Advanced Programming Lab
CS6150

Anantha Padmanabha

ananthap@cse.iitm.ac.in

Meghana Nasre

meghana@cse.iitm.ac.in

August 2025

Compensation Lab
e (05-09-2025 (Friday) is a holiday
o Is 04-09-2025 (Thursday) ok for the alternative

lab?
o Finalized?s

Advanced Programming Lab
CS6150

Week 2

Class, Objects, Constructors, Destructors

(Slides Courtesy : Rupesh Nasre)

Abstraction

e Abstraction simplifies complexity.
o When we drive a two-wheeler, we need not know how
the engine operates.
o We know to click gmail send button; we need not know
how UDP packets are transmitted.

e Interface defines an abstraction.

e A Class is used to abstract / hide implementation details
from thes user

Interface and Implementation

. C++ allows us to separate interface from the implementation.

- Similar to declaration and definition.

. This helps in shipping the interface with compiled
Implementation as a library.

- User would not have access to C++ source of the implementation.

. Interface is often part of the header files

. Implementation can be in .so or .a file, compiled from .cpp
files.

- e.g., <math.h> and libm.so

Class and Object

Class: Can be potentially any Type
— Contains data and functionalities |

Object: Individual instances of the Chor name[20]
CIaSS / Type int rollNumber;
void updateCGPA(float CGPA) {
- Ex: Car tn07bw156; el D
Student s; }
void displayDetails() {
cout << "Name: " << name << "\n"
_ : << "Roll Number: " << rollNumber << "\n"
Each object has all the properties e e e

defined for its class.

— It has all the corresponding data
and functionalities.

Class and Object

class

Class: Can be potentially any Type
— Contains data and functionalities

Object: Individual instances of the
Class / Type

- Ex: Cartn0O7bw156;
Student s;

Each object has all the properties
defined for its class.

— It has all the corresponding data
and functionalities.

Student {
public:

char name[50];
int rolWNumber;

void updateCGPA(float newCGPA) {
cgpa = newCGPA;

1
4 f

void displayDetails() {
cout << "Name: " << name << "\n"
<< "Roll Number: " << rollNumber << "\n"
<< "CGPA: " << cgpa << "\n";

}

Student(charx studentName, int studentRollNumber) {

int i;
for(i = @; studentName[i] != '\0@' && i < 49; i++) {
name[i] = studentNamel[il;

name[i] = '\@';

rollNumber = studentRollNumber;
cgpa = 0.0; ‘ ize CG

1
I

private:

float cgpa;

Class and Object

. When we create objects of a
class, we need to initialize an
object with certain parameters.

- Name and roll number
- CGPA should be set to 0O

. Constructors help us achieve this.

class

Student {
public:

char name[50];
int rolWNumber;

void updateCGPA(float newCGPA) {
cgpa = newCGPA;
¥

void displayDetails() {
cout << "Name: " << name << "\n"
<< "Roll Number: " << rollNumber << "\n"
<< "CGPA: " << cgpa << "\n";

}

Student(charx studentName, int studentRollNumber) {

int i;
for(i = @; studentName[i] != '\0@' && i < 49; i++) {
name[i] = studentNamel[il;

name[i] = '\@';

rollNumber = studentRollNumber;
cgpa = 0.0; tialize CGP

1
I

private:
float cgpa;

Class and Object

. A constructor is called
when an object is
created / instantiated.

. Constructor typically
assigns initial values to
fields and allocates
resources.

class

Student {
public:

char name[50];
int rolWNumber;

void updateCGPA(float newCGPA) {
cgpa = newCGPA;
¥

void displayDetails() {
cout << "Name: " << name << "\n"
<< "Roll Number: " << rollNumber << "\n"
<< "CGPA: " << cgpa << "\n";

}

Student(charx studentName, int studentRollNumber) {

int i;
for(i = @; studentName[i] != '\0@' && i < 49; i++) {
name[i] = studentNamel[il;

name[i] = '\@';

rollNumber = studentRollNumber;
cgpa = 0.0; tialize CGP

1
I

private:
float cgpa;

Student Constructor

class Student {
public:
char name[50];
int rolWNumber;

int main
(7 void updateCGPA(float newCGPA) {
char name[50]; cgpa = newCGPA;

int roll; }

cout << "Enter student name: “; void displayDetails() {
cout << “Name: " << name << "\n"

cin>>name;
* - << "Roll Number: " << rollNumber << "\n"
cout << "Enter roll number: "“; - i Syt
<< "CGPA: << cgpa << "\n";

cin >> roll;

