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1 The maximum matching problem

Let G = (V,E) be an undirected graph. A set M ⊆ E is a matching if no two edges in M have

a common vertex. A vertex v is matched by M if it is contained is an edge of M , and unmatched

otherwise. In the maximum matching problem we are asked to find a matching M of maximum size

in a given input graph G = (V,E).

The maximum matching problem in bipartite graphs can be easily reduced to a maximum flow

problem in unit graphs that can be solved in O(m
√
n) time using Dinic’s algorithm. We present

the original derivation of this result, due to Hopcroft and Karp [HK73].

The maximum matching problem in general, not necessarily bipartite, graphs is more challenging.

We present here a classical algorithm of Edmonds [Edm65] for solving the problem and discuss its

efficient implementation.

2 Alternating and augmenting paths

Definition 2.1 (Alternating paths and cycles) Let G = (V,E) be a graph and let M be a

matching in M . A path P is said to be an alternating path with respect to M if and only if among

every two consecutive edges along the path, exactly one belongs to M . An alternating cycle C is

defined similarly.

Some alternating paths and an alternating cycle are shown in Figure 2. We use the convention that

edges that belong to a matching M are shown as thick edges, while edges not belonging to M are

shown as thin edges.
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Figure 1: Matchings in a simple graph

Figure 2: Alternating paths and cycles

Definition 2.2 (Symmetric difference) If A and B are sets, we let A⊕B = (A−B)∪ (B−A)

be their symmetric difference.

The following lemma is now obvious.

Lemma 2.3 If M is a matching and P is an alternating path with respect to M , where each

endpoint of P is either unmatched by M or matched by the edge of P touching it, then M ⊕ P is

also a matching.

Note that if P starts and ends in vertices unmatched by M (e.g., the top path in Figure 2), then

|M ⊕P | = |M |+ 1, i.e., M ⊕P is a larger matching. If P starts with an edge that does not belong

to M and ends with an edge of M (e.g., the middle path in Figure 2), then |M ⊕P | = |M |. Finally,

if P starts and ends with edges of M (see the bottom path in Figure 2), then |M ⊕ P | = |M | − 1.

Definition 2.4 (Augmenting paths) An augmenting path P with respect to a matching M is

an alternating path that starts and ends in unmatched vertices.

We have seen above that a matching that admits an augmenting path is not a maximum matching.

We show below that the converse also holds. We start with the following simple observation.

Lemma 2.5 Let G = (V,E) be an undirected graph and let M1 and M2 be matchings in G. Then,

the subgraph (V,M1⊕M2) is composed of isolated vertices, alternating paths and alternating cycles

with respect to both M1 and M2.
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Lemma 2.6 Let G = (V,E) be an undirected graph and let M and M ′ be matchings in G such that

|M ′| = |M |+ k, where k ≥ 1. Then, there are at least k vertex disjoint augmenting paths in G with

respect to M . At least one of these augmenting paths is of length at most n
k
− 1.

Proof: Consider the subgraph (V,M ⊕M ′). By Lemma 2.5 it consists of alternating paths and

cycles with respect to both M and M ′. The set M ⊕M ′ contains exactly k more edges from M ′

than from M . It must then contain at least k vertex disjoint paths that start and end with edges

of M ′. This paths are augmenting paths with respect to M . At least one of these paths contains

at most n
k

vertices and is its length, therefore, is at most n
k
− 1. 2

Theorem 2.7 Let G = (V,E) be an undirected graph and let M be a matching in G. Then, M is

a maximum matching in G if and only if there are no augmenting paths with respect to M in G.

Proof: If P is an augmenting path with respect to M , then M ⊕ P is also a matching and

|M ⊕ P | > |M |, so M is not a maximum cardinality matching of G. If M is not a maximum

matching, then by Lemma 2.6 there is at least one augmenting path with respect to M . 2

Theorem 2.7 suggests the following simple algorithm for finding a maximum matching. Start with

some initial matching M , possibly the empty one. As long as there is an augmenting path P with

respect to M , augment M using P and repeat. All that remains, therefore, is to devise a procedure

for finding augmenting paths, if they exist.

3 Alternating trees

In this section we try a natural approach for finding an augmenting path with respect to a match-

ing M , if one exists. The approach will work properly in bipartite graphs. We will extend it later

so that it would also be able to cope with non-bipartite graphs.

