CS6150 — Advanced Programming

Standard Template Library

September 22, 2025

A simple set of tasks

Read strings from the user till the user enters "END".
Store the strings.
Search a given value in the input strings.

Modify the strings to be in upper case.

A simple set of tasks

Read strings from the user till the user enters “END".
® How many strings will be given?
® Not known in advance, so make an estimate.

Store the strings.

® Store strings in an array — size over-estimated.
® Store strings in a list.

Search a given value in the input strings.
® |terate over the stored strings.
Modify the strings to be in upper case.
® |terate over the strings and keep modifying.

vector: a templatized container

vector: a dynamic array that can grow and shrink
® contiguous memory allocation
® memory management is taken care

® supports random access

member functions include : size(), push_back(), pop-back()

vector: a templatized container

vector: a dynamic array that can grow and shrink
® contiguous memory allocation
® memory management is taken care
® supports random access

® member functions include : size(), push_back(), pop-back()

#include <vector>

vector<string > myVec;
// a vector of strings

vector<int> mylntVec;

// a vector of integers
vector<Student> myStudVec;
// a vector of Students

© 00 ~NO O WN

=
= O

© 00 ~NO O WN

[e e e
O © 00 ~NO Ol & WN = O

Using vector of strings

#include <iostream>

#include <vector>

using namespace std;

int main() {
vector<string > myVec;

string st;
while (1) {
cin >> st;
if (st = "END") break;

myVec. push_back(st);
}

int numOflnputs = myVec.size ();
for (int i = 0; i < numOflnputs;

" n

cout << myVec[i] <<
// array style access.

cout << endl;

i++) {

iterator: an object that points to another object

vector<string>::iterator : an iterator for a vector of strings

iterator: an object that points to another object

vector<string>::iterator : an iterator for a vector of strings
® jterators are generalization of pointers
® used to iterate over a range of objects
® containers need to provide a way to access elements

® enables generic algorithms that work on different containers

iterator: an object that points to another object

vector<string>::iterator : an iterator for a vector of strings

o O WN =

® iterators are generalization of pointers

® used to iterate over a range of objects

® containers need to provide a way to access elements

® enables generic algorithms that work on different containers

#include <vector>

vector<string >::iterator

}

it;
for (it=myVec.begin();
cout << *it << "

it!l=myVec.end();

it++) {

=
H O © 00 ~NO O &~ WN -

e el e el
© 00 ~NO G~ WD

Accessing vector using iterator

#include <iostream>

#include <vector>

using namespace std;

int main() {
vector<string > myVec;
string st;

while (1) {
cin >> st;
if (st = "END") break;
myVec. push_back(st);

}

vector<string >::iterator it;
for (it=myVec.begin(); itl=myVec.end();

}

cout << *it << ;
cout << endl;

it++) {

Using STL algorithm for search

Let us use what STL provides : generic algorithm find
find:

® jterator to the first element in range

® jterator to the element just after the range

® value to be searched

Using STL algorithm for search

Let us use what STL provides : generic algorithm find
find:

® jterator to the first element in range

® jterator to the element just after the range

® value to be searched

1 |#include<algorithm>

2 | ..

3 |int main() {

4 vector<string > myVec;

5

6 // same code as above to populate vector
7 vector<string >::iterator it;

8 it = find (myVec.begin(),myVec.end(),” CS6150");
9

10 if (it '= myVec.end())

11 cout << "found CS6150 at ”

12 << distance (myVec.begin(), it) << endl;
13 |}

© 00 ~NO O WN

—
o

11
12
13

14
15

16
17

Searching in a range

int

main () {
vector<int> myVec;
for (int i = 1; i <= 100; i++)

myVec. push_back(i);
vector<int >::iterator it;

it = find (myVec.begin(), myVec.end(), 10);
if (it !'= myVec.end())
cout << "10 is at position << distance(
myVec. begin (), it) << endl;
else cout << "not found 10 in range\n";

"

it = find (myVec.begin()+20, myVec.begin ()+25,
10);
if (it != myVec.begin()+25)
cout << "10 is at position << distance(
myVec. begin (), it) << endl;
else cout << "not found 10 in range 20——24\n";

i

o Ol WN

~

10
11
12

Replace X by Y

using namespace std;
int main() {
vector<string > myVec;

// same code as above to populate vector.

replace (myVec.begin(), myVec.end(), "CS6150",

" C$6380") ;

for (auto it = myVec.begin(); it != myVec.end()

poit+4) {
cout << *xit <<

noon

<< endl;

}

cout << endl;

What have we learnt?

STL is a collection of common data structures and algorithms.

e Container: An object that stores a collection of other
objects.

® implemented as class templates.

What have we learnt?

STL is a collection of common data structures and algorithms.

e Container: An object that stores a collection of other
objects.

® implemented as class templates.
® vector : a sequence container.

What have we learnt?

STL is a collection of common data structures and algorithms.
e Container: An object that stores a collection of other
objects.
® implemented as class templates.
® vector : a sequence container.
® lterator: A container class may an iterator used to iterate
through the elements of the container.
® vector has random access iterator

What have we learnt?

STL is a collection of common data structures and algorithms.
e Container: An object that stores a collection of other
objects.
® implemented as class templates.
® vector : a sequence container.
® lterator: A container class may an iterator used to iterate
through the elements of the container.
® vector has random access iterator
e (Operations for iterators: A container iterator may support
one or more operations.
® begin iterator of vector supports ++, *, + amongst others.

What have we learnt?

STL is a collection of common data structures and algorithms.
e Container: An object that stores a collection of other
objects.
® implemented as class templates.
® vector : a sequence container.
® lterator: A container class may an iterator used to iterate
through the elements of the container.
® vector has random access iterator
e (Operations for iterators: A container iterator may support
one or more operations.
® begin iterator of vector supports ++, *, + amongst others.
® Algorithms: A set of functions that can be used on range of
elements in the container.

® examples : find, replace, distance
® work with iterators, can be used with different containers, work
seamlessly over various ranges.

Containers, lterators, Algorithms

Containers
® Sequence Containers: vector, deque (deck), list

® Associative Containers: set, multiset, map, multimap,
unordered variants of these

e Container Adaptors: queue, priority_queue, stack

Containers, lterators, Algorithms

Containers
® Sequence Containers: vector, deque (deck), list

® Associative Containers: set, multiset, map, multimap,
unordered variants of these

e Container Adaptors: queue, priority_queue, stack
Iterators

® allow us to access objects in the container

Containers, lterators, Algorithms

Containers
® Sequence Containers: vector, deque (deck), list

® Associative Containers: set, multiset, map, multimap,
unordered variants of these

e Container Adaptors: queue, priority_queue, stack
Iterators

® allow us to access objects in the container
STL generic algorithms

® algorithms work on iterators rather than containers.

® compose algorithm with container : find on list, find on set,
find on vector

Containers, lterators, Algorithms

Containers
® Sequence Containers: vector, deque (deck), list

® Associative Containers: set, multiset, map, multimap,
unordered variants of these

e Container Adaptors: queue, priority_queue, stack
Iterators

® allow us to access objects in the container
STL generic algorithms

® algorithms work on iterators rather than containers.

® compose algorithm with container : find on list, find on set,
find on vector invoke algorithm with iterator for that
container.

® templates provide compile time safety for combinations of
containers, iterators and algorithms.

