CS 2700 Programing ano
Pata Structures.

Slot C (Mon 10.00am, Tues 9.00am, Wed 8.00am, Fri 12.00pm)

Instructor: Meghana Nasre (meghana@cse.iitm.ac.in)

Week 1: Correctness of Programs.

mailto:meghana@cse.iitm.ac.in

Tools for Two Aspects
1. Correctness
2. ODVWPLBX&B

Program Correctingss

Testing

 Can quickly find obvious
bugs

* (Cases we do not test still
hide bugs

* Testing is exhaustive only if
number of inputs is finite

Formal wethods should be used in
conjunction with testing, not as a
replacement

Formal Methods

Treat programs as
mathematical objects

Use mathematical notation to
precisely specify what a
program does

Use rules to mathematically
prove the correctness

Can be expensive

Floyo-toare Logic

* More commonly known as Hoare Logic

* Method for mathematically reasoning about
programs

* Basis of “automated” program verification systems
* Works with Hoare Triples
{pre-condition} Statement {post-condition}

Tony Hoare

Robert Floyd
I~

Pre ano Post-conditions

e Constraints that MUST be satisfied at a program point.
* Constraints are simple Boolean expressions.

* Pre-conditions : Prior to the statement.

* Post-conditions: After the statement.

* Having the conditions as precise as possible helps.

* Types of statements:
* Assignments, conditionals, loops

Assilgnments

4 2
{x>0}
X =X+1;
El
{ } ,

Assumptions:
* Values do not overflow
* xis of integer data type

Observe:

 Assuming x is of type int, E2: x > 0.

* E2:x%2 ==

* |f we had an additional pre-
condition that y >=0, then E3: x> 1

Conditionals

ﬁx>0}

if (x>5){
{ x>5 }
X=4;
{x==4}
}
\{ E3}

* %k

~

/

E3 when x =10 at Line **:

(x>0 &&x<=5) || x==10

E3 when x =4 at Line **:

(x>0 &&x<=5) || x==
(x>0 && x <=5)

Question: Can we replace the || by XOR?

Conditionals
/{El } \ if (B) then S1

if (B) { Either the effect of S1 is visible
—{ E1 && B } as E2
S1 OR
{ E2 } E1 and NOT(B) hold

}
k{ E3 } / E3:
E2 || (E1 && NOT(B))

observe the ||

Conditlonals

El: x>0&&x<=5
m>0} \ E2: x>-10 && x <= -5
if (x> 5) { E3: x==4 || (-9 <=x<=-5)
{ x>5 }
X =4, if (B) then S1 else S2
{ x==4 }
} else { Note the && in E1 and E2
{ E1 } * Notethe || inE3
X=x-—10;
{ E2 } * Relative updates (x = x — 10) modify the
} earlier expressions
& E3 } J e Absolute updates (x = 4) generate new

expressions

How does this relate to my

'PYD@YQWLS?((== 3) A | ((r==3) Nlglz0) A
Y==0)\ (ptr == & =))
/ (prr== 0\,\')) What is the output of the

#incluc?le<stdio.h> program?
int main() { e How do we address it?

Int X = 3;

inty; //ready from user.

int *ptr = &x; How do we address it with our

if (y ==0) ptr = NULL;
if (*ptr < 5) printf(“ x<5”);
else printf(“ x >= 5”);

L /

new learning about pre-
conditions and post-conditions?

Loops

* while (B) { S }

* Loops are interesting
since we do not know
how many times the
loop executes.

 We want a condition
which holds true
irrespective of the
times the loop
executed.

/{x>=0&&y>=0 }
while (x >=y) {
{ x>=y&&y>=0 }
X=X-Y,;
{ x>=0&&y>=0 }

}
k{x>=0&&y>=0}

~

/

Loop nva rlant

/ \ We call an expression . aloop
"1l invariant if:
. while (B) {
{ 51;8:; E;,j * It holds just before the loop.
{1} * |t holds just after the test B. We
©) assume test B does not have side

{L && NOT(B)}

effects.
J * It holds at the end of the loop.
* |t need NOT hold at intermediate
steps.

\{

Loop lnwvariant : example 1

Program to find the sum of first n
positive integers

e Some trivial invariants:
e k==1||k==2]] k==3...
e sum==1]||sum==3]] ..
e Combining the above..

Invariant: sum=1+2+3+..+k 74
Is this correct?

e

}

-

intk=1; sum = 0;
while (k<=n) {

sum =sum + k;
k=k+1;

/

Correct Invariant: sum=1+2+3+.. + k-1

Loop lnvariant : example 2

What does the loop do?
/AI array indexed 0 .. n-1 \ Sets A[O] ... A[n-1] equal to O.

intk =n; What should be the post condition at the
while (k 1=0) { end of the loop?
A[k] = O; {forj=0..n-1: A[j] == 0}
}
K / Guess a loop invariant.
{0<=j<=n-1&& Assume n > 0 is a pre-condition.
forallj>=k, A[j]==0} {k <=n && k>=0}

This is a loop invariant but not useful one.

