
Advanced Programming Lab
CS6150

Week 5

Polymorphism

(Slides Courtesy : Rupesh Nasre)



Recap : Classes and Objects
● A class is a type 

● An object is its instance

● A class declaration may have Methods and Variables.

● The class content may be public, private, or protected.

● Inheritance allows code reuse and generalization



Polymorphism
● The same mnemonic appears in multiple forms:

− Poly = multiple, morph = form

● Bears potential to tremendously improve code 
readability.

Function Operator

Supported in C++, Java, ...
e.g., add(1), add(x, 4)

Supported in C++.
e.g., string * 2, obj[5]



Function Overloading : (without classes)
● A function can be 

re-implemented in 
many ways depending 
on the type / number of 
arguments.

● Cannot have two 
variations of the 
function that takes the 
same parameters in 
the same order.



Function Overloading and Inheritance
● A function in the base 

class can be 
re-implemented in the 
derived class.

● derived.method() calls 
the overloaded function.

● base.method() calls the 
base class method, 
provided base is not a 
derived class object. Compile Time Error



Function Overloading and Inheritance
● A function in the base 

class can be 
re-implemented in the 
derived class.

● derived.method() calls 
the overloaded function.

● base.method() calls the 
base class method, 
provided base is not a 
derived class object. This is OK



Function Overloading and Inheritance
● How to access 

base.method() from a 
derived class?

● Declare them explicitly

● Once for every method



● A derived class can redefine a 
method from the base class.

● If their signatures are the same, 
derived class method hides the 
base class method.

● A base class pointer calls the base 
method, while a derived class 
pointer calls the derived method.

● A base pointer pointing to derived 
class calls the base method.

Function Overloading and Inheritance



● What if we want to invoke 
derived class method, while 
using a Base class pointer? 

● Use Virtual Methods

Function Overloading and Inheritance



Virtual Functions
● If a function is virtual in the base 

class, it indicates that a derived 
class may want to override it.

● When a virtual method is invoked 
using a base class pointer, 
appropriate version of the method 
is invoked.

● In derived class definition, override 
is optional but recommended



Virtual Methods
● A virtual method declared in the base class makes the method virtual in base 

class, all the classes transitively derived from it.

● Signature must exactly match in derived classes 
○ Otherwise, it’s considered overloading, not overriding.

● Redefinition is optional in derived classes, but the base class declaration is 
mandatory.

● Constructors cannot be virtual.

● Destructors should be virtual, unless a class is not going to be used as a 
base class.

○ Otherwise only base destructor will be called



Why is this useful?
● Consider a hierarchy of students

− Student ← IITM_Student ← CSE_Student ← MTech_Student

− Student *s = new MTech_Student; s->display();

− Which display() should be called?

− Most specialized method is called.



Pure Virtual Functions and Abstract Classes

● A virtual function with no definition is pure.

● A class with at least one PVF is abstract.

● An abstract class cannot be instantiated.

− But pointers and references of abstract 
type can be created and used.

● If a derived class does not implement all 
PVF, then it also becomes pure.

● A PVF can be specified even with a default 
definition.



Pure Virtual Functions and Abstract Classes
● Pure virtual functions do not contain any code in the base class; only the 

signature exists.

● Any class with one or more pure virtual functions becomes an abstract class, 
which cannot be instantiated (objects cannot be created directly from it).

● All derived classes must provide their own definitions for all pure virtual 
functions; otherwise, they themselves become abstract.

● Commonly used to enforce a contract where derived classes must 
implement essential functions, much like interfaces in other languages.



Overloading v/s Overriding
● Overloading lets you have the same function name multiple times in a 

class but with different parameter sets. 
− Can be disambiguated at compile time.

● Overriding means a derived class re-implements a base class function 
with the same signature to give it new behavior. 
−  Function to call decision  is based on the actual object type.



Operator Overloading
● Just like functions, operators can also be overloaded.

○ Example:   ab + ba  =  abba

● Operator overloading lets you define functions that provide new meanings to 
operators when used with user-defined types.

● You create a special function with the keyword operator followed by the operator 
symbol you want to overload.

● Two ways to define:
○ As a member of the class

■ Define it in the left class
○ As a friend



Overloading +
(As a member of the class)

● How could we access other.real / 
other.imag inside the operator+ ?

● In C++, member functions have access 
to private members of all instances of 
the class, not just the current (this) 
object.



Overloading +
(As a friend)

● Typically used with the operator takes 
two different classes as parameters



Rules for Operator Overloading

●  Must be overloaded for a user-defined class.

●  Operator associativity remains the same.

●  Operator precedence remains the same.

●  Cannot define a new symbol as operator.



Overloading 
Unary Operator

(As a member of the class)



Overloading Input and Output
● Name = “Alice”;
● cout<<name;

● Prints the value of name (Alice)

● Can we have:
○ Date as a class that contains day, month and year
○ cout<<date;

■ Prints the dd/mm/yyyy
○ cin>>date;

■ Takes dd, mm and yyyy as inputs with appropriate message

● Possible by overloading << and >> operators



Overloading Input and Output
● ostream class is used to write output data to devices like the console 

or files. 
○ The common instance is std::cout
○ Other instances include std::cerr, std::clog …

● istream class is used to read input data from devices like the 
keyboard or files. 
○ The common instance is std::cin.
○ Other instances include std::ifstream

● Here std is the namespace



Overloading <<
● Overload << as a non-member 

friend function that takes an 
ostream& and a reference to the 
class object.

● Allows objects of the class to be 
used with output stream.

● The function returns ostream& 
so that multiple insertions can 
be chained.



Overloading 
>> for cin



Non-overloadable Operators
● . member operator 
● .* pointer to member operator 

● ?: ternary conditional operator

● :: scope resolution operator 

● sizeof data size operator 

● typeid data type operator 



Other Overloadable Operators
● New

● Delete

● [ ]

● ->



See you in the lab on Friday

Try out examples

Practise problems will be available by tomorrow


