Advanced Programming Lab
CS6150

Week 5

Polymorphism

(Slides Courtesy : Rupesh Nasre)

Recap : Classes and Objects

A class is a type

An object is its instance

A class declaration may have Methods and Variables.
The class content may be public, private, or protected.

Inheritance allows code reuse and generalization

Polymorphism

. The same mnemonic appears in multiple forms:

- Poly = multiple, morph # form

. Bears potential to tremendously improve code
readabillity.

[Function } L Operator J

Supported in C++, Java, ... Supported in C++.
e.g., add(1), add(x, 4) e.g., string * 2, obj[5]

e A function

Function Overloading : (without classes)

can be
re-implemented in
many ways depending
on the type / number of
arguments.

Cannot have two
variations of the
function that takes the
same parameters in
the same order.

#include <iostream>
using namespace std;

// Function to add two integers
int add(int a, int b) {

return a + b;
}

// Function to add two strings
string add(string x, string y) {

TN 33

string concat = x;

for (i = 0; yl[i] != '\0'; i++) {

oncat = concat + y[i];

}

return concat;
}

// Function to add three integers
int add(int a, int b, int c) {
return a + b + c;

<< "add(int, int): "
<< "add(string, string):
cout << "add(int, int, int):
return 0;

" << add("Hello
" << add(1, 2, 3)

<< add(3, 4) << endl;
", "World")

// calls first function

<< endl;

<< endl; // calls secon
// calls third function

d

func

tion

Function Overloading and Inheritance

e A function in the base
class can be
re-implemented in the
derived class.

e derived.method() calls

the overloaded function.

e base.method() calls the
base class method,
provided base is not a
derived class object.

#include <iostream>
using namespace std;

class Base {

public:
void display(string x) {
cout << "Base display with string: " << x << endl;
}
|

class Derived : public Base {
public:
// Overload display() in derived class
void display(double y) {
cout << "Derived display with double: " << y << endl;
}
I

int main() {
Derived obj;
obj.display("5");
return 0;

by

Compile Time Error

Function Overloading and Inheritance

#include <iostream>

e A function in the base using namespace std;
class can be class Base {
. . public:
re-implemented in the void displaylstring x) {
. cout << "Base display with string: " << x << endl;
derived class. \ s g
) o

class Derived : public Base {
public:
// Overload display() in derived class

e derived.method() calls

: void display(double y) {
tr]ea ()\/EBrIC)Ei(jEBCj fljr](3t|()r]' coutp<<y”Derivedydisplay with double: " << y << endl;
}
I
e base.method() calls the AR
base class method, sbl-dispay (53
. . return 0;

provided base is not a)

derived class object. This is OK

Function Overloading and Inheritance

#include <iostream>

L HOW tO aCCeSS using namespace std;
base-methOd() from a class Base {
. ublic:
derived class? " el a4
cout << "Base display with int: " << x << endl;
b
| H

e Declare them explicitly

class Derived : public Base {
public:
using Base::display; // Bring all overloads of display from Base into scope
void display(double y) {
® Once for every methOd cout << "Derived display with double: " << y << endl;
¥
I

int main() {
Derived obj;

obj.display(5); // Calls Base::display(int)
obj.display(5.5); // Calls Derived::display(double)
return 0;

Function Overloading and Inheritance

#include <iostream>
using namespace std;

class Base {

e A derived class can redefine a public:

void showMessage() {

method from the base CIaSS : cout << "Message from Base class" << endl;
o If thelr Slgnatures are the Same’ class Derived : public Base {

derived class method hides the rwuc

// This redefines (overrides) the Base class method

base CIaSS methOd void showMessage() {

cout << "Message from Derived class" << endl;

L
e A Dbase class pointer calls the base *

methOd, Wh]le a derlved CIaSS int main() {

Base b;

pointer calls the derived method. SR 1

b.showMessage(); // Calls Base version
d.showMessage(); // Calls Derived version

e A base pointer pointing to derived
CIaSS Ca”S the base methOd égS::tpii :e&sje a Base pointer pointing to a Derived object:

ptr->showMessage(); // Still calls Base version (not virtual)

return 0;

Function Overloading and Inheritance

e \WVhat if we want to invoke
derived class method, while
using a Base class pointer?

e Use Virtual Methods

#include <iostream>
using namespace std;

class Base {
public:
void showMessage() {
cout << "Message from Base class" << endl;
}

class Derived : public Base {
public:
// This redefines (overrides) the Base class method
void showMessage() {
cout << "Message from Derived class" << endl;
}
};

int main() {
Base b;
Derived d;

b.showMessage(); // Calls Base version
d.showMessage(); // Calls Derived version

// But if we use a Base pointer pointing to a Derived object:
Basex ptr = &d;

ptr->showMessage(); // Still calls Base version (not virtual)

return 0;

Virtual Functions

If a function is virtual in the base
class, it indicates that a derived
class may want to override it.