Loop lnvariant: example 3

/?=Lu=Xﬂm;

while (t<r) {
if (xy[t] > u)

u = xy(t];

t++;

4

N

~

/

Take away: avolol
writing such

cryptic programs,

* Finding elegant and useful loop
invariants needs a high level
understanding of the code.

* It is non-trivial to do it automatically.

* The programmer (you) should state
them as precisely as possible.

Testing whether a given condition is a
valid invariant is much simpler than
coming up with the condition.

Program Correctness (partial)

Overall strategy: Notes:

» Write your algorithm / program * Axioms or rules of Hoare logic are

e Write down the pre-conditions simple, but we can .select too
at the beginning and post- strong a pre-condition or too weak
conditions at the end of the a post-condition.
program. .

Need to achieve the right trade-
* For each statement show that off.
its post-condition follows from

the pre-condition. * We are NOT proving termination

via this method. We assume that
the program terminates.

Axtoms of Hoare Logic

* Empty Statement :
{ P} no-op {P}

If P is true when x is replaced by t
before the assignment, then P is true

* Assignment Statement: (p(y 1]} x=t {p} 2ftertheassignment.

{ P} S11Q) &&{Q} S2 {R}

* Rule of Composition:
{P} S1,S2 {R}

Axioms of Hoare Logic

* Strengthening pre-cond: {P} S {Q} &&R->P

{R} S {Q}

example: {practiced 10 problems} write exam {90+ marks}
{practiced 20 problems} write exam {90+ marks}

* Weakening post-cond: [P} S {Q} && Q->R

{P} S {R}

example: {practiced 10 problems} write exam {90+ marks}
{practiced 10 problems} write exam {80+ marks}

Axioms of Hoare Logic

* Conditional: {P && B}S1{Q} && {P && NOT(B) S2 {Q}

{P} if(B)thenSlelseS2 {Q}

{P && B} S {P}
* Loops:

{ P} while (B)S {P && NOT(B) }

Using Hoare Triples
{y==1t2&&x+y-y==1t1}
/{xandyareint\ = Ay

x==t1,y==12} {X-(x-y)==t2 && x-y==1t1}
X=X+tY, \é-—- 2 -\
e = g

X=X—V; Xx-y==12 && y==t1}
»
Q | / {X‘==t2&&y==t1}

REPLACE
¢ BY 9(*-}

p

REPLKCE
\(} BY x_»\&

RETLACE
o BY a-Y

Using Hoare Triples

GUESS (1) t051 CORDITION

\ () Lopt INVARIANT

int fun (int n) { -
intk, j PosT coNDITION '3 =z z_vL
k=0;j=1; .
while (k< n){ LooP INVARIANT: L =<2
k=k+1;, j=2%*;
} NOTE THAT
{R}
return j; (LOO? WY Ak ::Y\/)
YL

N / = y==2

("

EKDLWLPLB continumed..

~

{j==2"k}
while (k<n){
(2D {j==2"k && k< n}
k.= k+1;,
{QJ == 21)
j=27;
(3) {j==27k}

N

-~

/

We GUESSED Lot oy Ac §y ==2°
' 7 NEEDs TO HOLD AT (D () (3D

CHeck WHETHEK \T HOLDS -

RY UCING ASS|GNMBENT AXIOM

Twice , WE CAN VERIEY THAT

LOOP INU. 15 [NDEED CORRECT.

™G (kK < W) \>axt comes frevn
the cdhed o Lohile “my&

Example continied..

/intkj_ \ NOTE THAT W ITH THE & UESSED

INVA RIANT AND POST coND.

We QET TRUE A< THE
PRE condiTioN .

TF WE STRENTHEN 0UR PosT
LONDA\TION THe WE WwWiL L

/ ORTAN n2p . an EVC-OOV\AJ{’JW

while (k< n) {
k=kel; j=2%;

}

Oowne last exa wq:Le..

* Input: An array A of

integers indexed from O
to n-1

* Goal: set max = largest
element in the array.

* Write the post-
condition.

NMITEZ m 2 ALkl Huc

0 £ k< M-\
1S B0 SOFEIOENT .

R ———

// A : indexed from 0 .. n-1
“int m = A[0];
intk=1;
while (k< n){
if (A[k] > m)
m = A[k];
} else {
// do nothing.

}
k =k+1;

L

N

To0 Summarize..

* Hoare logic and Hoare triples provide an automated way of proving
(partial) program correctness.

* Hoare style proofs can become very lengthy much more detailed.

* How detailed should our proofs be?

* We should be able to write the detailed Hoare style proofs (if needed).

* Most proofs that we will write will be compact (example: prove invariant of
the loop).

* Be ready to expand a compact proof to a detailed proof if necessary!

* See list of incomplete proofs on wikipedia

https://en.wikipedia.org/wiki/List_of_incomplete_proofs

Does this terminate?

ﬁoid fun (intn) { \

print n;
while (n 1= 1) {
if (n% 2 ==0)
n=n/2;printn;
else
n=3*n+1; print n;

}

print n;

L /

