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Learning Objectives
● Linux Basics

● Identifying Types of Errors

● Debugging Techniques

● GDB

● Valgrind (If time permits)
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Linux Basics
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Why Linux for Programming?
● Developer-Centric Design

● Powerful Command Line

● Development Ready Out-of-the-Box

● Widely Used in Industry

● Free, Open Source, Lightweight
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Linux File System

● / : The starting point for all other directories and files within a Linux system
● /bin : Essential softwares to keep the system running
● /home : Contains home directories for each user
● /usr : Essentially, subdirectories containing most software used on the system,

  including system libraries and documentation

Image source: serverkaka.com
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Scenario
● You just received a USB from a teammate containing hundreds of files — 

documents, images, code, logs, etc. — all dumped in a single folder.

● You want to:

– Sort files into separate folders by extension.

– Convert all .c files to .cpp because the project migrated to C++.

– Find all files mentioning the word TODO (case-insensitive) and store 
them in a separate folder.

– Generate a report of how many files are in each category.
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Linux Demo
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Essential Commands
● pwd : Show the current working directory

● cd : Change to another directory

● ls : List files and folders in the current directory

● mkdir : Create a new directory

● touch : Create a new empty file

● rm : Remove files or directories

● cp : Copy files or directories
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Essential Commands
● mv : Move or rename files and directories

● cat : Display the contents of a file

● nano : Simple terminal-based text editor

● clear : Clear the terminal screen

● man : Show the manual page for a command

● wc : Counts lines, words, and characters in files

● diff : Compare two files line by line
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 find . -type f -name "*.log" -delete❯

find: Locate Files/Dirs by Criteria

 find [PATH] [OPTIONS] [ACTIONS]❯

● -name "*.c" : Match filenames
● -type f / d : File or directory
● -size +1M : Bigger than 1MB
● -mtime -7 : Modified in last 7 days
● -exec CMD {} \; : Run CMD on each file
● -delete : Remove matched files

Example:
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grep: Pattern Matching in Files

 grep [OPTIONS] PATTERN [FILE...]❯

● -n : Show line numbers
● -i : Case-insensitive
● -r : Recursive search
● -v : Invert match (lines that don't match)
● -o : Only matched part

Example:

 grep -rin "main" src/❯
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Redirection & Pipes

Command Explaination Example

> Redirect stdout (overwrite file) ls > files.txt
>> Redirect stdout (append to file) echo "Hi" >> log.txt
< Redirect stdin from a file ./sort < data.txt

2> Redirect stderr gcc code.c 2> errors.txt
&> Redirect stdout + stderr command &> output.txt

● Redirections

● Pipes
● Pass the output of one command as the input to another.
● Example:

 ls -l | grep ".cpp"❯
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Compilation with g++

 g++ -Wall -g main.cpp -o main❯

● -Wall : all warnings

● -g : enables debugging symbols

● -o <output> : names the output binary
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Bugs and Errors
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What is a Bug?
● A bug is an error or flaw in a program that causes it to behave 

unexpectedly or incorrectly.
● Bugs can lead to:

– Crashes (e.g., segmentation faults)
– Incorrect output
– Security vulnerabilities

● Bugs are common even in well-tested software.
● Debugging is the process of finding and fixing bugs.
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Types of Errors

Type

Syntax Error

Runtime Error

Logic Error

Example

int x = ;

Segfault, divide by 0

if (marks > 40) 
std::cout << "Fail";

Detected By

Compiler

OS

Only you!
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Debugging Techniques
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Print-based Debugging (cout / printf)
● Approach

– Most basic form of debugging

– Insert print statements to trace values and flow

– Commonly used for quick checks

● Limitation:

– Doesn’t scale with large codebases

– Needs recompilation and cleanup afterward
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Rubber  Debugging🦆
● Approach

– Explain your code line-by-line to someone — or a duck

– Forces you to slow down and think clearly

● How it helps:

– Identifies assumptions

– Reveals flaws in logic

– Encourages deliberate review
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GDB: Step Through Your Code
● Why GDB?

– Trace code without inserting print statements

– Inspect values, set breakpoints

– Works with segmentation faults, logic bugs, loops

● Key Advantages:

– No need to modify code repeatedly

– Powerful for large projects
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Debugging Demo
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GDB: Commands

Command Explaination

gdb ./a.out Start GDB with the compiled executable

break <line|func> Sets the breakpoint to the specified line or function

run or r Start running the program under GDB

next or n Execute next line (without stepping into functions)

step or s Step into function calls

continue or c Continue running the program until next breakpoint

print <var> or p Print the current value of a variable

display <var> Automatically print variable after each step
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GDB: Commands

Command Explaination

backtrace or bt Show function call stack trace

list or l Show source code lines around current line

info locals Show local variables in the current stack frame

info breakpoints List all breakpoints set

delete <bp#> Delete a specific breakpoint by number

disable <bp#> Temporarily disable a breakpoint

enable <bp#> Re-enable a disabled breakpoint

quit or q Exit GDB
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What is a Memory Leak?
● A memory leak occurs when a program allocates memory but fails to release it, causing 

wasted memory over time.
● Downsides of Memory Leaks:

– Gradually consumes RAM
– Slows down system or crashes apps
– Very hard to detect manually!

● Why it matters:
– Critical for long-running programs (servers, daemons, etc.)

● Common Causes:
– new / malloc without delete / free
– Forgetting to free after early return
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What is Valgrind?
● Valgrind is a tool that detects memory leaks, uninitialized memory use, and invalid 

memory access in C/C++ programs.

● How it works:

– Runs your program in a simulated environment

– Tracks all memory allocations and releases

● When to use:

– After writing/modifying pointer-heavy code

– When facing strange crashes or slowdowns
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Valgrind Demo
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Some Important Links
● Setting Up Linux

– Windows Subsystem for Linux (WSL) Setup. Link
– Dual Boot Ubuntu with Windows. Link
– VirtualBox Downloads (for running Linux in a VM). Link

● Installing Development Tools
– Install GDB (GNU Debugger)

● Ubuntu/Debian: sudo apt install gdb
– Install Valgrind

● Ubuntu/Debian: sudo apt install valgrind
– Install build-essential (gcc, g++, make, glibc)

● Ubuntu/Debian: sudo apt install build-essential

https://learn.microsoft.com/en-us/windows/wsl/install
https://ubuntu.com/tutorials/install-ubuntu-desktop
https://www.virtualbox.org/wiki/Downloads
https://www.sourceware.org/gdb/
https://valgrind.org/
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Some Important Links
● Debugging & Visualization

– PythonTutor (visualize code execution, supports C/C++)

– Explainshell (breaks down any Linux command)

– GDB Cheat Sheet

● Extra Learning

– Linux Journey (interactive basics)

– Valgrind Memcheck Guide

– Video Tutorial on Valgrind

https://pythontutor.com/
https://explainshell.com/
https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf
https://linuxjourney.com/
https://valgrind.org/docs/manual/mc-manual.html
https://www.youtube.com/watch?v=p0gj6kbobRk
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Thank You
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