
Advanced Programming Lab
CS6150

18-August-2025

Anantha Padmanabha and Meghana Nasre

Inheritence

(Slides Courtesy : Rupesh Nasre)



Reuse
● In large software systems, it is not a good idea to start from scratch 

every time.

− We should reuse existing functionality and build upon it.

● Reuse in procedural style is achieved using function libraries.

● OOP provides us with another interesting way to reuse the 
functionality of a class.

− An MTech student is a student, and so is a BTech student.



Inheritance
● Base class: Parent class with some 

functionality.

● Derived class: Child class which inherits 
properties of the parent class and defines 
its own.

− It also would add other functionality.

− Similar to how we inherit styles / 
behavior of our parents.



Derivation
Base

Derived

Student

IITM Student

Employee

CEO Engineer

IITM CS Student

IITM CS Student Entrepreneur



What all is inherited?
● An object of a derived class has stored in it all the fields of the base 

type.

● An object of the derived type can use the methods of the base type.

● But

− Derived class needs its own constructor(s)
− Appropriate base constructor needs to be invoked explicitly 

(otherwise, default is executed if exists)
− Need to respect the access permissions



Access Permissions
● A derived class method can access (irrespective of Inheritance type)

− All public member functions and fields of base
− All protected member functions and fields of base
− All methods and fields of itself

● A derived class method cannot access (irrespective of Inheritance type)

− Any private methods or fields of base
− Any protected or private members of any other class

public protected private
class ✓ ✓ ✓

children ✓ ✓ ✕

rest ✓ ✕ ✕



Access Permissions
● We can specify how/what we want to access in the derived class

Inheritance 
Type

Base public Base protected Base 
private

Public
Protected

Private



Access Permissions
● We can specify how/what we want to access in the derived class

Inheritance 
Type

Base public Base protected Base 
private

Public Public Protected Inaccessible
Protected Protected Protected Inaccessible

Private Private Private Inaccessible



Constructors
● A derived class constructor 

needs to call a specific base 
class constructor explicitly.

● This cannot be done using an 
executable instruction in the 
body of the constructor.

● Base class object is constructed 
first.



Destructors
● Destructors get called in the 

reverse order than the 
constructors.

● First derived class, then base 
class destructor

● A special consideration is 
required when a Base class 
pointer / reference points to a 
derived class object, and is 
deleted.



Pointers and Inheritance

● C++ has quite strong rules towards types.

● Student* pointer cannot point to Instructor 
class object.

● However, a base class pointer can point to 
derived class object.

○ Helpful in keeping track of all objects 
derived from the same class together.

○ We can call appropriate methods of 
different derived classes with the 
same pointer.

○ Keeping track of all students together.



Pointers and 
Inheritance

● Pointers can also be 
dynamically assigned at 
run time



Pointers and Inheritance
● Deleting a derived object automatically calls derived destructor and 

then the base destructor.

● However, deleting a base pointer pointing to derived object calls only 
base destructor.



Pointers and Inheritance
● Deleting a base pointer pointing to derived object calls only base 

destructor.

● If you want to call the destructor of the derived class (and then base 
class) in such a case, then you need to mark the base destructor 
virtual.

○ Virtual methods in the next week



Multiple Inheritance

● C++ allows deriving from multiple base 
classes.

− Java doesn't.

● The derived class inherits properties of 
both the base classes.

● If there is ambiguity (same method in 
both bases), compiler issues an error.



Friend Function

● Special function that is not a member 
of a class but is granted access to the 
class's private and protected members. 

● Friend function can manipulate or 
access the internal data of the class 
even though it is defined outside the 
class.



Friend Function

● Special function that is not a member 
of a class but is granted access to the 
class's private and protected members. 

● Friend function can manipulate or 
access the internal data of the class 
even though it is defined outside the 
class.



See you in the lab on Friday

Try out examples

Practise problems will be available by tomorrow


