-barriers if the serial-loop body starts with an ELoop (say, L2). In such a
scenario, L1 from the 𝑖𝑡ℎ iteration can be paired with L2 from the (𝑖 + 1)𝑡ℎ iteration to form a new
elasticPattern. This is an inter-iteration pattern and is referred to as a circular elasticPattern. At
runtime, if the outer serial-loop executes 𝑛 number of times, then 𝑛 − 1 instances of L1 can perform
elastic-work from L2. Further, if “L2; L1” forms an elasticPattern, then we can also take advantage
of cascaded elasticPattern and emit code such that 𝑛 instances of L2 will perform elastic-work from
L1. Note that using the idea of circular elasticity, we can detect and optimize elasticPatterns, even
in cases where there is only a single ELoop inside an outer serial-loop (where, L2 is same as L1).

5.4 ParLoop2 without Load imbalance

In scenarios where the input ParLoop2 did not have any load imbalance at the barrier, then load
imbalance may get introduced due to the elastic-work execution in ParLoop1, thereby possibly
nullifying the gains. Incidentally, in our evaluation, even though we encountered instances of
such ParLoops (say L2), it did not impact the performance negatively. This is because L2 was
part of a cascaded or circular elasticPattern: in both cases, L2 was identified as ParLoop1 for the
cascaded/circular elasticPattern. When L2 was part of the cascaded elasticPattern, it executed
iterations from the subsequent ParLoop, while in the case of circular elasticPattern, it executed
iterations from ParLoop of the next iteration of the outer serial-loop.

5.5 Elastic-Barriers in Other Parallel Languages and Real World Programs

The idea of elastic-barriers discussed in this paper, in the context of OpenMP C, can also be
extended to other similar languages that support parallel-loops, whose iterations are shared among
the runtime workers. Such languages include, Cilk Plus [2], Threading Building Blocks (TBB) [44],
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X10 [8], Chapel [7], OpenACC [11], Julia [1] and so on. The main difference would be the specific
issues related to dependence analysis in the respective languages. We leave these topics as future
work.

In real-world, it is common [43] to find many instances of parallel-loops executing one after
the other; typically, these instances are derived from one or more parallel-loops being executed
inside a loop covering multiple rounds of computation. We argue that elastic-barriers provide an
opportunity to realize performant codes in many of these programs.

5.6 Elastic-Barrier Vs. No Barriers.

Using the approach discussed in Section 4, an EFT before executing an iteration (elastic-work) 𝐼
from ParLoop2 first confirms that all the iterations from ParLoop1 that 𝐼 depend on have completed
execution. The EFT halts at the barrier when the elastic-scope is exhausted, ensuring an accurate
execution point where load imbalance is minimized. However, one may argue that we can as
well eliminate the barrier and let all the threads (including the LFT) execute the iterations from
ParLoop2 (by ensuring that the dependences have been resolved). Naturally, such a scheme leads
to unacceptable overheads, as all the iterations of ParLoop2 pay the additional overheads of
dependence checks, even after the LFT has reached the barrier and there is no further need to check
the dependences – leads to an increase in the length of the critical path. In our case, only the EFTs
pay the overhead of checking, but that does not impact the length of the critical path. Note that the
alternative for the EFTs is to simply wait at the barrier.

Another similar argument stems from the fact that due to some conservativeness in the estima-
tions, while an EFT is performing elastic-work, the LFT may finish and end up waiting at the barrier.
Hence, one may wonder if the LFT should also start executing elastic-work. However, this argument
leads to the previous point about “no barriers”, as every time a thread completes executing some
elastic-work and finds that some other threads are busy, it can pick up additional elastic-work, and
this will continue. Hence, we let each EFT pick one iteration at a time from ParLoop2 (and check
the status of LFT after each iteration), and we let the LFT wait at the barrier.

5.7 Limitations of elastic-barriers and the Proposed Translation Scheme

We have proposed the idea of elastic-barriers, and provided an implementation and evaluation of
our technique on real-world kernels. In Section 6, we also show the performance gains on real-world
systems. We now discuss some limitations of our proposals, and some future directions:

• The proposed idea of elastic-barriers helps us reduce the critical path by replacing the idle
waiting with work from the following phase. However, the problem of the load balancing
within the same phase still remains an important problem to solve.
• Our proposed scheme targets programs/languages that work on shared memory systems.