We construct a forest of alternating trees. An alternating tree is a tree whose root is an unmatched

vertex. All root-leaf paths in an alternating tree are alternating paths with respect to M . If we

manage to add an unmatched vertex, other than the root, to an alternating tree, we have identified

an augmenting path.

Vertices at the even levels of alternating tree are labeled EVEN while vertices at the odd levels are

labeled ODD. Vertices that are currently in no alternating tree are unlabeled.

Initially all nodes are unlabeled and all edges are unexplored. In each step we either choose an

unlabeled and unmatched vertex r, label it EVEN, and make it the root of a new tree, or we choose

an unexplored edge (u, v) where u is EVEN, and explore it as follows:

• If v is unmatched, we have found an augmenting path.

3



Figure 3: A forest of alternating trees

• If v is unlabeled and matched, we let w be the vertex matched to v, i.e., (v, w) ∈ M . (It is

easy to check that w must also be unlabeled.) We add v and w, and the edges (u, v) and

(v, w), to the tree and label v ODD and w EVEN.

• If v is already labeled ODD, we do nothing. (We simply found an alternative odd length

alternating path from an unmatched vertex to v. Note that v may be part of a previously

constructed tree.)

• If v is labeled EVEN and does not belong to the same tree as u, we discovered an augmenting

path composed of the path from the root of u’s tree to u, the edge (u, v), and then the path

from v to the root of its tree.

• If v is labeled EVEN and belongs to the same tree as u, we discovered an odd length cycle in

the graph. Such an odd cycle will be called a blossom. Note that this case cannot occur in

bipartite graphs.

The next to last case, in which u and v are EVEN vertices belonging to different trees, can be

avoided by exploring all edges touching the EVEN vertices of a tree before starting to construct the

next tree.

The process stop either when an augmenting path or a blossom are found, or when there are no

more unlabeled and unmatched edges or unexplored edges touching at least one EVEN vertex.

Lemma 3.1 If there is an augmenting path with respect to M , then the above process finds an

augmenting path or a blossom. The running time is O(m).

This immediately gives an O(mn)-time algorithm for finding a maximum matching in bipartite

graphs. We improve this to O(m
√
n) in Section 5.
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4 Minimum vertex cover in bipartite graphs

Definition 4.1 (Vertex Cover) Let G = (V,E) be an undirected graph. A set C ⊆ V is said to

be a vertex cover if and only if e ∩ C 6= φ, for every e ∈ E.

In other words, C is a vertex cover if and only if every edge (u, v) ∈ E, either u ∈ C or v ∈ C (or

both). In the minimum vertex cover problem we are given an undirected graph G = (V,E) and

asked to find a vertex cover of minimum size. For general graphs, the problem is NP-complete.

(Note that C is a vertex cover if and only if V−C is an independent set.) In this section we show,

perhaps surprisingly, that the minimum vertex cover problem in bipartite graphs can be efficiently

solved. It is solved, in fact, by the algorithm sketched in the previous section. Furthermore, the

size of a minimum vertex cover is equal to the size of a maximum matching.

Theorem 4.2 Let G = (V,E) be a bipartite graph. The size of a maximum matching in G is equal

to the size of a minimum vertex cover of G.

Proof: Let M be a matching in G and let C be a vertex cover of G. It is clear that |M | ≤ |C|, as

any vertex cover must contain at least one endpoint of each edge of the matching M .

Let M is a maximum matching in G. We show that there exists a vertex cover C of G such that

|M | = |C|.

Suppose that V = S ∪ T , where S ∩ T = φ and that all edges connect vertices in S with vertices

of T . We use the generic algorithm of the previous section to construct a forest F of alternating

trees with respect to M rooted at the unmatched vertices in S. Note that all vertices of S contained

in F are EVEN while all vertices of T contained in F are ODD.

