
CS 2700 Programing and
Data Structures.

Slot C (Mon 10.00am, Tues 9.00am, Wed 8.00am, Fri 12.00pm)

Instructor: Meghana Nasre (meghana@cse.iitm.ac.in)

Week 1: Correctness of Programs.

mailto:meghana@cse.iitm.ac.in

Tools for Two Aspects

1. Correctness

2. Complexity

Program Correctness

Testing

• Can quickly find obvious
bugs

• Cases we do not test still
hide bugs

• Testing is exhaustive only if
number of inputs is finite

Formal Methods

• Treat programs as
mathematical objects

• Use mathematical notation to
precisely specify what a
program does

• Use rules to mathematically
prove the correctness

• Can be expensive
Formal methods should be used in
conjunction with testing, not as a

replacement

Floyd-Hoare Logic

• More commonly known as Hoare Logic

• Method for mathematically reasoning about
programs

• Basis of “automated” program verification systems

• Works with Hoare Triples

{pre-condition} Statement {post-condition}

Tony Hoare

Robert Floyd

Pre and Post-conditions

• Constraints that MUST be satisfied at a program point.

• Constraints are simple Boolean expressions.

• Pre-conditions : Prior to the statement.

• Post-conditions: After the statement.

• Having the conditions as precise as possible helps.

• Types of statements:
• Assignments, conditionals, loops

Assignments

{ x > 0 }
x = x+1;

{ E1 }

{ x > 0 }
x = 2*x;

{ E2 }
x = x+y;
{ E3 }

Assumptions:
• Values do not overflow
• x is of integer data type

Observe:
• Assuming x is of type int, E2: x > 0.
• E2 : x %2 == 0
• If we had an additional pre-

condition that y >=0, then E3: x > 1

Conditionals

{ x > 0 }
if (x > 5) {

{ x > 5 }
x = 4; **
{ x == 4 }

}
{ E3 }

E3 when x = 10 at Line **:
• (x > 0 && x <= 5) || x == 10

E3 when x = 4 at Line **:
• (x > 0 && x <= 5) || x == 4
• (x > 0 && x <= 5)

Question: Can we replace the || by XOR?

Conditionals

{ E1 }
if (B) {

{ E1 && B }
S1

{ E2 }
}
{ E3 }

if (B) then S1

• Either the effect of S1 is visible
as E2

OR
• E1 and NOT(B) hold

E3:
E2 || (E1 && NOT(B))

observe the ||

Conditionals

{ x > 0 }
if (x > 5) {

{ x > 5 }
x = 4;

{ x == 4 }
} else {

{ E1 }
x = x – 10;
{ E2 }

}
{ E3 }

E1: x > 0 && x <= 5
E2: x > -10 && x <= -5
E3: x == 4 || (-9 <= x <= -5)

if (B) then S1 else S2

• Note the && in E1 and E2
• Note the || in E3

• Relative updates (x = x – 10) modify the
earlier expressions

• Absolute updates (x = 4) generate new
expressions

How does this relate to my
programs?

#include<stdio.h>
int main() {

int x = 3;
int y; // read y from user.
int *ptr = &x;
if (y == 0) ptr = NULL;
if (*ptr < 5) printf(“ x<5”);
else printf(“ x >= 5”);

}

• What is the output of the
program?

• How do we address it?

• How do we address it with our
new learning about pre-
conditions and post-conditions?

Loops

• while (B) { S }

• Loops are interesting
since we do not know
how many times the
loop executes.

• We want a condition
which holds true
irrespective of the
times the loop
executed.

{ x >= 0 && y >= 0 }
while (x >= y) {

{ x >= y && y >= 0 }
x = x – y;

{ x >= 0 && y >=0 }
}
{ x >= 0 && y >= 0 }

Loop Invariant

• { }

• while (B) {

• { && B }

• S1; S2; S3;

• { I }

• }

• { && NOT(B) }

We call an expression a loop
invariant if:

• It holds just before the loop.
• It holds just after the test B. We

assume test B does not have side
effects.

• It holds at the end of the loop.
• It need NOT hold at intermediate

steps.

Loop Invariant : example 1

int k = 1; sum = 0;

while (k <= n) {

sum = sum + k;

k = k + 1;

}

Program to find the sum of first n
positive integers

• Some trivial invariants:
• k == 1 || k == 2 || k == 3…
• sum == 1 || sum == 3 || …
• Combining the above..

Invariant: sum = 1 + 2 + 3 + .. + k
Is this correct?