When a virtual method is invoked
using a base class pointer,
appropriate version of the method
IS invoked.

In derived class definition, override
is optional but recommended

#include <iostream>
using namespace std;

class Base {
public:

s

class Derived :

// Virtual function
virtual void show() {
cout << "Base class show function" << endl;

by

public Base {

public:

+

// Override the virtual function
void show() override {
cout << "Derived class show function" << endl;

by

int main() {

Basex basePtr; // Base class pointer

Derived derivedObj; // Derived class object
basePtr = &derivedObj; // Base pointer points to derived object
basePtr->show(); // Calls Derived's show() due to virtual function

return 0;

Virtual Methods

e A virtual method declared in the base class makes the method virtual in base
class, all the classes transitively derived from it.

e Signature must exactly match in derived classes
o Otherwise, it's considered overloading, not overriding.

e Redefinition is optional in derived classes, but the base class declaration is
mandatory.

e (Constructors cannot be virtual.

e Destructors should be virtual, unless a class is not going to be used as a
base class.

o Otherwise only base destructor will be called

Why is this useful?

e Consider a hierarchy of students
— Student «— [ITM_Student «— CSE_Student — MTech_Student
— Student *s = new MTech_Student; s->display();
— Which display() should be called?

— Most specialized method is called.

Pure Virtual Functions and Abstract Classes

A virtual function with no definition is pure.
A class with at least one PVF is abstract.
An abstract class cannot be instantiated.

— But pointers and references of abstract
type can be created and used.

If a derived class does not implement all
PVF, then it also becomes pure.

A PVF can be specified even with a default
definition.

#include <iostream>
using namespace std;

// Abstract class with a pure virtual function
class Shape {

public:
// Pure virtual function makes this class abstract
virtual void draw() = 0;

void description() {
cout << "This is a shape." << endl;

}
i 1

// Derived class must override the pure virtual function
class Circle : public Shape {
public:
void draw() override {
cout << "Drawing a circle." << endl;

}
¥

int main() {
// Shape s; // Error! Cannot instantiate an abstract class

Circle c;
c.description(); // Calls base class non-virtual method

c.draw(); // Calls overridden method in derived class

Shapex shapePtr = &c;
shapePtr->draw(); // Calls Circle's draw() due to virtual dispatch

return 0;

Pure Virtual Functions and Abstract Classes

e Pure virtual functions do not contain any code in the base class; only the
signature exists.

e Any class with one or more pure virtual functions becomes an abstract class,
which cannot be instantiated (objects cannot be created directly from it).

e All derived classes must provide their own definitions for all pure virtual
functions; otherwise, they themselves become abstract.

e Commonly used to enforce a contract where derived classes must
implement essential functions, much like interfaces in other languages.

Overloading v/s Overriding

e Overloading lets you have the same function name multiple times in a
class but with different parameter sets.
- Can be disambiguated at compile time.

e Overriding means a derived class re-implements a base class function
with the same signature to give it new behavior.
— Function to call decision is based on the actual object type.

Operator Overloading

Just like functions, operators can also be overloaded.
o Example: ab + ba = abba

Operator overloading lets you define functions that provide new meanings to
operators when used with user-defined types.

You create a special function with the keyword operator followed by the operator
symbol you want to overload.

Two ways to define:
o As a member of the class
m Defineitin the left class
o As a friend

Overloading +

(As a member of the class)

How could we access other.real /
other.imag inside the operator+ ?

In C++, member functions have access
to private members of all instances of
the class, not just the current (this)
object.

#include <iostream>
using namespace std;

class Complex {
private:

float real, imag;

public:

i

int

// Constructor
Complex(float r = @, float i = @) : real(r), imag(i) {}
// Overload '+' operator as a member function
Complex operator+(Complex& other) {
return Complex(real + other.real, imag + other.imag);

}

void display() <

cout << real << " + " << imag << "i" << endl;

}

main() {
Complex c1(3.5, 2.5);
Complex c2(1.5, 4.5);

Complex sum = cl + c2;
sum.display();

// '+' operator overloaded
// Output: 5 + 71

return 0;