Student s(name, roll);

Student(charx studentName, int studentRollNumber) {
int i;

)) for(i = @; studentName[i] != '\0@' && i < 49; i++) {

s.displayDetails(); name[i] = studentName[il;

s.updateCGPA(8.75); }

s.displayDetails(); name[i] = '\0';

rollNumber = studentRollNumber;

return 0;
cgpa = 0.0; // Initialize CGF

private:
float cgpa;

Constructors

e If we do not define one, C++ provides a default (with zero arguments).

— Student s; // okay: default constructor.

— Student s(name, rolINo); // compilation error.

e If we define one, C++ doesn't provide the default.

— Student s(name, rolINo); // okay: defined constructor.

— Student s; /[compilation error.

e We can define multiple constructors, with different arguments (polymorphism).

— Student s(name, rolINo); // okay: defined.

- Student s (name); // okay: defined.

Destructor

. A destructor is helpful when some cleanup is
required at the end of life of an object.

- fopen — fclose
- malloc — free

Class versus Object Variables

. Each object of a class has a different copy of its fields.

- STUDENT a, b; a.name and b.name are different fields.
- These are called object variables.

. If afield is defined as sftatic, it has a single copy across all

instances (zero or more).

- STUDENT a, b; a.studentCount and b.studentCount are
same fields

- These are called class variables.

Class versus Object Variables

. Static variables exist even when no objects of the class exist.

. A static method can be invoked even when no objects of the
class exist.

. A static method can be called as Classname::fun(...).
- It can as well be called using the object variable.

. A static method cannot use non-static variables (that is, cannot
use object variables).

- But a non-static method can use static as well as
non-static variables.

Access Permissions

. C++ classes have access permissions

- public, private, protected

. C++ enforces access checks.

- Helps programmers avoid inadvertent or unintentional
accesses.

- Improve the overall software design.

Access Permissions

. Aclass has two types of members: fields and
methods.

. We divide the world into three parts:

- class, immediate children (inheritance), rest of the world

public protected private
class v v 4
children v v X

rest ve X X

Advanced Programming Lab
CS6150

Week 2

Sample Programs

Code Courtesy :
Sirigineedi Dhanush Tata Phani Srikar and Dinesh Kumar S

#include <iostream>
using namespace std;

class Car

{

public:
string model;
int year;

Example 1 :oid display()

cout << "Model: " << model << ", Year: " << year << endl;
};

int main()

{
Car carl; // Creating arn
carl.model = "TATA";
carl.year = 2025;
carl.display();
return 0;

#include <iostream>
using namespace std;
class Student
{
private:

string name;

int age;
public:
void setData(string n, int a)
{
xample

age = a;
}
void display()
{

cout << "Name: " << name << ", Age: " << age << endl;

main()

Student s1;
sl.setData("Alice", 20);
sl.display();

return 0;

#include <iostream>
using namespace std;
class Employee
{
public:

Employee()

{ // Construc

cout << "Employee object created" << endl;
Example 3 @&
~Employeel()

cout << "Employee object destroyed" << endl;

};

int main()

{
Employee el; // Constructor is called
cout<<"Emplyee object created'"<<endl;
return 0; // Destructor i Le

#include <iostream>

using namespace std;

class Counter

{

private:
static int count;

public:
Counter() { count++; }
static void showCount()
{ // Static functio

cout << "Count: " << count << endl;

Example 4

Counter::count = 0;
main()

Counter ci, ¢2, c3:
Counter::showCount();
return 0;

Example 5

class Rectangle
{
private: int main()

int length, width; {
Rectangle ri1(5, 3); // Passing values during
cout << "Area of R1l: " << rl.area() << endl;

public:
Rectangle(int 1, int w)

{ // Parameterized constructo 1ith two inputs
length = 1; Rectangle r2(5); // Passing

width = w; cout << "Area of R2: " << r2.area() << endl;

return 0;

Rectangle(int 1)
{// Parameterized c

length = 1;

width = 1;
+
int areal()
{

return length *x width;

See you in the lab on Friday

Try out examples

Practise problems will be available by tomorrow