Correct Invariant: sum = 1 + 2 + 3 + .. + k-1

Loop Invariant : example 2

A: array indexed 0 .. n-1

int k = n;

while (k != 0) {

k = k - 1;

A[k] = 0;

}

What does the loop do?
Sets A[0] … A[n-1] equal to 0.
What should be the post condition at the
end of the loop?

{for j = 0 .. n-1: A[j] == 0}

Guess a loop invariant.

Assume n > 0 is a pre-condition.
{k <= n && k > = 0}
This is a loop invariant but not useful one.

{ 0 <= j <= n-1 &&
for all j >= k, A[j] == 0 }

Loop Invariant: example 3

t = 1; u = xy[0];

while (t < r) {

if (xy[t] > u)

u = xy[t];

t++;

}

• Finding elegant and useful loop
invariants needs a high level
understanding of the code.

• It is non-trivial to do it automatically.

• The programmer (you) should state
them as precisely as possible.

Testing whether a given condition is a
valid invariant is much simpler than
coming up with the condition.

Take away: avoid
writing such

cryptic programs.

Program Correctness (partial)

Overall strategy:

• Write your algorithm / program

• Write down the pre-conditions
at the beginning and post-
conditions at the end of the
program.

• For each statement show that
its post-condition follows from
the pre-condition.

Notes:

• Axioms or rules of Hoare logic are
simple, but we can select too
strong a pre-condition or too weak
a post-condition.

• Need to achieve the right trade-
off.

• We are NOT proving termination
via this method. We assume that
the program terminates.

Axioms of Hoare logic

• Empty Statement :

• Assignment Statement:

• Rule of Composition:

{ P} no-op {P}

{ P [x / t]} x = t {P}

{ P} S1; S2 {R}

{ P} S1 {Q} && {Q} S2 {R}

If P is true when x is replaced by t
before the assignment, then P is true
after the assignment.

Axioms of Hoare logic
• Strengthening pre-cond:

• Weakening post-cond:

{ R} S { Q}

{ P} S {Q} && R -> P

{ P} S { R}

{ P} S {Q} && Q -> R

example: {practiced 10 problems} write exam {90+ marks}
{practiced 20 problems} write exam {90+ marks}

example: {practiced 10 problems} write exam {90+ marks}
{practiced 10 problems} write exam {80+ marks}

Axioms of Hoare logic
• Conditional:

• Loops:

{P && B} S1 {Q} && {P && NOT(B) S2 {Q}

{ P} if (B) then S1 else S2 { Q}

{P && B} S {P}

{ P} while (B) S { P && NOT(B) }

Using Hoare Triples

{ x and y are int
x == t1, y == t2 }
x = x + y;
y = x – y;
x = x – y;

{ P }
{x == t2 && y == t1 }

{x - y == t2 && y == t1 }

{x – (x – y) == t2 && x -y == t1 }

{y == t2 && x + y – y == t1 }

Using Hoare Triples

int fun (int n) {

int k, j;

k = 0; j = 1;

while (k < n) {

k = k+1; j = 2 *j;

}

{ R }

return j;

}

Example continued..

{ j == 2^k}
while (k < n) {

{j == 2^k && k < n}
k = k+1;

j = 2 *j;
{j == 2^k}

}

Example continued..

int k, j;

k = 0;

j = 1;

while (k < n) {

k = k+1; j = 2 *j;

}

}

One last example..

• Input: An array A of
integers indexed from 0
to n-1

• Goal: set max = largest
element in the array.

• Write the post-
condition.

// A : indexed from 0 .. n-1

int m = A[0];

int k = 1;

while (k < n) {

if (A[k] > m)

m = A[k];

} else {

// do nothing.

}

k = k+1;

}

To Summarize..

• Hoare logic and Hoare triples provide an automated way of proving
(partial) program correctness.

• Hoare style proofs can become very lengthy much more detailed.

• How detailed should our proofs be?
• We should be able to write the detailed Hoare style proofs (if needed).

• Most proofs that we will write will be compact (example: prove invariant of
the loop).

• Be ready to expand a compact proof to a detailed proof if necessary!

• See list of incomplete proofs on wikipedia

https://en.wikipedia.org/wiki/List_of_incomplete_proofs

Does this terminate?

void fun (int n) {

print n;

while (n != 1) {

if (n % 2 == 0)

n = n / 2; print n;

else

n = 3*n+1; print n;

}

print n;

}