Let M ′ = M ∩F be the edges of M that are contained in F , and let M ′′ = M−F be the edges of M

that are not contained in F . We construct a vertex cover C by taking the endpoints of the edges

of M ′ that belong to T and the endpoints of the edges of M ′′ that belong to S. Clearly |C| = |M |,
as we are choosing exactly one vertex from each edge of M . The set C contains all vertices of T

that belong to F and all vertices of S that do not belong to F . (See Figure 3.) We claim that C is

a vertex cover. Let (u, v) ∈ E, where u ∈ S and v ∈ T . If u 6∈ F , then u ∈ C. If u ∈ F , then u is

an EVEN vertex. As all edges out of EVEN vertices are explored, we get that v must be an ODD

vertex and thus v ∈ C. 2

The proof of Theorem 4.2 gives us an efficient algorithm for finding a minimum vertex cover of a

bipartite graph G = (V,E): Find a maximum matching in G, construct a forest F of alternating

trees and then a minimum vertex cover C. Note that the last two steps can be performed in O(m)

time.
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5 The Hopcroft-Karp algorithm for bipartite graphs

Let G = (S, T,E) be a bipartite graph and let M be a matching in G. Instead of building the alter-

nating trees one at a time, we can use breadth-first search to simultaneously build alternating trees

from all unmatched vertices of S. This allows us to find shortest augmenting paths. Furthermore,

we can find a maximal collection of shortest augmenting paths.

The Hopcroft-Karp algorithm [HK73] works in phases. In each phase it constructs a maximal

collection of vertex disjoint shortest augmenting paths and uses them to augment the matching.

Lemma 5.1 Let P be a shortest augmenting path with respect to M and let P ′ be an augmenting

path with respect to M ⊕ P . Then |P ′| ≥ |P |+ 2|P ∩ P ′|.

Proof: Let N = (M ⊕P )⊕P ′. Then, N is a matching and |N | = |M |+2. By Lemma 2.6, M ⊕N
contains two vertex disjoint augmenting paths P1 and P2 with respect to M . As P is a shortest

augmenting path with respect to M we get that |P1|, |P2| ≥ |P |. Since M⊕N = P ⊕P ′, we get that

|P ⊕ P ′| ≥ |P1|+ |P2| ≥ 2|P |. Now |P ⊕ P ′| = |P |+ |P ′| − 2|P ∩ P ′|. Hence |P ′| ≥ |P |+ 2|P ∩ P ′|.
2

Lemma 5.2 Let G = (S, T,E) be a bipartite graph and let M be a matching in G. Suppose that

P = 〈P1, P2, . . . , P`〉 is a maximal collection of disjoint shortest augmenting paths with respect to M .

Let M ′ = M ⊕ P1 ⊕ P2 ⊕ · · · ⊕ P` and let P ′ be an augmenting path with respect to M ′. Then,

|P ′| > |P1| = . . . = |P`|.

Proof: Let Pi be the last path from P that intersects P ′. Then, Pi is an shortest augmenting

path with respect to Mi−1 = M ⊕ P1 ⊕ P2 ⊕ · · · ⊕ Pi−1 and P ′ is an augmenting path with respect

to Mi−1 ⊕ Pi. By Lemma 5.1, we get that |P ′| ≥ |Pi|+ 2|P ′ ∩ Pi| > |Pi|. 2

Theorem 5.3 The Hopcroft-Karp algorithm finds a maximum matching in a bipartite graph after

at most 2
√
n phases.

Proof: By Lemma 5.2, we get that the shortest augmenting paths found in each phase get longer

and longer. Thus, after
√
n phases, if the algorithm is not done yet, the lengths of the shortest

augmenting paths found is at least
√
n. By Lemma 2.6, the fact that the length of the shortest

augmenting path is at least
√
n implies that the size of the current matching is smaller than the

size of the maximum matching by at most
√
n. Thus, a maximum matching would be found after

at most
√
n additional iterations. 2
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6 Edmonds’ algorithm for non-bipartite graphs

We now return to the problem of finding a maximum matching in non-bipartite graphs.

Definition 6.1 (Flowers and blossoms) A flower with respect to a matching M is composed of

a stem, which is an alternating path of even length from an unmatched vertex r, called the root,

to vertex b, and an ‘alternating’ cycle of odd length that passes through b, called a blossom. The

last edge on the stem belongs to M . The two edges of the blossom touching b are not in M . Other

than that, every second edge on the blossom belongs to M . The vertex b is said to be the base of

the blossom.

