Advanced Programming Lab
CS6150

18-August-2025
Anantha Padmanabha and Meghana Nasre

Inheritence

(Slides Courtesy : Rupesh Nasre)

Reuse

In large software systems, it is not a good idea to start from scratch
every time.

- We should reuse existing functionality and build upon it.

Reuse in procedural style is achieved using function libraries.

OOP provides us with another interesting way to reuse the
functionality of a class.

— An MTech student is a student, and so is a BTech student.

Inheritance

e Base class: Parent class with some

functionality.

e Derived class: Child class which inherits
properties of the parent class and defines

its own.

— It also would add other functionality.

— Similar to how we inherit styles /
behavior of our parents.

#include <iostream>
using namespace std;

// Base class
class Animal {
public:
void eat() {
cout << "This animal eats food."

}

void sleep() {

cout << "This animal is sleeping."

}
i

// Derived class (inherits from Animal)
class Dog : public Animal {
public:

void bark() {

cout << "The dog barks." << endl;

}
s

int main() {
Dog myDog;

// Calling methods from the base class
// inherited from Animal

myDog.eat();

<< endl;

<< endl;

myDog.sleep(); // inherited from Animal

// Calling method from the derived class

myDog.bark();

return 9;

Derivation

[Employee J [Base J [Student J
N f
CEO || Engineer | [Derived | ITM Student

J

\l [IITM CS Student

What all is inherited?

e An object of a derived class has stored in it all the fields of the base
type.

e An object of the derived type can use the methods of the base type.

e But

— Derived class needs its own constructor(s)

— Appropriate base constructor needs to be invoked explicitly
(otherwise, default is executed if exists)

— Need to respect the access permissions

Access Permissions

e A derived class method can access (irrespective of Inheritance type)

— All public member functions and fields of base
— All protected member functions and fields of base
— All methods and fields of itself
e A derived class method cannot access (irrespective of Inheritance type)

— Any private methods or fields of base

— Any protected or private members of any other class

public protected private
class v v v
children v v X

rest ve X X

Access Permissions

e \We can specify how/what we want to access in the derived class

Public
Protected
Private

// Base class
class Animal {
public:
void eat() {
cout << "This animal eats food." << endl;

}

void sleep() {
cout << "This animal is sleeping." << endl;
}
|

// Derived class (inherits from Animal)
class Dog : public Animal {
public:
void bark() {
cout << "The dog barks." << endl;
i
};

Inheritance
Type
Public
Protected
Private

Access Permissions

e \We can specify how/what we want to access in the derived class

Base public

Public
Protected
Private

Base protected

Protected
Protected
Private

Base
private
Inaccessible
Inaccessible
Inaccessible

// Base class
class Animal {
public:
void eat() {
cout << "This animal eats food."

void sleep() {

cout << "This animal is sleeping."

b

// Derived class (inherits from Animal)

class Dog : public Animal {
public:
void bark() {

cout << "The dog barks." << endl;

<< endl;

<< endl;

Constructors

e A derived class constructor
needs to call a specific base
class constructor explicitly.

e This cannot be done using an
executable instruction in the
body of the constructor.

e Base class object is constructed
first.

#include <iostream>
using namespace std;

// Base class with a parameterized constructor
class Parent {
int x;
public:
// Base class's parameterized constructor
Parent(int i) {
> G K
cout << "Inside base class's parameterized constructor" << endl;
}
Xy

// Derived class that calls base class constructor in its initializer list
class Child : public Parent {
public:
// Derived class's parameterized constructor
Child(int x) : Parent(x) {
cout << "Inside derived class's parameterized constructor" << endl;
}
I

int main() {
Child obji1(10);
return 0;

}

#include <iostream>
using namespace std;

l | c // Base class with constructor & destructor
int x;

public:
// Base class constructor
Parent(int i) {

e Destructors get called in the

cout << "Inside Parent constructor, x = " << x << endl;

reverse order than the)

// Base class destructor

constructors. e &

cout << "Inside Parent destructor" << endl;
¥
HH

// Derived class with constructor & destructor

e First derived class, then base Class Child 5 public Parent {

public:

// Derived cl t t 1ls b t x in initiali list
CIaSS destru C‘tor Chnj(rix: x? E:ls;a:::(;t;c{or calls base constructor in initializer lis

cout << "Inside Child constructor" << endl;

}

// Derived class destructor
~Child() {

. A SpeCiaI ConSideration iS cout << "Inside Child destructor" << endl;

}

required when a Base class 4
int main() {

pointer / reference points to a cout << “Creating abject:\o"s

Child obj1(10);

derived class object, and is cout << “Object going out of scaper
deleted. y

Pointers and Inheritance

C++ has quite strong rules towards types.