Many real-world applications, especially in large-scale data processing, run on distributed
platforms. Realizing elasticity in barriers of such systems would require rethinking of the
used shared data-structures, and the inter-thread/process communication mechanism.
• We present specialized schemes for efficiently performing dependence analysis for graph-
analytics codes. Designing such schemes for arbitrary codes remains another interesting
future work.

6 Implementation and Evaluation
We have implemented our proposed techniques (in short, elastic) in IMOP [36, 37], a source-to-
source compiler framework for COpenMP programs.We use the self-stabilizing feature [38] of IMOP
to keep the analysis results up-to-date, during the multiple passes of analysis and transformation.
Further, we have also implemented the state-of-the-art workload-based deep-chunking scheduling
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Bench. #LOC #Barr #oFor 1-1 1-M M-1 e-EP
1. KC 355 6 6 0 2 2 4
2. BF 258 3 3 0 0 1 1
3. DS 525 12 12 2 4 2 2
4. PR 117 5 5 0 1 1 2
5. PC 112 4 4 0 1 1 2
Fig. 14. Benchmark programs characteristics. Abbrevia-
tions: LOC = lines of code, Barr = barriers, oFor = omp-
for-loops, 1-1: one-one dependence, 1-M: one-many de-
pendence, M-1: many-one dependence, e-EP: effective
elastic-patterns.

Dataset #V #E minD maxD
1. YouTube 1.13M 2.99M 1 28.7k
2. WikiTalk 2.39M 5.02M 1 95.4k
3. Skitter 1.70M 11.10M 1 35.4k
4. Google 0.88M 5.11M 1 6.4k
5. DBLP 0.31M 1.05M 1 321
6. Slashdot 82.17k 0.95M 1 2.4k

Fig. 15. Input datasets collected from
SNAP. Abbreviations: V: Vertices, E: Edges,
minD:minimumdegree, maxD:maximum
degree.

technique [46] (in short, deep-chunk), tailoring it to OpenMP C programs. Overall, our codebase
spans 19k lines of code in Java language. We present the empirical evaluation of our proposed
technique by comparing it against our baseline deep-chunk. When performing the evaluation
for overall execution time, for reference, we also consider other standard OpenMP scheduling
strategies: static, dynamic, and guided. We compile the translated programs using GCC.

We have performed our evaluations on five popular shared-memory benchmark programs (see
Fig. 14). These include K-committee (KC), BFS Bellman-Ford (BF), Dominating Set (DS), Pagerank
(PR), and Perceptron (PC). The last two are written based on prior well-known algorithms [24, 29],
and the first three are taken from the IMSuite benchmark suite [16]. The remaining kernels from
IMSuite are skipped for the following reasons: (i) [kernels LCR, BY]: no elastic-barriers were
found (see Section 3.2), or (ii) [kernels: BFS, HS, DP, MIS, MST, VC]: they were statically deemed
non-profitable (see Section 5).
In Fig. 14, along with the number of lines of code, number of barriers, and number of parallel

for-loops, we also enumerate the number of elasticPatterns with different types of dependences
found in each program (Section 4.4). Out of these listed elasticPatterns, the two compile-time
heuristics in Section 5.2 marked a few of them non-profitable and hence were not optimized. We
label the remaining elasticPatterns as effective elasticPatterns.
Our proposed elastic-barrier approach is suitable for input workloads where the imbalance is

significantly high and sufficient elastic-work is available. The experiments were conducted on
three large real-world datasets (YouTube, WikiTalk, Skitter) from SNAP [25]. For DS, where the
standalone program execution takes a large amount of time (>15 minutes) for these inputs, we used
three medium-sized graphs: Google, DBLP, and Slashdot from the SNAP dataset. For the purpose
of profiling, we ran the benchmark programs using small graph inputs. The details for the datasets
are shown in Fig. 15.

