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Reuse
● In large software systems, it is not a good idea to start from scratch 

every time.

− We should reuse existing functionality and build upon it.

● Reuse in procedural style is achieved using function libraries.

● OOP provides us with another interesting way to reuse the 
functionality of a class.

− An MTech student is a student, and so is a BTech student.



Inheritance
● Base class: Parent class with some 

functionality.

● Derived class: Child class which inherits 
properties of the parent class and defines 
its own.

− It also would add other functionality.

− Similar to how we inherit styles / 
behavior of our parents.



Derivation
Base

Derived

Student

IITM Student

Employee

CEO Engineer

IITM CS Student

IITM CS Student Entrepreneur



What all is inherited?
● An object of a derived class has stored in it all the fields of the base 

type.

● An object of the derived type can use the methods of the base type.

● But

− Derived class needs its own constructor(s)
− Appropriate base constructor needs to be invoked explicitly 

(otherwise, default is executed if exists)
− Need to respect the access permissions



Access Permissions
● A derived class method can access (irrespective of Inheritance type)

− All public member functions and fields of base
− All protected member functions and fields of base
− All methods and fields of itself

● A derived class method cannot access (irrespective of Inheritance type)

− Any private methods or fields of base
− Any protected or private members of any other class

public protected private
class ✓ ✓ ✓

children ✓ ✓ ✕

rest ✓ ✕ ✕



Access Permissions
● We can specify how/what we want to access in the derived class

Inheritance 
Type

Base public Base protected Base 
private

Public
Protected

Private



Access Permissions
● We can specify how/what we want to access in the derived class

Inheritance 
Type

Base public Base protected Base 
private

Public Public Protected Inaccessible
Protected Protected Protected Inaccessible

Private Private Private Inaccessible



Constructors
● A derived class constructor 

needs to call a specific base 
class constructor explicitly.

● This cannot be done using an 
executable instruction in the 
body of the constructor.

● Base class object is constructed 
first.



Destructors
● Destructors get called in the 

reverse order than the 
constructors.

● First derived class, then base 
class destructor

● A special consideration is 
required when a Base class 
pointer / reference points to a 
derived class object, and is 
deleted.



Pointers and Inheritance

● C++ has quite strong rules towards types.

● Student* pointer cannot point to Instructor 
class object.

● However, a base class pointer can point to 
derived class object.

○ Helpful in keeping track of all objects 
derived from the same class together.

○ We can call appropriate methods of 
different derived classes with the 
same pointer.

○ Keeping track of all students together.



Pointers and 
Inheritance

● Pointers can also be 
dynamically assigned at 
run time



Pointers and Inheritance
● Deleting a derived object automatically calls derived destructor and 

then the base destructor.

● However, deleting a base pointer pointing to derived object calls only 
base destructor.



Pointers and Inheritance
● Deleting a base pointer pointing to derived object calls only base 

destructor.

● If you want to call the destructor of the derived class (and then base 
class) in such a case, then you need to mark the base destructor 
virtual.

○ Virtual methods in the next week



Multiple Inheritance

● C++ allows deriving from multiple base 
classes.

− Java doesn't.

● The derived class inherits properties of 
both the base classes.

● If there is ambiguity (same method in 
both bases), compiler issues an error.



Friend Function

● Special function that is not a member 
of a class but is granted access to the 
class's private and protected members. 

● Friend function can manipulate or 
access the internal data of the class 
even though it is defined outside the 
class.
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See you in the lab on Friday

Try out examples

Practise problems will be available by tomorrow


