Advanced Programming Lab
CS6150

Week 3
(Linux & Debugging Basics)

Sanket Tarafder (cs24s018@{cse|smail})

Learning ODbjectives

Linux Basics

|dentifying Types of Errors
Debugging Techniques
GDB

Valgrind (If time permits)

Linux Basics

Why Linux for Programming?

Developer-Centric Design

Powerful Command Line
Development Ready Out-of-the-Box
Widely Used in Industry

Free, Open Source, Lightweight

/bin
/home
/usr

Linux File System
=

/
|

T T IIIIIXIXX
n boot dev e home root rn sbin tmp u]sr var
TIRIIILE

alice bob eve bin local sbin tmp -

. The starting point for all other directories and files within a Linux system
. Essential softwares to keep the system running

. Contains home directories for each user

. Essentially, subdirectories containing most software used on the system,

including system libraries and documentation

5
Image source: serverkaka.com

Scenario

* You just received a USB from a teammate containing hundreds of files —
documents, images, code, logs, etc. — all dumped in a single folder.

* You want to:

Sort files into separate folders by extension.
Convert all .c files to .cpp because the project migrated to C++.

Find all files mentioning the word TODO (case-insensitive) and store
them in a separate folder.

Generate a report of how many files are in each category.

Linux Demo

Essential Commands

pwd : Show the current working directory

cd : Change to another directory

ls : List files and folders in the current directory
mkdir : Create a new directory

touch : Create a new empty file

rm : Remove files or directories

cp : Copy files or directories

Essential Commands

mv : Move or rename files and directories

cat : Display the contents of a file

nano : Simple terminal-based text editor

clear : Clear the terminal screen

man : Show the manual page for a command

wC : Counts lines, words, and characters in files

diff : Compare two files line by line

f1nd: Locate Files/Dirs by Criteria

—name 'k, c" : Match filenames

-type f / d : File or directory

-size +1M : Bigger than 1MB

-mtime -7 : Modified in last 7 days

—exec CMD {} \; : Run CMD on each file

—delete : Remove matched files
Example:

10

grep: Pattern Matching in Files
Seeeme e

-n : Show line numbers
-1 : Case-insensitive
-r : Recursive search
-V : Invert match (lines that don't match)
-0 : Only matched part
Example:

11

Redirection & Pipes

* Redirections

Command Explaination Example
> Redirect stdout (overwrite file) 1s > files.txt
>> Redirect stdout (append to file) echo "Hi" >> log.txt
< Redirect stdin from a file ./sort < data.txt
2> Redirect stderr gcc code.c 2> errors.txt
&> Redirect stdout + stderr command &> output.txt

* Pipes
* Pass the output of one command as the input to another.
* Example:

12

Compilation with g++

« —-Wall : all warnings
* - : enables debugging symbols

e —0 <output> : names the output binary

13

Bugs and Errors

14

What Is a Bug?

A bug is an error or flaw in a program that causes it to behave
unexpectedly or incorrectly.

Bugs can lead to:

— Crashes (e.g., segmentation faults)

~ Incorrect output

— Security vulnerabilities

Bugs are common even in well-tested software.

Debugging is the process of finding and fixing bugs.

15

Type

Syntax Error

Runtime Error

Logic Error

Types of Errors

Example
int x = ;

Segfault, divide by O

1t (marks > 40)
std::cout << "Fail";

Detected By

Compiler

OS

Only you!

16

Debugging Technigues

Print-based Debugging (cout / printf)

* Approach
- Most basic form of debugging
- Insert print statements to trace values and flow
- Commonly used for quick checks
e Limitation:
- Doesn’t scale with large codebases
- Needs recompilation and cleanup afterward

18

Rubber @ Debugging

* Approach

— Explain your code line-by-line to semeene — or a duck
- Forces you to slow down and think clearly

How it helps:
- Identifies assumptions
- Reveals flaws in logic

— Encourages deliberate review

19

GDB: Step Through Your Code

- Why GDB?
— Trace code without inserting print statements
- Inspect values, set breakpoints
- Works with segmentation faults, logic bugs, loops

 Key Advantages:
— No need to modify code repeatedly
- Powerful for large projects

20

Debugging Demo

GDB: Commands

Command Explaination
gdb ./a.out Start GDB with the compiled executable
break <line|func> Sets the breakpoint to the specified line or function
runorr Start running the program under GDB

next or n Execute next line (without stepping into functions)
step or s Step into function calls

continue or c Continue running the program until next breakpoint

print <var> or p Print the current value of a variable
display <var> Automatically print variable after each step

22

GDB: Commands

Command

Explaination

backtrace or bt
list or 1
info locals
info breakpoints
delete <bp#>
disable <bp#>
enable <bp#>
quit or q

Show function call stack trace

Show source code lines around current line
Show local variables in the current stack frame
List all breakpoints set

Delete a specific breakpoint by number
Temporarily disable a breakpoint

Re-enable a disabled breakpoint

Exit GDB

23

What Is a Memory Leak?

A memory leak occurs when a program allocates memory but fails to release it, causing
wasted memory over time.

Downsides of Memory Leaks:
— Gradually consumes RAM
— Slows down system or crashes apps
— Very hard to detect manually!

Why it matters:
— Ciritical for long-running programs (servers, daemons, etc.)
Common Causes:

- new / malloc withoutdelete / free

Forgetting to free after early return

24

What is Valgrind?

Valgrind is a tool that detects memory leaks, uninitialized memory use, and invalid
memory access in C/C++ programs.

How it works:

Runs your program in a simulated environment

Tracks all memory allocations and releases

When to use;

- After writing/modifying pointer-heavy code

When facing strange crashes or slowdowns

25

Valgrind Demo

Some Important Links

Setting Up Linux
~ Windows Subsystem for Linux (WSL) Setup. Link
~ Dual Boot Ubuntu with Windows. Link
~ VirtualBox Downloads (for running Linux in a VM). Link
Installing Development Tools
~ Install GDB (GNU Debugger)
Ubuntu/Debian: sudo apt install gdb
Install Valgrind
* Ubuntu/Debian: sudo apt install valgrind
~ Install build-essential (gcc, g++, make, glibc)
* Ubuntu/Debian: sudo apt install build-essential

27

https://learn.microsoft.com/en-us/windows/wsl/install
https://ubuntu.com/tutorials/install-ubuntu-desktop
https://www.virtualbox.org/wiki/Downloads
https://www.sourceware.org/gdb/
https://valgrind.org/

Some Important Links

Debugging & Visualization
- PythonTutor (visualize code execution, supports C/C++)
- Explainshell (breaks down any Linux command)

- GDB Cheat Sheet

Extra Learning
- Linux Journey (interactive basics)
- Valgrind Memcheck Guide

- Video Tutorial on Valgrind

28

https://pythontutor.com/
https://explainshell.com/
https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf
https://linuxjourney.com/
https://valgrind.org/docs/manual/mc-manual.html
https://www.youtube.com/watch?v=p0gj6kbobRk

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

