# Artificial Intelligence (CS6380)

**Constraint satisfaction** 

# Search techniques considered till now

- BFS, DFS, Uniform cost, Greedy Best First, A\*, IDA\*
  - Systematic search methods
  - All are complete on finite spaces
  - Some have guarantees of optimality
- Local search
  - Not systematic and hence incomplete
  - Memory efficient, useful in infinite state spaces

Till now we assumed that state is atomic.

Can we have more details about the state? Use a factored representation

# N Queens problem

### N x N empty chess board

 Place N queens such that no queen is under attack by any other queen

### Possible approach:

- Start one queen at a time, place the next queen
- If some queen is not placed, try placing it
- Check goal state





# Map colouring problem

### A map of a country

- Assign colours to regions so that adjacent regions are having different colours
- Equivalently vertex colouring of a graph







# Factored representation and CSP

#### **State**

- Set of variables each of which has a value
- Variables have constraints

#### Goal

Assignment of values to all variables such that constraints are satisfied

### **Constraint satisfaction problem**

- A set of variables { x1, x2, ..., x\_n }
- A set of domains { D1, D2, ..., D\_n }
- A set of constraints that specify allowable combinations of values

## CSP: first example

- {x1, x2, x3}
- $D1 = D2 = D3 = \{1, 2, 3\}$
- C12, C23

- C12: { <a, b> | a in D1, b in D2, a < b}
- C23: { <a, b> | a in D2, b in D3, a < b}

- C12: { <1, 2> <1, 3> <2, 3>}
- C23: { <1, 2> <1, 3> <2, 3>}



# Map colouring as CSP

### A map of a country

- Assign colours to regions so that adjacent regions are having different colours
- Equivalently vertex colouring of a graph





- C12: { <a, b> | a in D1, b in D2, a != b}
- C23: { <a, b> | a in D2, b in D3, a != b}
- •

### N Queens as CSP

### N x N empty chess board

 Place N queens such that no queen is under attack by any other queen



| Variables:     |    |     | Qa | <b>Q</b> <sub>b</sub> | Q <sub>C</sub> | Qd |
|----------------|----|-----|----|-----------------------|----------------|----|
| Ra             | نع | for | mo | a                     |                |    |
| Q <sub>b</sub> | Ìs | for | m  | ٦                     |                |    |
|                |    |     |    |                       |                |    |

- C12: { <x, y> | x in D1, y in D2, x != y}
- C13: { <x, y> | x in D2, y in D3, x != y}
- •

$$4 Qb = 2 Can Qc = 3?$$