Artificial Intelligence (CS6380)

Constraint satisfaction

Search techniques considered till now

 BFS, DFS, Uniform cost, Greedy Best First, A*, IDA*
» Systematic search methods
 All are complete on finite spaces
 Some have guarantees of optimality
* Local search
 Not systematic and hence incomplete

 Memory efficient, useful in infinite state spaces

Till now we assumed that state iIs atomic.

Can we have more details about the state”? Use a factored representation

N Queens problem

N x N empty chess board

 Place N queens such that no queen is under

attack by any other queen VP

Possible approach:

e Start one queen at a time, place the next
queen

* |f some queen is not placed, try placing it

* Check goal state

Map colouring problem

A map of a country

e Assign colours to regions so that adjacent
regions are having different colours

* Equivalently vertex colouring of a graph

Factored representation and CSP

State

e Set of variables each of which has a value

 Variables have constraints

Goal

* Assignment of values to all variables such that constraints are satisfied

Constraint satisfaction problem
e A set of variables { x1, x2, ..., x_n}

« Asetof domains{D1,D2,...,D n}

* A set of constraints that specify allowable combinations of values

CSP : first example

{x1, x2, x3}
D1=D2=D3={1, 2, 3}

C12, C23

C12:{<a,b>|ain D1,bin D2, a < b}

C23:{<a,b>|ain D2, b in D3, a < b}

C12:{ <1, 2> <1, 3> <2, 3>}

C23:{ <1, 2> <1, 3> <2, 3>}

Map colouring as CSP

A map of a country

e Assign colours to regions so that adjacent
regions are having different colours

* Equivalently vertex colouring of a graph

e C12:{<a,b>|ain D1,bin D2, a != b}

. C23:{<a,b>|ainD2, bin D3, a!= b}

N Queens as CSP

N x N empty chess board (L‘{ L [:g ffm« Yo)

 Place N queens such that no queen is under
attack by any other queen

e C_ab:{<x,y>|xinD1,yin D2, x !=y}

| 2z 3 4

» C_ac:{<x,y>|xinD2,yin D3, x !=y}

20D & @
+&

>

\J

n

Yo

\

[N

?

N Queens as CSP Vovinblea : 8o 8, R Q
Bo € dor W A

N x N empty chess board & L [:g ffm« Yo)

 Place N queens such that no queen is under
attack by any other queen

/- C_ab:{<x,y>|xinD1,yin D2, x !=y}

\ 2 2 L’— and e Cac:{<x,y>|xinD2,yin D3, x !=y}
a \
b bd Clabziiq)._g)\%\;\mb\)!\‘;‘"bz
C
J \x’S\ f#\(’\"‘b\}

N Queens as CSP

e C ab:{<x,y>|xinD1,yin D2, x !=y}

and
) \ Dz
I LA UD | LW D1, 4 m
N x N empty chess board Cab = %—) 3
~ b
 Place N queens such that no queen is under \"- -4 \ :}: \0\ \ }
attack by any other queen
- D1 :{1, 2, 3, 4} D2 : {1, 2, 3, 4}
\ £ 3 L’_ e (1,1), (2, 2), (3, 3), (4, 4) : forbidden by C_ab

 What are entries forbidden by C’_ab?

W O?ﬁ) (1,2) (l,s)a,q)

c o= | ¢\ (;ﬂgz 053) (o,)
(3,1) (35D ¥0) (359)
(a) (42 (43 (D]

£ 0N 5 &

Job scheduling as CSP

We have J1, J2, ..., J10

e J1,...,J5 take 2 units of time, others take 5 units each

e J6,...,d10 cannot be started before J1,....,d5 are completed
 J6 and J7 require the same equipment

* All jobs should be completed within 15 units of time.

T +2 £ 15 Jg 2 A 1%

T 46 ¢ 15 302 J2 72

Sudoku as CSP

What are the variables, domains, constraints?