When the algorithm of Section 3 finds an edge (u, v) ∈ E such that u and v are EVEN vertices of

the same tree, it, in fact, finds a flower. Edmonds [Edm65] suggests shrinking (i.e., contracting)

the blossom B of the flower into a new vertex, labeling this new vertex EVEN, and continuing. We

let GB be the graph obtained by contracting B, and MB = M −B the matching induced by M in

this new graph. We use B to denote the vertex of GB obtained by contracting B.

Lemma 6.2 Let G = (V,E) be an undirected graph and let M be a matching in G. Let B be a

blossom in G. If there is an augmenting path with respect to MB in GB, then there is also an

augmenting path with respect to M in G.

Proof: Let P be an augmenting path in GB with respect to MB. If P does not pass through B,

then P is also an augmenting path in G with respect to M , and we are done. Suppose, therefore,

that P does pass through B. We consider two cases:

Case 1: P starts (or ends) at B.

Let (B, c) be the first edge on P and let Pc be the part of P that starts at c. Clearly (B, c) 6∈MB.

Also, there is a vertex v ∈ B such that (v, c) ∈ E and (v, c) 6∈ M . In the blossom B, we can

find an even length alternating path Q from b to v. This path ends with an edge of M . The path

Q, (v, c), Pc is then an augmenting path in G with respect to M , as required.

Case 2: B is not the first or last vertex on P .

Let (a,B), (B, c) ∈ P be the edges of P that touch B. Assume that (a,B) ∈MB and (B, c) 6∈MB.

Let Pa be the part of P up to a, and let Pc be the part of P from c. As (a,B) ∈ Mb, the edge

(a, b) must be present in the original graph and (a, b) ∈ M , as the only edge of the matching that

enters a blossom enters it at its base. As before, there is a vertex v ∈ B such that (v, c) ∈ E and

(v, c) 6∈ M . We can again find an even alternating path Q in the blossom from b to v. The path

Pa, (a, b), Q, (v, c), Pc is then an augmenting path in G with respect to M , as required. 2

Lemma 6.3 Let G = (V,E) be an undirected graph and let M be a matching in G. Let B be a

blossom in G which is part of a flower with stem Q. If there is an augmenting path with respect

to M in G, then there is also an augmenting path with respect to MB in GB.
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Proof: Let b be the base of the blossom B. We consider two cases:

Case 1: b is unmatched by M .

Let P be an augmenting path in G with respect to M . If P does not pass through any vertex of B,

then P is also an augmenting path with respect to MB in GB. Suppose therefore that P does pass

through B. As P starts and ends at unmatched vertices, and only one vertex on B is unmatched,

we may assume that P does not start on B. Let P ′ be the prefix of P ending at the first encounter

of P with a vertex of B. Let P ′ = P ′′, (a, v), where v ∈ B. Then, P ′′, (a,B) is an augmenting path

with respect to MB in GB, as B is unmatched by MB.

Case 2: b is matched by M .

Let M ′ = M ⊕Q, where Q is a stem of a flower with blossom B. As Q is an even alternating path

starting at an unmatched vertex, we get that M ′ is a matching and that |M ′| = |M |. Note that B

is also a blossom with respect to M ′ and that b is unmatched with respect to M ′. We also have

|M ′
B| = |MB|.

As M ′ and M are matching of the same size and as there is an augmenting path with respect to M ,

there must also be an augmenting path with respect to M ′. As b in unmatched by M ′, we get by

Case 1 that there must be augmenting path with respect to M ′
B in GB, and as M ′

B and MB are

again of the same size, we get that there must also be an augmenting path with respect to MB

in GB, as required. 2

We can therefore modify the algorithm of Section 3 for finding augmenting paths as follows. We

start constructing alternating trees from the unmatched vertices. If a blossom B is discovered,

we shrink it. The blossom B is now considered to be an EVEN vertex so we can now explore all

edges emanating from the ODD vertices contained in B. At some stage a new blossom B′ may be

discovered. Note that B be one of the vertices that participate in B′. The algorithm terminates

either when an augmenting path is found, or when all unmatched vertices are made root of tree

and all edges touching EVEN vertices are explored.

Although conceptually simple, the efficient implementation of Edmonds’ blossom shrinking algo-

rithm is a non-trivial task. We discuss this issue further in Section 8.