#include <iostream>
using namespace std;

class Celsius;

class Fahrenheit {
double degreesF;
public:
Fahrenheit(double f = 0.0) : degreesF(f) {}
double getF() const { return degreesF; }
// Declare friend operator+ to access private members
friend Celsius operator+(Fahrenheit& f, Celsius& c);

b

Overloadi ng + s Gt

public:
. Celsius(double c = 0.0) : degreesC(c) {}
(AS a frlend) double getC() { return degreesC; }
void display() {
cout << degreesC << " °C" << endl;
}
// Declare friend operator+ to access private members

friend Celsius operator+(Fahrenheit& f, Celsius& c);
};

double fahrenheitToCelsius(double f) {

. . return (f - 32) * 5.0 / 9.0;
e Typically used with the operator takes ;
tWO diﬁerent Classes as parameters // Overloaded + operator to add Fahrenheit and Celsius temps (converted to Celsius)

Celsius operator+(const Fahrenheit& f, const Celsius& c) {
double celsiusFromF = fahrenheitToCelsius(f.gggggg§f):
return Celsius(celsiusFromF + c.degreesC);

int main() {
Fahrenheit fTemp(98.6);
Celsius cTemp(37);

Celsius result = fTemp + cTemp; // Uses overloaded operator+
cout << "Sum of temperatures in Celsius: ";

result.display();

return 0;

Rules for Operator Overloading

Must be overloaded for a user-defined class.
Operator associativity remains the same.
Operator precedence remains the same.

Cannot define a new symbol as operator.

#include <iostream>
using namespace std;

class Point {
private:
int x, y;

public:

// Constructor
Point(int xVal = @, int yval = @) : x(xVval), y(yval) {}

Overloadin 9 foin operatoral) € T
Unary Operator ~~~~ "~
(As a member of the class) cout << (" << x <<

¥i

el

" "
’

<< y << ")" << endl;

-

int main() {
Point pl1(5, -3);
cout << "Original point: ";
pl.display();

Point p2 = -pl; // Calls overloaded unary operator-

cout << "After applying unary - : ";
p2.display();

return 0;

Overloading Input and Output

Name = “Alice”;
cout<<name;

Prints the value of name (Alice)

Can we have:
o Date as a class that contains day, month and year
o cout<<date;
m Prints the dd/mm/yyyy
o cin>>date;
m Takes dd, mm and yyyy as inputs with appropriate message

Possible by overloading << and >> operators

Overloading Input and Output

ostream class is used to write output data to devices like the console
or files.

o The common instanceis std: :cout

o Otherinstances include std: :cerr, std::clog ..

istream class is used to read input data from devices like the
keyboard or files.

o The common instanceis std: :cin.

o Otherinstancesinclude std: :ifstream

Here std is the namespace

Overloading <<

e Overload << as a non-member
friend function that takes an
ostream& and a reference to the
class object.

e Allows objects of the class to be
used with output stream.

e The function returns ostream&
so that multiple insertions can
be chained.

#include <iostream>
using namespace std;

class Date {
int month, day, year;

public:
Date(int m, int d, int y) : month(m), day(d), year(y) {}

// Declare friend function to overload <<
friend ostream& operator<<(ostream& os, const Date& dt);

¥

// Definition of overloaded << operator

ostream& operator<<(ostream& os, const Date& dt) {
0s << dt.month << '/' << dt.day << '/' << dt.year;
return os; // Return ostream to allow chaining

}

int main() {
Date date(8, 14, 2025);
cout << "Today's date is: " << date << endl;
return 90;

}

#include <iostream>
using namespace std;

class Date {
int day, month, year;

public:
Date() : day(1), month(1), year(2000) {}

// Friend function to overload >>

friend istream& operator>>(istream& is, Date& dt);

// Friend function to overload <<

friend ostream& operator<<(ostream& os, const Date& dt);

I H
// Overload extraction operator >>
. istream& operator>>(istream& is, Date& dt) {
Ve r Oa I n cout << "Enter day month year: ";
is >> dt.day >> dt.month >> dt.year;
return is; // Return stream for chaining

[
> > fo r CI l l // Overload insertion operator << (for display)

ostream& operator<<(ostream& os, const Date& dt) {
0s << dt.day << "/" << dt.month << "/" << dt.year;
return os;

int main() {
Date d;

// Using overloaded >>
cin >> d;

// Using overloaded <<
cout << "You entered: " << d << endl;

return 0;

Non-overloadable Operators

.. member operator
. pointer to member operator

. ?: ternary conditional operator

scope resolution operator

. sizeof data size operator

. typeid data type operator

Other Overloadable Operators

New

Delete

[]

->

See you in the lab on Friday

Try out examples

Practise problems will be available by tomorrow