Our experimentation is performed on two Ubuntu servers: (i) KM, a 64-thread Intel(R) Xeon(R)
Gold 5218 CPU @2.30GHz system (dual-sockets, 16 cores per socket, two threads per core) with 64
GB of memory, GCC compiler version 11.4.0, and OpenMP version 4.5; and (ii) DB, a 128-thread
Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz (dual-sockets, 32 cores per socket, two threads per
core), with 128 GB of memory, GCC compiler version 11.1.0, and OpenMP version 4.5. On both
the systems, we use the default thread to core affinity mapping. The experiments are performed
on a varying number of threads (2, 4, 8, 16, 32, 64, and 128) in DB and (2, 4, 8, 16, 32, 48, and 64)
in KM; this is achieved by setting the environment variable OMP_NUM_THREADS appropriately. For
each configuration, for reporting the execution time, we take an average over seven runs.
In our comparative study, we mainly focus on the following two important dimensions of

evaluation: (i) percentage improvement in the overall execution time of the computation kernel,
and (ii) reduction in the barrier waiting time due to our proposed transformation.
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Fig. 16. Execution time analysis; KC

6.1 Performance Analysis: Execution time

To demonstrate the improvement in the overall execution time, for any schedule 𝑆 (one of deep-chunk,
elastic, static, dynamic, or guided), we compute the percentage improvement as: 100 × (execu-
tion time using deep-chunk − execution time using 𝑆) / (execution time using deep-chunk).
KC. In Fig. 16, we analyze the behavior of the KC kernel in terms of overall execution time. Across
different configurations, elastic more or less outperforms all other scheduling mechanisms by a
significant margin. The performance improvements over deep-chunk varied between -2.14% to
29.27% (0.98× to 1.41×) in DB and -4.77% to 36.98% (0.95× to 1.59×) in KM. We found that these
high gains were arising as KC had two impactful serial-loops each having two ELoops (say, E1 and
E2). In both the serial-loops we could detect and optimize an elasticPattern considering E1 and E2,
and a cascaded-circular elasticPattern (see Section 5.3) considering E2 and E1. Consequently, the
idling at the barriers of both the ELoops in the program reduced, which in turn reduced the overall
critical path considerably. Prabhu and Nandivada [46] have shown that deep-chunk scales well
with an increasing number of hardware threads. Our evaluation shows that elastic also scales
well with an increasing number of hardware threads, and compared to deep-chunk, the increase
is similar (or sometimes even better, for example, on KM with inputs Skitter and YouTube) as we
increase the number of hardware threads.
Note that the overall benefit of our proposed approach depends on balancing two contrasting

factors: the minor increase in the execution time of the LFT due to the additionally emitted code
above the elastic-barrier, and the reduction in execution time in the modified ParLoop2 (because
of the execution of fewer number of iterations). The improvements are visible when the second
factor outweighs the first, leading to reduction in critical path length. The exact gains depended on
the specific input (and the benchmark program under consideration).

An interesting observation from Fig.16 is that dynamicwith two threads leads to better execution
time than others. It is well known that dynamic can yield good performance [30] if an appropriate
block size can be estimated (an extremely challenging task). In our case, the default block size
appears to have hit an optimal point for KC on KM with two threads. However, this improved
performance of dynamic is not consistently seen in other cases.
BF. In the evaluation of BF (as shown in Fig. 17), elastic again outperforms deep-chunk (as well
as, other scheduling schemes) most of the time; the performance improvements over deep-chunk
varied between -7.58% to 11.93% (0.93× to 1.14×) in DB while -13.27% to 10.55% (0.88× to 1.12×) in
KM.

For elastic, the best results were observed when utilizing all available cores of a processor (16
threads on KM and 32 threads on DB) without interprocessor communication. We believe that the
gains are getting slightly impacted as we use multiple processors and all the hardware threads.
Despite large thread counts, the results still remained favorable for elastic. We observe a slight
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Fig. 17. Execution time analysis; BF
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Fig. 18. Execution time analysis; DS
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Fig. 19. Execution time analysis; PR

degradation in some cases with fewer threads (2, 4, or 8), but this quickly changes as the number of
threads increases, leading to more EFTs and greater opportunities to perform elastic-work.
DS.We now analyze the results using the DS kernel (see Fig. 18). The figure shows that elastic
generally performed better than deep-chunk, except for small number of threads (2/4/8) in some
cases (for the same reasons as described for BF). As the number of threads exceeds half the
maximum available (64 in the case of DB, and 32 in the case of KM), we see slight unpredictability in
performance. We believe that it is due to the fact that the system starts using the SMTs here: SMTs
can introduce non-deterministic factors like cache contention and memory overheads, leading to
slight unpredictability in performance that became visible as DS did not have much scope for gains
due to elastic-barriers, in the first place. The performance improvements varied between -13.23% to
15.78% (0.88× to 1.19×) in DB and -12.09% to 11.02% (0.89× to 1.12×) in KM.
PR. We now discuss the evaluation of the PR kernel as illustrated in Fig. 19. The results show
that elastic performs better on both the systems for the Skitter and YouTube datasets, across
all configurations. For WikiTalk, however, deep-chunk outperforms elastic in DB when using
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Fig. 21. Reduction in Barrier Waiting Time (BWT) using elastic compared to deep-chunk for KC, BF, DS.