Student® pointer cannot point to Instructor
class object.

However, a base class pointer can point to
derived class object.

o Helpful in keeping track of all objects
derived from the same class together.

o We can call appropriate methods of
different derived classes with the
same pointer.

o Keeping track of all students together.

#include <iostream>
using namespace std;

class Student {
public:
void display() {
cout << "I am a Student." << endl;
}
B

class BTechStudent : public Student {
private:
string BTechproject[50];

¥

class MTechStudent : public Student {
private:
string MTechproject[50];
};

int main() {
Student* students([2];

students[@] = new BTechStudent();
students[1] = new MTechStudent();

for (int i = 0; i < 2; ++1i) {
students[i]->display();
¥

for (int i = 0; i < 2; ++i)
delete students[il;

return 0;

#include <iostream>
using namespace std;

class Student {
public:
void display() {
cout << "I am a Student." << endl;
}
b

. class BTechStudent : public Student {
omnters an

string BTechproject[50];

I u b
I I l e rltal lce class MTechStudent : public Student {
private:
string MTechproject[50];
};

e Pointers can also be - ?iizz;é s
dynamically assigned at Liciioec:
run time

cout<<"Enter 1 to create BTech student and enter 2 to create MTech Student'<<endl;

cin >> choice;

if (choice == 1) {
student = new BTechStudent();
} else if (choice == 2) {

student = new MTechStudent();

student->display();
delete student;
return 0;

Pointers and Inheritance

e Deleting a derived object automatically calls derived destructor and
then the base destructor.

e However, deleting a base pointer pointing to derived object calls only
base destructor.

Pointers and Inheritance

e Deleting a base pointer pointing to derived object calls only base
destructor.

e If you want to call the destructor of the derived class (and then base
class) in such a case, then you need to mark the base destructor

virtual.

o Virtual methods in the next week

Multiple Inheritance

C++ allows deriving from multiple base
classes.

— Java doesn't.

The derived class inherits properties of
both the base classes.

If there is ambiguity (same method in
both bases), compiler issues an error.

#include <iostream>
using namespace std;

// First base class
class Father {
public:
void fatherFunc() {
cout << "Function from Father class." << endl;
}
i

// Second base class
class Mother {
public:
void motherFunc() {
cout << "Function from Mother class." << endl;
}
i

// Derived class inheriting from both Father and Mother
class Child : public Father, public Mother {
public:
void childFunc() {
cout << "Function from Child class." << endl;
}
¥;

int main() {
Child obj;

obj.fatherFunc(); // from Father class
obj.motherFunc(); // from Mother class

obj.childFunc(); // from Child class

return 90;

Friend Function

e Special function that is not a member
of a class but is granted access to the
class's private and protected members.

e Friend function can manipulate or
access the internal data of the class
even though it is defined outside the
class.

#include <iostream>
using namespace std;

class MyClass {
private:
int secret;

public:
MyClass(int val) : secret(val) {}

// Declare friend function
friend void revealSecret(MyClass obj);

| H

// Friend function definition
void revealSecret(MyClass obj) {
// Can access private members directly
cout << "The secret value is: " << obj.secret << endl;

}

int main() {
MyClass obj(42);

// Call the friend function
revealSecret(obj);

return 9;

}

Friend Function

e Special function that is not a member
of a class but is granted access to the

class's private and protected members.

e Friend function can manipulate or
access the internal data of the class
even though it is defined outside the
class.

#include <iostream>
using namespace std;

class ClassB;

class ClassA {
private:
int numA;
public:
ClassA() : numA(12) {}

friend int add(ClassA, ClassB);
X

class ClassB {
private:
int numB;
public:
ClassB() : numB(1) {}

friend int add(ClassA, ClassB);
I

int add(ClassA objectA, ClassB objectB) {

return (objectA.numA + objectB.numB);

}

int main() {
ClassA objectA;
ClassB objectB;
cout << "Sum: " << add(objectA, objectB) << endl;
return 9;

See you in the lab on Friday

Try out examples

Practise problems will be available by tomorrow