Alldiff (A1, A2,..., A9)

Alldiff (B1, B2,..., BY)

Alldiff (A1, B1,..., 11)

Alldiff (A2, B2,..., 12)

Alldiff (A1, A2, A3, B1, B2, ..., C3)

Solving a CSP

State : partial assignment of variables

Action : extend the current assignment by assigning a variable a value from its domain

A DFS like backtracking algorithm

 Which variable should be assigned next? If a variable has multiple values possible, which one should we
select?

 Can we backtrack more than once step?

 What inferences can we perform at each step?

 Node consistency : if all values in the domain of the node satisfy the unary constraints

* Arc consistency

* Path consistency (k consistency)

Revising domain for arc consistency

X_I Is consistent with respect to X_j if for every value in Di there is some value in Dj that satisfies the binary
constraint on the arc (X_i, X j)

RevisePair (X_i, X_j) X_i > X))
// Returns true if domain of X _i is modified; false otherwise.
revised = false
forevery ain D_i do
If there does not exist any value b in D_j such that the pair (a, b) satisfies the constraint between X_i, X_]

delete a from D i ;

revised = true Rewise fair (%\:I X-3> a\
End if - Dok @ fom D A

End for — dew vt ddfe Bz *

| . e DS 1
return revised Renise Tay (X, ,X\) Adedelia bz 'F'W"’"":DJ

Arc consistency

ArcConsistency // Returns false if inconsistency is found; true otherwise.

Q = queue of all arcs in the CSP

while Q is not empty X_| > X)

(X_i, X_j) = remove element from Q
If revisePair (X_i, X_j) == true
If D_i is empty return false
For each X_k such that (X_k, X_i) is a relation in CSP where k not equal to |

Add (X_k, X_i) to Q

XL X3
End for 0>0/_>0 e o\
End if Xk D, Dy
Pr \

End while
C\ -DL

b2
Return true Q. 0,

Arc consistency

ArcConsistency // Returns false if inconsistency is found; true otherwise.

Q = queue of all arcs in the CSP

while Q is not empty X i - X]
(X_i, X_j) = remove element from Q Mayx S’\SL 4, awa M'YVMM:\« = O(
If revisePair (X_i, X_j) == true 4 4 avex = a)
If D_i is empty return false Low\'kxx«a,) Rewte Pavys = 0 (4).

For each X_k such that (X_k, X_i) is a relation in CSP where k not equal to |

Add (X_k, X_i) to Q cow\flwﬁj 4 A wao&\ij
End for e AN Qe)(\: - X} O) O\AOLCA 'h) a'

End if ~ V&—AVM fom D] b Tvmeed s

End while

Return true Cmmr[,_“@/ VJ— Aclong s = C C AB)

What if the Constraint graph has a structure?

Structured CSPs
simplest case: constraint graph is a tree. In this

TreeCSP : // returns a solution or a failure case the CSP is efﬂClentIy solvable.

n : number of variables in CSP

L) Home
assignment = empty assignment O ((Y\ ‘ A
Root the constraint graph at an arbitrary node (variable)

X_1, X 2, ... X_nis an order of variables where parent appears before node for each node

~%- \ L
For i = n downto 2 do —_—nm-——-e—_— — — — 'V\/Qh ’\'b\l. O\er/ / AV "’ﬂ""\- eamtd
RevisePair (parent (X_i), X_i); If inconsistency found return false V\P +D NUE -

End for

Fori=1tondo /'—'/? 11/\4‘,0 {A ')YB'VV\ Ym— '\.D LM'
assignment(X_i) = any consistent value from D_i w ‘n 'Lt- WU"'L —h-(‘leU.\ ? Dﬂ'\ﬂ Ak

If no consistent value found return false ‘J[.Uv D \‘: (! MM erlv.\?

Return assignment

What if the Constraint graph has a structure?

Structured CSPs

Tree like graphs: use idea of cycle cutset

