
State Space Search

Artificial Intelligence (CS6380)

State space search: notation
Abstract the problem as a state space search problem

• Set of states (state space)

• Initial state

• Goal states / goalTest / is goal function

• Actions

• Transition function

• Action cost function

Level of abstraction: too detailed vs too coarse

Path finding : CSE dept to main gate. How to model?

Problem 1

Rubiks cube

Trivia
• Designed by sculptor and architect Rubik

(1974)

• Initially called as Magic cube

• Do you know how to solve the cube?

• Can you try to solve the Rubik’s cube?

• How good is the solve?

• Set of states (state space): all configurations of the cube.
Depending on the representation. ~10^19 states.

• Initial state: given configuration

• Goal states / goalTest / is goal function: solved cube

• Actions: face = T / Bt / L / R / F / Bk; rotate = 90 / 180 / 270

• Transition function: config-1 T-180 config-2, …

• Action cost function: unit cost

Problem 2

Eight puzzle

• Set of states (state space)

• Initial state

• Goal states / goalTest / is goal function

• Actions

• Transition function

• Action cost function

Problem 3

• Man, goat, wolf, cabbage puzzle.

• Boat can carry at most 2 things and there are

constraints on who can stay together safely.

• How does the man take everyone across the river?

• Set of states (state space)

• Initial state

• Goal states / goalTest / is goal function

• Actions

• Transition function

• Action cost function

Problem 4

Knuth’s conjecture

• Start with integer 4.

• Apply sq. root, floor, factorial.

• Goal : to obtain the desired integer.

https://oisinmoran.com/projects/root_floor_fact_four

• Set of states (state space)

• Initial state

• Goal states / goalTest / is goal function

• Actions

• Transition function

• Action cost function

Problem solving agent
Single agent solves/ attempts to solve all problems

• Rubik’s cube

• 8 puzzle

• Man, cabbage, goat, fox

• 4 → 5 (Knuths conjecture)Problem solving agent

Initial state

Goal state
State space is a graph: nodes as states and arcs
representing transitions.

State space graph is not given to us. It is present implicitly

Search algorithm : evaluation
How do we evaluate different search algorithms?

• Completeness: does the algorithm find a solution when there is one
and report failure when a solution does not exist?

• Cost optimality: does it find the lowest cost path amongst all
solutions?

• Time complexity: how long does it take to find a solution?

• Graph is not given explicitly. Cannot use usual parameters like |V|, |E|

• Space complexity: how much memory is required to perform the
search?

Uninformed search

How to search?
For a particular node expand its neighbourhood /
moveGen function (filter invalid states if generated)

• Generates child nodes.

• Pick one of the child nodes for further expansion

• Which one to select?

• Need some way to order child nodes. Use a

function f
• Maintain set of nodes to expand. Call it frontier /

open list
• What is missing in the state space graph beside?

• Cycles / loops.

Generic search algorithm
Create an empty frontier and insert start-node to frontier

Create an empty reachedList and insert (start-node, initial-cost) to reachedList

While frontier not empty do

• Extract best node from frontier. // best is decided via function f
• If node is goal node return node

• Expand node to get child nodes

• For each child node do

• newCost = node.path-cost + transition-cost

• If (child not in reachedList)

• Add child to frontier

• child.parent = node

• Add (child, new cost) to reachedList

• Else if newCost < child.path-cost // child is in reachedList

• Add child to frontier
• child.parent = node

• Replace occurrence of child in reachedList by (child, newCost)

Return failure

Create an empty frontier and insert start-node to frontier

Create an empty reachedList and insert (start-node, initial-cost) to reachedList

While frontier not empty do

• Extract best node from frontier. // best is decided via function f
• If node is goal node return node

• Expand node to get child nodes

• For each child node do

• newCost = node.path-cost + transition-cost

• If (child not in reachedList)

• Add child to frontier

• child.parent = node

• Add (child, new cost) to reachedList

• Else if newCost < child.path-cost // child is in reachedList

• Add child to frontier
• child.parent = node

• Replace occurrence of child in reachedList by (child, newCost)

Return failure

Generic search algorithm

How can we use function f
to get familiar algorithms?

Example continued

• b : branching factor or maximum number of successors of a node

• d : number of actions in an optimal solution

• m : maximum number of actions in any path

• C* : cost of optimal solution

• > 0 : cost of the cheapest actionϵ

Breadth First search (BFS)

 function f : depth of node.

• Completeness: yes if the space is finite or the goal is reachable from the
start state.

• Cost optimality: yes for uniform cost actions. No when the costs are not
uniform.

• Total number of nodes generated: 1+ b + b^2 + b^3 + … + b^d

• Time complexity: for finite state spaces : O (|V| + |E|). For inifinite spaces
when goal is reachable: proportional to the total number of nodes
generated.

Uniform cost search (Dijkstra)

 function f : path cost of node.

Uniform cost search (Dijkstra)

 function f : path cost of node.

• Completeness: yes if the space is finite or the goal is reachable from the start
state.

• Cost optimality: yes for uniform cost actions. No when the costs are not
uniform.

• Time and space : for finite state spaces : O ((|V| + |E|) log(|V|)), O (|V| + |E|). For
infinite spaces when goal is reachable: proportional to the total number of nodes
generated.

Informed search

Greedy best-first search

Number inside the node : estimate of cheapest cost
from node to goal. Call this h(n).

Recall is path-cost. Call it g(n).

Run the generic search algorithm with f(n) = h(n)

Does it return optimal cost path?

How many states were explored?

Combining h(n) and g(n)
Number inside the node : estimate of cheapest cost
from node to goal. Call this h(n).

Recall is path-cost. Call it g(n).

Run the generic search algorithm with f(n) = h(n) + g(n)

Does it return optimal cost path?

 function f : path cost (start, node) + estimated cost (node, goal)

This gives us the A* Algorithm

Dijkstra’s algorithm: contours

We have contours of g-cost.

Contours spread equally around the start
state with no preference to the goal

A* algorithm: contours..

We have contours of g+h cost.

With a good heuristic function, contours
stretch towards a goal and become
focused towards goal state.