larger number of threads with SMTs, as seen in Fig. 19. Overall, we see that the gain for elastic
varied between -11.62% to 49.01% (0.90× to 1.96×) and 0.00% to 41.71% (1.00× to 1.72×) on DB and
KM, respectively. The primary reason for improvements in elastic is the presence of an impactful
serial-loop like the ones present in KC.
PC. We now present the evaluation over the PC kernel (see Fig. 20). We observe that elastic
outperformed deep-chunk for the most part. Overall, we see that the gain for elastic varied
between -1.31% and 48.90% (0.99× to 1.96×), and 2.70% to 27.99% (1.03× to 1.39×), on DB and KM,
respectively. The primary reason for improvements in elastic is the presence of an impactful
serial-loop like PR.
Summary across all the benchmarks and inputs. While the state-of-the-art deep-chunk

outperforms all standard OpenMP schemes most of the time, elastic shows improvement over
deep-chunk, with the highest percentage improvement being 49.01% (1.96×). We have tested that
over the total 540 configurations (on varying benchmarks, number of threads, and inputs), elastic
outperforms deep-chunk in 479 configurations.

6.2 Performance Analysis: Barrier Waiting Time

In Section 4, we discussed how we reduce the execution time by ensuring that the EFTs do elastic-
work instead of simply waiting at barriers. We now present a study on how much reduction
in waiting time (compared to deep-chunk) we achieved. We measured the waiting time for an
execution by computing the sum of waiting times of every thread, across all the barriers (of the
transformed parallel for-loops). We compute the reduction factor for a kernel 𝐾 using the formula:
(barrier waiting time for 𝐾 using deep-chunk) / (barrier waiting time for 𝐾 using elastic).

Fig. 21 showcases the waiting-time reduction factor in KC, BF, and DS kernels. Across all three
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inputs, elastic reduced the waiting time between 1.69× to 4.07× on DB and 1.91× to 6.43× on KM
for the KC kernel. Similarly, for BF, the reduction factor varies between 1.45× to 3.21× and 1.64× to
3.07×, on DB and KM, respectively. For the DS kernel, the reduction factor is slightly lower, and
ranges between 1.00x to 1.63x and 0.97x to 1.54x on DB and KM, respectively.
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Fig. 22. Reduction in Barrier Waiting
Time (BWT) using elastic compared to
deep-chunk for PR and PC.

Fig. 22 shows the reduction in waiting time in the
context of PR and PC. For PR, the reduction factor varied
between 2.1× to 17.3× and 2.6× to 18.5×, on DB and KM,
respectively. Similarly, for PC, the reduction factor ranged
between 2.1× to 19.2× and 2.4× to 19.1×, on DB and KM,
respectively.

Overall, it can be seen that across all the benchmarks,
for irregular inputs, our proposed scheme reduces the
waiting time significantly. However, we see that it is diffi-
cult to compare the reduction in waiting times across
the different benchmark kernels. The actual waiting
times depend on multiple factors, such as the actual
load imbalance (in ParLoop1s), available elastic-work (in
ParLoop2s), and so on, all of which depend on the specific
kernel and the input graph.
Note that lower waiting time itself does not necessar-

ily guarantee lower execution time, as there are other
contributing factors, such as amount of elastic-work per-
formed, the actual reduction in the critical path, and other
latent factors (based on memory, cache, and so on.). Fur-
ther, the percentage reduction in execution time (shown
in the previous section) depends not only on the reduc-
tion in the critical path, but also on the difference between
the reduction in the critical path and the original running
time. This difference, in turn, depends on multiple factors
like: benchmark characteristics, specific input, the conse-
quent available elastic-work (in ParLoop2s), precision of
the computed workloads, effect of the transformed code
on cache, and so on. Considering the complexity and in-
terdependence among these factors, it becomes difficult
to quantify the impact on the individual factors.

