
Constraint satisfaction

Artificial Intelligence (CS6380)

Search techniques considered till now
• BFS, DFS, Uniform cost, Greedy Best First, A*, IDA*

• Systematic search methods

• All are complete on finite spaces

• Some have guarantees of optimality

• Local search

• Not systematic and hence incomplete

• Memory efficient, useful in infinite state spaces

Till now we assumed that state is atomic.

Can we have more details about the state? Use a factored representation

N Queens problem

N x N empty chess board

• Place N queens such that no queen is under
attack by any other queen

Possible approach:

• Start one queen at a time, place the next
queen

• If some queen is not placed, try placing it

• Check goal state

Map colouring problem

A map of a country

• Assign colours to regions so that adjacent
regions are having different colours

• Equivalently vertex colouring of a graph

Factored representation and CSP
State

• Set of variables each of which has a value

• Variables have constraints

Goal

• Assignment of values to all variables such that constraints are satisfied

Constraint satisfaction problem

• A set of variables { x1, x2, …, x_n }

• A set of domains { D1, D2, …, D_n }

• A set of constraints that specify allowable combinations of values

CSP : first example

• {x1, x2, x3}

• D1 = D2 = D3 = { 1, 2, 3}

• C12, C23

• C12 : { <a, b> | a in D1, b in D2, a < b}

• C23 : { <a, b> | a in D2, b in D3, a < b}

• C12 : { <1, 2> <1, 3> <2, 3>}

• C23 : { <1, 2> <1, 3> <2, 3>}

Map colouring as CSP

A map of a country

• Assign colours to regions so that adjacent
regions are having different colours

• Equivalently vertex colouring of a graph

• C12 : { <a, b> | a in D1, b in D2, a != b}

• C23 : { <a, b> | a in D2, b in D3, a != b}

• …

N Queens as CSP

N x N empty chess board

• Place N queens such that no queen is under
attack by any other queen

• C_ab : { <x, y> | x in D1, y in D2, x != y}

• C_ac : { <x, y> | x in D2, y in D3, x != y}

• …

N Queens as CSP

N x N empty chess board

• Place N queens such that no queen is under
attack by any other queen

• C_ab : { <x, y> | x in D1, y in D2, x != y}

• C_ac : { <x, y> | x in D2, y in D3, x != y}

• …

and

N Queens as CSP

N x N empty chess board

• Place N queens such that no queen is under
attack by any other queen

• C_ab : { <x, y> | x in D1, y in D2, x != y}

and

• D1 : {1, 2, 3, 4} D2 : {1, 2, 3, 4}

• (1,1), (2, 2), (3, 3), (4, 4) : forbidden by C_ab

• What are entries forbidden by C’_ab?

Job scheduling as CSP
We have J1, J2, …, J10

• J1,…,J5 take 2 units of time, others take 5 units each

• J6,…,J10 cannot be started before J1,....,J5 are completed

• J6 and J7 require the same equipment

• All jobs should be completed within 15 units of time.

Sudoku as CSP

What are the variables, domains, constraints?

Alldiff (A1, A2,…, A9)

Alldiff (B1, B2,…, B9)

…

Alldiff (A1, B1,…, I1)

Alldiff (A2, B2,…, I2)

…

Alldiff (A1, A2, A3, B1, B2, …, C3)

…

Solving a CSP
State : partial assignment of variables

Action : extend the current assignment by assigning a variable a value from its domain

A DFS like backtracking algorithm

• Which variable should be assigned next? If a variable has multiple values possible, which one should we
select?

• Can we backtrack more than once step?

• What inferences can we perform at each step?

• Node consistency : if all values in the domain of the node satisfy the unary constraints

• Arc consistency

• Path consistency (k consistency)

Revising domain for arc consistency

X_i X_j

X_i is consistent with respect to X_j if for every value in Di there is some value in Dj that satisfies the binary
constraint on the arc (X_i, X_j)

RevisePair (X_i, X_j)

 // Returns true if domain of X_i is modified; false otherwise.

 revised = false

 for every a in D_i do

 If there does not exist any value b in D_j such that the pair (a, b) satisfies the constraint between X_i, X_j

 delete a from D_i ;

 revised = true

 End if

 End for

 return revised

Arc consistency

X_i X_j

ArcConsistency // Returns false if inconsistency is found; true otherwise.

 Q = queue of all arcs in the CSP

 while Q is not empty

 (X_i, X_j) = remove element from Q

 If revisePair (X_i, X_j) == true

 If D_i is empty return false

 For each X_k such that (X_k, X_i) is a relation in CSP where k not equal to j

 Add (X_k, X_i) to Q

 End for

 End if

 End while

 Return true

Arc consistency

X_i X_j

ArcConsistency // Returns false if inconsistency is found; true otherwise.

 Q = queue of all arcs in the CSP

 while Q is not empty

 (X_i, X_j) = remove element from Q

 If revisePair (X_i, X_j) == true

 If D_i is empty return false

 For each X_k such that (X_k, X_i) is a relation in CSP where k not equal to j

 Add (X_k, X_i) to Q

 End for

 End if

 End while

 Return true

Structured CSPs What if the Constraint graph has a structure?

 simplest case: constraint graph is a tree. In this
case the CSP is efficiently solvable.TreeCSP : // returns a solution or a failure

 n : number of variables in CSP

 assignment = empty assignment

 Root the constraint graph at an arbitrary node (variable)

 X_1, X_2, … X_n is an order of variables where parent appears before node for each node

 For i = n downto 2 do

 RevisePair (parent (X_i), X_i); If inconsistency found return false

 End for

 For i = 1 to n do

 assignment(X_i) = any consistent value from D_i

 If no consistent value found return false

 End for

Return assignment

Structured CSPs What if the Constraint graph has a structure?

 Tree like graphs: use idea of cycle cutset

