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Artificial Intelligence (CS6380)



Problems considered till now..
• 8 puzzle 

• Move blank up, move blank right… 

• Finding route from CSE Dept. to IIT Main Gate 

• Take right and go to biotech, take right and go to GC, take left and go to main gate  

• Man, Goat, Cabbage and Wolf 

• Man takes goat to other side, comes back alone, takes cabbage to other side, ..


• Knuth’s 4 conjecture 

• Floor(sqrt(…(4)…))

In each case solution is a sequence of actions.




N Queens problem

Multiple queens under attack No queen is under attack 

N x N empty chess board 

• Place N queens such that no queen is under 
attack by any other queen


Possible approaches: 

• Start one queen at a time, place the next 
queen in a non-attacking position


• Start with a placement of all N queens, 
check if it is valid, else perturb.




Boolean Satisfiability
n boolean variables, m clauses 

• Each variable can be assigned 0 or 1


• Goal: find an assignment, if possible, that satisfies the formula




Travelling salesman

Complete graph on n vertices, non-negative edge cost  

• Goal: find a tour of smallest cost




Local search

• Start with an initial state


• Operate by searching to neighbouring states


• Does not keep track of reached states, hence is not systematic


• May never explore portions of search space where solution resides


• Uses very less memory, often find reasonable solutions in infinite spaces


• Can also be used for optimisation problems




Hill climbing

Function Hill-Climbing (problem)


• Current = problem.initial state


• While true do


• neighbour = highest value successor (current)


• If value (neighbour) <= value (current)  then return current


• current = neighbour.


• End while



Boolean Satisfiability

Take away: choice of start state matters.



Hill climbing : variants

Function Hill-Climbing (problem)


• Current = problem.initial state


• While true do


• neighbour = highest value successor (current)


• If value (neighbour) <= value (current)  then return current


• current = neighbour.


• End while

• Local beam search (keep k states 
rather than 1)


• Stochastic hill climbing (select one 
at random from the uphill moves)


• Random restart hill climbing 
(series of hill climbings from 
randomly generated starting states)


• Simulated annealing (allow 
downhill moves with some 
probability)



Variable neighbourhood hill climbing
Let expand1, expand2, expand3… be a sequence of denser and denser neighbourhood generation functions.


Main idea: use expand1 initially, get to a local optimum, if that is the goal state you are done,


                  Else use expand2 to find successors.


 What is expand-k?

Function Hill-Climbing (start state, expand-function f) 

• Current = start state


• While true do


• neighbour = highest value successor (current) using function f 

• If value (neighbour) <= value (current)  then return current


• current = neighbour.


• End while

Take away: if the densest 
function spans the entire 
neighbourhood, the algorithm is 
complete, but resembles brute 
force. Key is to use denser 
function to get out of local 
maxima.
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Val (state) = 1 point for every block on correct block, -1 for every block block on incorrect block Val (state) = 1 point for every block on correct block, -1 for every block block on incorrect block 

S1: A is on floor

S2: E is on floor

S3: A is on E

S4: E is on A

S5: B is on floor

S6 : B is on A



Blocks world domain
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S1 seems a better state than others. 

Val’ (state) = for a block, if it is in correct configuration +1 for every block in configuration below it, 
else  -1 for every block block in configuration 

S1: A is on floor

S2: E is on floor

S3: A is on E

S4: E is on A



Blocks world domain

Val’ (state) = for a block, if it is in correct configuration +1 for every block in configuration below it, 
else  -1 for every block block in configuration 



Blocks world domain

Val (state) = 1 point for every block on correct block, -1 for every block block on incorrect block 

S1: A is on floor

S2: E is on floor

S3: A is on E

S4: E is on A

Val’ (state) = for a block, if it is in correct configuration +1 for every block in configuration below it, 
else  -1 for every block block in configuration 

Take away: choice of evaluation 
function is crucial. The evaluation 
function should be discriminative 
at the same time efficient to 
compute.


