
Local search

Artificial Intelligence (CS6380)

Problems considered till now..
• 8 puzzle

• Move blank up, move blank right…

• Finding route from CSE Dept. to IIT Main Gate

• Take right and go to biotech, take right and go to GC, take left and go to main gate

• Man, Goat, Cabbage and Wolf

• Man takes goat to other side, comes back alone, takes cabbage to other side, ..

• Knuth’s 4 conjecture

• Floor(sqrt(…(4)…))

In each case solution is a sequence of actions.

N Queens problem

Multiple queens under attack No queen is under attack

N x N empty chess board

• Place N queens such that no queen is under
attack by any other queen

Possible approaches:

• Start one queen at a time, place the next
queen in a non-attacking position

• Start with a placement of all N queens,
check if it is valid, else perturb.

Boolean Satisfiability
n boolean variables, m clauses

• Each variable can be assigned 0 or 1

• Goal: find an assignment, if possible, that satisfies the formula

Travelling salesman

Complete graph on n vertices, non-negative edge cost

• Goal: find a tour of smallest cost

Local search

• Start with an initial state

• Operate by searching to neighbouring states

• Does not keep track of reached states, hence is not systematic

• May never explore portions of search space where solution resides

• Uses very less memory, often find reasonable solutions in infinite spaces

• Can also be used for optimisation problems

Hill climbing

Function Hill-Climbing (problem)

• Current = problem.initial state

• While true do

• neighbour = highest value successor (current)

• If value (neighbour) <= value (current) then return current

• current = neighbour.

• End while

Boolean Satisfiability

Take away: choice of start state matters.

Hill climbing : variants

Function Hill-Climbing (problem)

• Current = problem.initial state

• While true do

• neighbour = highest value successor (current)

• If value (neighbour) <= value (current) then return current

• current = neighbour.

• End while

• Local beam search (keep k states
rather than 1)

• Stochastic hill climbing (select one
at random from the uphill moves)

• Random restart hill climbing
(series of hill climbings from
randomly generated starting states)

• Simulated annealing (allow
downhill moves with some
probability)

Variable neighbourhood hill climbing
Let expand1, expand2, expand3… be a sequence of denser and denser neighbourhood generation functions.

Main idea: use expand1 initially, get to a local optimum, if that is the goal state you are done,

 Else use expand2 to find successors.

 What is expand-k?

Function Hill-Climbing (start state, expand-function f)

• Current = start state

• While true do

• neighbour = highest value successor (current) using function f

• If value (neighbour) <= value (current) then return current

• current = neighbour.

• End while

Take away: if the densest
function spans the entire
neighbourhood, the algorithm is
complete, but resembles brute
force. Key is to use denser
function to get out of local
maxima.

Blocks world domain

Val (state) = 1 point for every block on correct block, -1 for every block block on incorrect block

Blocks world domain

Val (state) = 1 point for every block on correct block, -1 for every block block on incorrect block

Blocks world domain

Val (state) = 1 point for every block on correct block, -1 for every block block on incorrect block Val (state) = 1 point for every block on correct block, -1 for every block block on incorrect block

S1: A is on floor

S2: E is on floor

S3: A is on E

S4: E is on A

Blocks world domain

Val (state) = 1 point for every block on correct block, -1 for every block block on incorrect block Val (state) = 1 point for every block on correct block, -1 for every block block on incorrect block

S1: A is on floor

S2: E is on floor

S3: A is on E

S4: E is on A

Blocks world domain

Val (state) = 1 point for every block on correct block, -1 for every block block on incorrect block Val (state) = 1 point for every block on correct block, -1 for every block block on incorrect block

S1: A is on floor

S2: E is on floor

S3: A is on E

S4: E is on A

S5: B is on floor

S6 : B is on A

Blocks world domain

Is our evaluation function good enough?

S1 seems a better state than others.

Val’ (state) = for a block, if it is in correct configuration +1 for every block in configuration below it,
else -1 for every block block in configuration

S1: A is on floor

S2: E is on floor

S3: A is on E

S4: E is on A

Blocks world domain

Val’ (state) = for a block, if it is in correct configuration +1 for every block in configuration below it,
else -1 for every block block in configuration

Blocks world domain

Val (state) = 1 point for every block on correct block, -1 for every block block on incorrect block

S1: A is on floor

S2: E is on floor

S3: A is on E

S4: E is on A

Val’ (state) = for a block, if it is in correct configuration +1 for every block in configuration below it,
else -1 for every block block in configuration

Take away: choice of evaluation
function is crucial. The evaluation
function should be discriminative
at the same time efficient to
compute.

