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Learning ODbjectives

Linux Basics

|dentifying Types of Errors
Debugging Techniques
GDB

Valgrind (If time permits)




Linux Basics




Why Linux for Programming?

Developer-Centric Design

Powerful Command Line
Development Ready Out-of-the-Box
Widely Used in Industry

Free, Open Source, Lightweight
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. The starting point for all other directories and files within a Linux system
. Essential softwares to keep the system running

. Contains home directories for each user

. Essentially, subdirectories containing most software used on the system,

including system libraries and documentation
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Scenario

* You just received a USB from a teammate containing hundreds of files —
documents, images, code, logs, etc. — all dumped in a single folder.

* You want to:

Sort files into separate folders by extension.
Convert all .c files to .cpp because the project migrated to C++.

Find all files mentioning the word TODO (case-insensitive) and store
them in a separate folder.

Generate a report of how many files are in each category.




Linux Demo




Essential Commands

pwd : Show the current working directory

cd : Change to another directory

ls : List files and folders in the current directory
mkdir : Create a new directory

touch : Create a new empty file

rm : Remove files or directories

cp : Copy files or directories




Essential Commands

mv : Move or rename files and directories

cat : Display the contents of a file

nano : Simple terminal-based text editor

clear : Clear the terminal screen

man : Show the manual page for a command

wC : Counts lines, words, and characters in files

diff : Compare two files line by line




f1nd: Locate Files/Dirs by Criteria

—name 'k, c" : Match filenames

-type f / d : File or directory

-size +1M : Bigger than 1MB

-mtime -7 : Modified in last 7 days

—exec CMD {} \; : Run CMD on each file

—delete : Remove matched files
Example:
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grep: Pattern Matching in Files
Seeeme e

-n : Show line numbers
-1 : Case-insensitive
-r : Recursive search
-V : Invert match (lines that don't match)
-0 : Only matched part
Example:
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Redirection & Pipes

* Redirections

Command Explaination Example
> Redirect stdout (overwrite file) 1s > files.txt
>> Redirect stdout (append to file) echo "Hi" >> log.txt
< Redirect stdin from a file ./sort < data.txt
2> Redirect stderr gcc code.c 2> errors.txt
&> Redirect stdout + stderr command &> output.txt

* Pipes
* Pass the output of one command as the input to another.
* Example:
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Compilation with g++

« —-Wall : all warnings
* - : enables debugging symbols

e —0 <output> : names the output binary
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Bugs and Errors
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What Is a Bug?

A bug is an error or flaw in a program that causes it to behave
unexpectedly or incorrectly.

Bugs can lead to:

— Crashes (e.g., segmentation faults)

~ Incorrect output

— Security vulnerabilities

Bugs are common even in well-tested software.

Debugging is the process of finding and fixing bugs.
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Type

Syntax Error

Runtime Error

Logic Error

Types of Errors

Example
int x = ;

Segfault, divide by O

1t (marks > 40)
std::cout << "Fail";

Detected By

Compiler

OS

Only you!
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Debugging Technigues




Print-based Debugging (cout / printf)

* Approach
- Most basic form of debugging
- Insert print statements to trace values and flow
- Commonly used for quick checks
e Limitation:
- Doesn’t scale with large codebases
- Needs recompilation and cleanup afterward

18



Rubber @ Debugging

* Approach

— Explain your code line-by-line to semeene — or a duck
- Forces you to slow down and think clearly

How it helps:
- Identifies assumptions
- Reveals flaws in logic

— Encourages deliberate review

19



GDB: Step Through Your Code

- Why GDB?
— Trace code without inserting print statements
- Inspect values, set breakpoints
- Works with segmentation faults, logic bugs, loops

 Key Advantages:
— No need to modify code repeatedly
- Powerful for large projects
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Debugging Demo




GDB: Commands

Command Explaination
gdb ./a.out Start GDB with the compiled executable
break <line|func> Sets the breakpoint to the specified line or function
runorr Start running the program under GDB

next or n Execute next line (without stepping into functions)
step or s Step into function calls

continue or c Continue running the program until next breakpoint

print <var> or p Print the current value of a variable
display <var> Automatically print variable after each step
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GDB: Commands

Command

Explaination

backtrace or bt
list or 1
info locals
info breakpoints
delete <bp#>
disable <bp#>
enable <bp#>
quit or q

Show function call stack trace

Show source code lines around current line
Show local variables in the current stack frame
List all breakpoints set

Delete a specific breakpoint by number
Temporarily disable a breakpoint

Re-enable a disabled breakpoint

Exit GDB
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What Is a Memory Leak?

A memory leak occurs when a program allocates memory but fails to release it, causing
wasted memory over time.

Downsides of Memory Leaks:
— Gradually consumes RAM
— Slows down system or crashes apps
— Very hard to detect manually!

Why it matters:
— Ciritical for long-running programs (servers, daemons, etc.)
Common Causes:

- new / malloc withoutdelete / free

Forgetting to free after early return
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What is Valgrind?

Valgrind is a tool that detects memory leaks, uninitialized memory use, and invalid
memory access in C/C++ programs.

How it works:

Runs your program in a simulated environment

Tracks all memory allocations and releases

When to use;

- After writing/modifying pointer-heavy code

When facing strange crashes or slowdowns
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Valgrind Demo




Some Important Links

Setting Up Linux
~ Windows Subsystem for Linux (WSL) Setup. Link
~ Dual Boot Ubuntu with Windows. Link
~ VirtualBox Downloads (for running Linux in a VM). Link
Installing Development Tools
~ Install GDB (GNU Debugger)
Ubuntu/Debian: sudo apt install gdb
Install Valgrind
* Ubuntu/Debian: sudo apt install valgrind
~ Install build-essential (gcc, g++, make, glibc)
* Ubuntu/Debian: sudo apt install build-essential
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https://learn.microsoft.com/en-us/windows/wsl/install
https://ubuntu.com/tutorials/install-ubuntu-desktop
https://www.virtualbox.org/wiki/Downloads
https://www.sourceware.org/gdb/
https://valgrind.org/

Some Important Links

Debugging & Visualization
- PythonTutor (visualize code execution, supports C/C++)
- Explainshell (breaks down any Linux command)

- GDB Cheat Sheet

Extra Learning
- Linux Journey (interactive basics)
- Valgrind Memcheck Guide

- Video Tutorial on Valgrind
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https://pythontutor.com/
https://explainshell.com/
https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf
https://linuxjourney.com/
https://valgrind.org/docs/manual/mc-manual.html
https://www.youtube.com/watch?v=p0gj6kbobRk

Thank You
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