7 Odd vertex covers

Definition 7.1 (Odd Vertex Cover) Let G = (V,E) be an undirected graph. An odd vertex

cover of G is composed of a subset C ⊆ V of vertices and a collection of subsets B1, B2, . . . , Bk ⊆ V

such that for every edge (u, v) ∈ E either u ∈ C or v ∈ C, or there is an index 1 ≤ i ≤ k for which

u, v ∈ Bi. The size of such a cover is defined to be |C|+
∑k

i=1b
|Bi|
2
c. We may assume that the sets

B1, B2, . . . , Bk are of odd size.

Theorem 7.2 Let G = (V,E) be an undirected graph. The size of a maximum matching in G is

equal to the size of a minimum odd vertex cover of G.
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Figure 4: Blossoms shrinking example.

8 Efficient implementation of Edmonds’ algorithm

We represent the current matching M using an attribute mate defined for all vertices of the graph.

If (v, w) ∈M , then mate[v] = w and mate[w] = v. If v is unmatched by M , we let mate[v] = null.

alternating-forest(mate) constructs a tree of alternating trees with respect to M , shrinking
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Function alternating-forest(mate)

foreach v ∈ V do
label[v]← null

pred[v]← null

make-set(v)

foreach v ∈ V do

if mate[v] = null then
alternating-tree(v)

Function alternating-tree(v)

label[v]← even

Q← 〈v〉
while Q 6= ∅ do

v ← extract(Q)

foreach (v, w) ∈ E do
examine(v, w)

Function examine(v, w)

v̄ ← find(v)

w̄ ← find(w)

if v̄ 6= w̄ then

if label[w̄] = null then

if mate[w] = null then
augmenting-path(v, w)

else
extend-tree(v, w)

else if label[w̄] = even then
shrink-blossom(v, w)

Function extend-tree(v, w)

label[w]← odd

pred[w]← v

label[mate[w]]← even

pred[mate[w]]← w

insert(Q,mate[w])

Function shrink-blossom(v, w)

b← find-base(v, w)

shrink-path(b, v, w)

shrink-path(b, w, v)

Function shrink-path(b, v, w)

u← find(v)

while u 6= b do
union(b, u)

u← mate[u]

union(b, u)

select(b)

insert(Q, u)

bridge[u]← (v, w)

u← find(pred[u])
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Function augmenting-path(v, w)

r ← find-root(v)

throw 〈w〉+ find-path(v, r)

Function find-path(s, t)

if s = t then
return 〈s〉

else if label[s] = even then
return 〈s,mate[s]〉+ find-path(pred[mate[s]], t)

else
(v, w)← bridge[s]

return 〈s〉+ reverse(find-path(v,mate[s])) + find-path(w, t)

blossoms whenever they are encountered, until either an augmenting path is found, or no more

vertices and edges can be added to the forest

Each vertex v ∈ V has two additional attributes pred[v] and label[v]. If v is contained in an

alternating tree, then pred[v] is its parent, and label[v] says whether it is an even or odd vertex.

If v is not contained in any tree, then pred[v] and label[v] are both null.

Blossoms encountered while building the alternating trees are not explicitly contracted. Instead,

we use a union-find data structure to maintain for each vertex v the base of the blossom to which

it currently belongs.

A union-find data structure maintains a collection of disjoint sets. It supports the following opera-

tions:

make-set(v) – Create a singleton set {v} containing the element v.

union(v, w) – Unite the sets currently containing the elements v and w.

find(v) – Returns a representative element of the set currently containing v.

select(v) – Make v the representative element of its set.

An edge (v, w) ∈ E in the original graph corresponds to an edge (find(v), find(w)) in the implicitly

contracted graph. (Note that find(v) is either v, if v was not swallowed by a blossom yet, or the

base of its blossom if it had.)

alternating-forest(mate) starts by letting label[v] = null and pred[v] = null, and by building a

singleton set {v} using make-set(v), for every v ∈ V . It then goes over the vertices of the graph

one by one. If v is still unmatched by the time it is examined, an alternating tree is grown from it

using alternating-tree(v).

alternating-tree(v) uses a queue Q to store all even vertices, or odd vertices contained in

blossoms, that were not explored yet. Initially Q = 〈v〉. As long as Q is not empty, a vertex v is
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removed from Q and each edge (v, w) ∈ E incident on it is examined by examine(v, w).

