
Advanced Programming Lab
CS6150

Week 3

(Linux & Debugging Basics)

Sanket Tarafder (cs24s018@{cse|smail})

 2

Learning Objectives
● Linux Basics

● Identifying Types of Errors

● Debugging Techniques

● GDB

● Valgrind (If time permits)

 3

Linux Basics

 4

Why Linux for Programming?
● Developer-Centric Design

● Powerful Command Line

● Development Ready Out-of-the-Box

● Widely Used in Industry

● Free, Open Source, Lightweight

 5

Linux File System

● / : The starting point for all other directories and files within a Linux system
● /bin : Essential softwares to keep the system running
● /home : Contains home directories for each user
● /usr : Essentially, subdirectories containing most software used on the system,

 including system libraries and documentation

Image source: serverkaka.com

 6

Scenario
● You just received a USB from a teammate containing hundreds of files —

documents, images, code, logs, etc. — all dumped in a single folder.

● You want to:

– Sort files into separate folders by extension.

– Convert all .c files to .cpp because the project migrated to C++.

– Find all files mentioning the word TODO (case-insensitive) and store
them in a separate folder.

– Generate a report of how many files are in each category.

 7

Linux Demo

 8

Essential Commands
● pwd : Show the current working directory

● cd : Change to another directory

● ls : List files and folders in the current directory

● mkdir : Create a new directory

● touch : Create a new empty file

● rm : Remove files or directories

● cp : Copy files or directories

 9

Essential Commands
● mv : Move or rename files and directories

● cat : Display the contents of a file

● nano : Simple terminal-based text editor

● clear : Clear the terminal screen

● man : Show the manual page for a command

● wc : Counts lines, words, and characters in files

● diff : Compare two files line by line

 10

 find . -type f -name "*.log" -delete❯

find: Locate Files/Dirs by Criteria

 find [PATH] [OPTIONS] [ACTIONS]❯

● -name "*.c" : Match filenames
● -type f / d : File or directory
● -size +1M : Bigger than 1MB
● -mtime -7 : Modified in last 7 days
● -exec CMD {} \; : Run CMD on each file
● -delete : Remove matched files

Example:

 11

grep: Pattern Matching in Files

 grep [OPTIONS] PATTERN [FILE...]❯

● -n : Show line numbers
● -i : Case-insensitive
● -r : Recursive search
● -v : Invert match (lines that don't match)
● -o : Only matched part

Example:

 grep -rin "main" src/❯

 12

Redirection & Pipes

Command Explaination Example

> Redirect stdout (overwrite file) ls > files.txt
>> Redirect stdout (append to file) echo "Hi" >> log.txt
< Redirect stdin from a file ./sort < data.txt

2> Redirect stderr gcc code.c 2> errors.txt
&> Redirect stdout + stderr command &> output.txt

● Redirections

● Pipes
● Pass the output of one command as the input to another.
● Example:

 ls -l | grep ".cpp"❯

 13

Compilation with g++

 g++ -Wall -g main.cpp -o main❯

● -Wall : all warnings

● -g : enables debugging symbols

● -o <output> : names the output binary

 14

Bugs and Errors

 15

What is a Bug?
● A bug is an error or flaw in a program that causes it to behave

unexpectedly or incorrectly.
● Bugs can lead to:

– Crashes (e.g., segmentation faults)
– Incorrect output
– Security vulnerabilities

● Bugs are common even in well-tested software.
● Debugging is the process of finding and fixing bugs.

 16

Types of Errors

Type

Syntax Error

Runtime Error

Logic Error

Example

int x = ;

Segfault, divide by 0

if (marks > 40)
std::cout << "Fail";

Detected By

Compiler

OS

Only you!

 17

Debugging Techniques

 18

Print-based Debugging (cout / printf)
● Approach

– Most basic form of debugging

– Insert print statements to trace values and flow

– Commonly used for quick checks

● Limitation:

– Doesn’t scale with large codebases

– Needs recompilation and cleanup afterward

 19

Rubber Debugging🦆
● Approach

– Explain your code line-by-line to someone — or a duck

– Forces you to slow down and think clearly

● How it helps:

– Identifies assumptions

– Reveals flaws in logic

– Encourages deliberate review

 20

GDB: Step Through Your Code
● Why GDB?

– Trace code without inserting print statements

– Inspect values, set breakpoints

– Works with segmentation faults, logic bugs, loops

● Key Advantages:

– No need to modify code repeatedly

– Powerful for large projects

 21

Debugging Demo

 22

GDB: Commands

Command Explaination

gdb ./a.out Start GDB with the compiled executable

break <line|func> Sets the breakpoint to the specified line or function

run or r Start running the program under GDB

next or n Execute next line (without stepping into functions)

step or s Step into function calls

continue or c Continue running the program until next breakpoint

print <var> or p Print the current value of a variable

display <var> Automatically print variable after each step

 23

GDB: Commands

Command Explaination

backtrace or bt Show function call stack trace

list or l Show source code lines around current line

info locals Show local variables in the current stack frame

info breakpoints List all breakpoints set

delete <bp#> Delete a specific breakpoint by number

disable <bp#> Temporarily disable a breakpoint

enable <bp#> Re-enable a disabled breakpoint

quit or q Exit GDB

 24

What is a Memory Leak?
● A memory leak occurs when a program allocates memory but fails to release it, causing

wasted memory over time.
● Downsides of Memory Leaks:

– Gradually consumes RAM
– Slows down system or crashes apps
– Very hard to detect manually!

● Why it matters:
– Critical for long-running programs (servers, daemons, etc.)

● Common Causes:
– new / malloc without delete / free
– Forgetting to free after early return

 25

What is Valgrind?
● Valgrind is a tool that detects memory leaks, uninitialized memory use, and invalid

memory access in C/C++ programs.

● How it works:

– Runs your program in a simulated environment

– Tracks all memory allocations and releases

● When to use:

– After writing/modifying pointer-heavy code

– When facing strange crashes or slowdowns

 26

Valgrind Demo

 27

Some Important Links
● Setting Up Linux

– Windows Subsystem for Linux (WSL) Setup. Link
– Dual Boot Ubuntu with Windows. Link
– VirtualBox Downloads (for running Linux in a VM). Link

● Installing Development Tools
– Install GDB (GNU Debugger)

● Ubuntu/Debian: sudo apt install gdb
– Install Valgrind

● Ubuntu/Debian: sudo apt install valgrind
– Install build-essential (gcc, g++, make, glibc)

● Ubuntu/Debian: sudo apt install build-essential

https://learn.microsoft.com/en-us/windows/wsl/install
https://ubuntu.com/tutorials/install-ubuntu-desktop
https://www.virtualbox.org/wiki/Downloads
https://www.sourceware.org/gdb/
https://valgrind.org/

 28

Some Important Links
● Debugging & Visualization

– PythonTutor (visualize code execution, supports C/C++)

– Explainshell (breaks down any Linux command)

– GDB Cheat Sheet

● Extra Learning

– Linux Journey (interactive basics)

– Valgrind Memcheck Guide

– Video Tutorial on Valgrind

https://pythontutor.com/
https://explainshell.com/
https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf
https://linuxjourney.com/
https://valgrind.org/docs/manual/mc-manual.html
https://www.youtube.com/watch?v=p0gj6kbobRk

 29

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