7 Related work
Reducing the Overheads of Barriers. Many prior researchers have identified the challenges
due to the overheads of barriers and have proposed many techniques to reduce the same. These
include lifting and placing the barriers appropriately [9, 39, 48, 53]; eliding redundant barriers [17,
27, 28, 31]; replacing barriers with a less expensive alternative like send-receive/post-wait signaling
mechanism [33–35, 59, 60], or counters based approach [56]; and so on. In contrast, our proposed
scheme can be applied to barriers that cannot be moved or elided (using the above techniques)
to reduce the waiting time at the barriers. Thus, our technique can be used along with the above
techniques, or techniques for efficiently implementing the barriers [15, 50, 58].

Scheduling.Many prior techniques have been proposed to handle the complex issue of schedul-
ing iterations of parallel for-loops among the threads. These include the default static, dynamic,
guided schemes present in OpenMP [4], besides many others [3, 5, 18, 21, 26, 30, 40, 45–47, 52, 55, 57]

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article . Publication date: March 2025.



1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Tiwari and Nandivada

that have been proposed to minimize load imbalance in irregular parallel applications. Some of
the recent works among these [30, 46, 52] make their scheduling decision based on the estimated
workload. All of these schemes try to reduce the idling time of threads at any barrier by focusing
on parallel-loops independently and changing the default assignment of iterations to threads. In
contrast, for programs with multiple (irregular) parallel-loops, in our proposed scheme of elastic-
barriers, the EFTs avoid waiting at the barriers and instead try to execute the iterations from the
subsequent parallel for-loop. Thus, our proposed techniques can be applied along with the existing
schemes of scheduling.

Tackling Idleness at the Barrier in Shared Memory Systems. There have been prior works
that try to reduce the idling of threads at barriers. For example, similar to the idea of delay-slots [19],
Gupta [14] introduced the concept of a fuzzy-barrier, which allows the programmer to specify
additional instructions that an EFT can execute instead of simply idling at a barrier. Further, the
idea of fuzzy-barriers is implemented in hardware. Another interesting approach was proposed
by Pedrero et al. [41, 42], who proposed speculative execution of instructions present after the
barrier, without waiting at synchronization points. This technique uses the underlying hardware
support and utilizes Transactional Memory (TM) that allows synchronization among the concurrent
threads to support the rollback, if needed. In contrast to these techniques that depend on hardware
support, our scheme can run on any general-purpose system, and it also checks for dependences at
runtime and can execute iterations of the next phase once the dependences are satisfied. One can
imagine applying the ideas of thread-level speculation (TLS) [10] to elasticPatterns, wherein a thread
completing its assigned iterations in the first parallel-loop, may execute iterations of the second
parallel-loop speculatively. In contrast to TLS, our proposed scheme is non-speculative in nature
and does not have to detect dependence-violations or perform rollback. It remains an interesting
future work to extend the ideas of speculative execution (via TLS, or TM) for elasticPatterns, and
compare them with our implementation of elastic-barriers. Rinard [49] proposed the idea of early
termination of parallel computation (when very few parallel tasks are pending) to prevent idling
processors, but this can distort results. Unlike our approach, which handles a variable range of
remaining tasks, their method applies only when few tasks are left before termination. Their
technique also addresses load imbalance by naively halting computation, whereas we focus on
completing tasks safely, efficiently, and with minimal imbalance.

8 Conclusion
In this paper, we introduced a novel synchronization primitive called elastic-barrier, which allows
waiting threads to (elastically) execute iterations from the next phase, instead of simply idling.
We proposed a translation scheme that significantly minimizes load imbalance and improves
overall execution time, for irregular parallel programs containing elastic-barriers. Additionally,
we developed an efficient scheme to perform dependence check that is required to ensure safety
of execution of the iterations that are being elastically executed. We implemented our proposed
scheme in the IMOP framework, and evaluated it on on five popular kernels, with six input datasets
across two platforms, and varying thread counts (leading to a total of 540 configurations). The
results show that elastic outperforms deep-chunk in 479 out of 540 configurations, in terms of the
overall execution time. Our approach also clearly surpasses statically scheduled chunk allocation
schemes like static, runtime-managed schemes like dynamic and guided.
We have presented an optimized translation (and evaluation) for graph analytics based appli-

cations with elastic-barriers. However, we believe that our technique can be extended to other
domains as well; we leave a detailed study of the same as a future work. Another very interesting
future work relates to the study of the impact of such load balancing techniques on the cache
behavior, and optimizing it for high performance.
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