examine(v, w) first lets v̄ ← find(v) and w̄ ← find(w) be the bases of the blossoms currently

containing v and w. If v̄ = w̄, then the edge is a self-loop in the contracted graph and is therefore

ignored. Assume, therefore, that v̄ 6= w̄. If label[w̄] = null, then w was not added to the forest

yet. (In particular, we have w̄ = w.) If mate[w] = null, then w is unmatched and we have found

an augmenting path. (That was easy!) Reconstructing this augmenting path is a non-trivial task

handled by augmenting-path(v, w). If w is not yet in the forest (i.e., label[w] = null), but it is

matched (i.e., mate[w] 6= null), we add w and mate[w] to the current tree using extend-tree(v, w).

If label[w̄] is even, we discovered a new blossom. We (implicitly) shrink this blossom using

shrink-blossom(v, w). If label[w̄] is odd, nothing needs to be done.

extend-tree(v, w) is straightforward. We add w and mate[w] to the tree and label them odd and

even, respectively. We add mate[w] to Q, the queue containing the vertices that still need to be

explored.

find-path(s, t) finds a simple even alternating path starting at s and ending at t, assuming that

the simple even alternating path from s to the root of its tree passes through t after an even number

of steps.

shrink-blossom(v, w) shrinks the blossom formed by the edge (v, w). It starts by computing

the base b of the blossom using a call b ← find-base(v, w). find-base(v, w) climbs up the tree

until finding the least common ancestor of v and w. (The code of find-base(v, w) is omitted.)

The paths from v to b and from w to b are then shrunk using the calls shrink-path(b, v, w) and

shrink-path(b, w, v).

The edge (v, w) (and its reverse (w, v)) is said to be the bridge of the blossom. shrink-path(b, v, w)

visits all bases on the path from v to b and unites them with b. (This is done using union(b, u).

The call select(b) makes sure that b is the representative element of the newly formed blossom.)

For every odd vertex u on the path from v to b, we set bridge[u]← (v, w).

As an example, consider the evaluation of an even alternating path from vertex 10 to vertex 1, the

root of its tree, using a call find-path(10, 1). As 10 is odd and bridge[10] = (26, 20), the path

returned by the call is:

〈10〉+ reverse(find-path(26, 11)) + find-path(20, 1)

Consider now find-path(26, 11). As 26 is again odd, and bridge[26] = (27, 25), we get 〈26〉 +

reverse(find-path(27, 27)) + find-path(25, 11). As 25 is even, find-path(25, 11) expands to

〈25, 24, 17, 16, 13, 12, 11〉. Thus, find-path(26, 11) is the path 〈26, 27, 25, 24, 17, 16, 13, 12, 11〉. In a

similar manner, it can be seen that find-path(18, 1) returns 〈18, 19, 21, 20, 15, 14, 6, 7, 9, 8, 5, 4, 3, 2, 1〉.
Putting everything together, we get that the path returned by find-path(10, 1) is

〈10, 11, 12, 13, 16, 17, 24, 25, 27, 26, 18, 19, 21, 20, 15, 14, 6, 7, 9, 8, 5, 4, 3, 2, 1〉.

The maximum matching problem is general graph can actually be solved in O(m
√
n) time (see

[MV80], [GT91], [Vaz94]), matching the time bound for bipartite matching, but this is beyond the

scope of these notes.
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9 A “simple” implementation of Edmonds’ algorithm

How did the implementation of the previous section managed to work properly without explicitly

keeping track of the history of the blossom shrinkage? (Or can the history still be reconstructed?)

Here we try to explicitly maintain the blossom structure. We also allow odd blossoms that would

be used for solving weighted problems.

We use an object that we call a blossom. A blossom object B that has the following attributes:

label[B] - The label of B (even or odd).

parent[B] - The parent of B in the blossom forest.

parent edge[B] - The edge in the original graph that connects the blossoms B and parent[B].

super[B] - The blossom into which B was absorbed, or null.

base[B] - The sub-blossom (or vertex) at the base of B.

next[B], prev[B] - The next and previous blossoms in the super-blossom containing B, or null if B

is not contained yet in a higher level blossom.

Instead of next and prev keep the adjacent blossoms connected by a matched and a non-matched

edge?

even path to base(B) finds an even alternating path from the base of B to the base of the outer-

most blossom containing B.

Function even path(B, v)
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