Handling Fluents
Representing the Fluent axioms in the KB

Hybrid Agent for Wumpus World

Using Propositional Inferencing to make Plan



Logical State Estimation

e Earlier we used combination of KB inferencing and path-search algorithm to
find a plan

e But we can do everything just using a SAT Solver.
o Construct a big Propositional sentence that contains the following:
m Allinitial axioms
m All Fluent update rules for time step 1...t
m HaveGold'A ClimbedOut

o Give this full formula to a SAT Solver
m |[f it gives a satisfiable assignment then extract a model out of it.
m Try maxtfrom1,2,3... upto some threshold

e Might give spurious solutions if axiom set is not exhaustive
o Good debugging tool



Logical State Estimation : Advantages

No need to think about when to use A* when to use inference etc.
o Generic solution for all situations

Practical SAT solvers are powerful enough to handle most problems
arising in the real world

Does not work in Partially Observable settings

Exercise . Find a solution to the Wolf-Cabbage-Sheep problem using SAT
solvers



Knowledge Explosion

As the number of steps increase, the knowledge base increases and
hence time to make new inferences also increases.

Can we ensure that inference takes time independent of step t?

o One way is to save all previous inferences, so that we do not have to
recompute them

o Example : WumpusAlive' AL\, AB,, A(P,,VP,,)

Keeping all previous inferences is costly
o Typically some conservative under approximation is kept



Representation of the Wumpus World

e Propositional Logic is just ONE way to represent the wumpus world

e Any other natural representation?

o 4X4 matrix
m Not declarative, we need to say hardcode how new information
is derived

m Not clear how to say “[1,2] has a pit OR [2,1] has a pit”



Beyond Propositional Logic

Advantages of Propositional Logic:
o lItis declarative : Inference is domain independent
o Can handle partial information well : Disjunction, If else
o Itis compositional : Meaning of a formula can be derived from looking at
the structure of the formula.

Drawbacks of Propositional Logic:

© B21<:>(P11V I:)22V P31)

o (Forward') = (haveArrow! < haveArrow'')
m We need to say state such properties for each i, j and for every time step t

o We cannot say For every time step t ( Forward!) = ( haveArrow! < haveArrow'")
o This would give a succinct representation of the Knowledge Base (This is more natural)

First Order Logic extends Propositional Logic with this natural way of expression of
properties
o First Order Logic is more expressive than Propositional Logic



First Order Logic

e Derives its syntax from Natural Language
o We have Nouns (Objects) : Wumpus, Pit, Square
o We have Verbs, Adverbs, Adjectives (Relations) : is breezy, s
adjacent to, s in

e Examples:
o Objects : Person, University, Animal, Vertex, Numbers
o Relations : Professor , Part of, brother of, is Prime ..
m Functions (specialized relations) : Father, +, ...
m Constants (specialized functions)
President of India, Director of [ITM

e F[unctions and Constants have a special status compared to Relations



First Order Logic

e Piis anirrational number
o Objects: 12,3141, 4, 2.718 ...
o Relations : Irrational - unary relation
o Constant ; Pi (refers to an object)

e India got Independence in 1947
o Objects : India, 1947, Independence
o Relations : gotln - ternary relation, IsCountry

e One plus Two equals Three
o Objects : One, Two, Three [ One plus Two also refers to an object]
o Relations : equals
o Functions : Plus



Ontological and Epistemological Commitments

e Various logics typically differ in their Ontological and Epistemological commitments.
o Ontological Commitment: What are the basic building blocks of the world?
o Epistemological Commitment : What does the agent believe about the building

blocks?
Logic Ontological Epistemological

Commitment Commitment
Propositional Logic Facts / Propositions True / False / Unknown
First Order Logic Facts about True / False / Unknown

Objects / Relations

Probabilistic Logic Facts / Propositions Degree of belief

Fuzzy Logic Propositions with degrees An interval of the belief

of Truth



Models for First Order Logic

e Should tell us what are the underlying Objects, Relations, Functions and
Constants

e Objects of a Model : Also called as Domain (is always non-empty)

e Example : Scenario with 5 objects:
o  P1:Richard the Lionheart, King of England from 1189 to
1199
o P2 :Hisyounger brother, the evil King John, who ruled
from 1199 to 1215
o L1: The left leg of Richard
L2 : The left leg of John
o C:Crown.

O




e Example : Scenario with 5 objects:
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Models for First Order Logic

P1: Richard the Lionheart, King of England from 1189 to
1199

P2 : His younger brother, the evil King John, who ruled
from 1199 to 1215

L1: The left leg of Richard

L2 : The left leg of John

C: Crown.

e Relations: Tuples of related objects

O O O O O

©)
©)

Brother : { (P1, P2), (P2, P1) }
OnHead : { (C, P2)}
Person : { (P1), (P2) }

King : { (P2) }

Crown : {(C) }

R J R J R J R J R J R J
Constants o
Richard : P1

John: P2



Models for First Order Logic

e Example : Scenario with 5 objects:

@)

@)

P1: Richard the Lionheart, King of England from 1189 to
1199

P2 : His younger brother, the evil King John, who ruled
from 1199 to 1215

L1: The left leg of Richard

L2 : The left leg of John

C: Crown.

e Relations: Tuples of related objects

o Brother: { (P1, P2), (P2, P1)}

o OnHead:{(C,P2)} ©

o Person:{(P1), (P2)} ’

o King:{(P2)}

o Crown:{(C)} B
Constants

o Richard: P1 ©

o John:P2

e Functions: LeftLeg

LeftLeg(Richard) = L1
LeftLeg(John) = L2

e Functions are total

Technically every object should have a LeftLeg
Solution : Map the remaining things to some
“invisible” object

Safe as long as there are no assertions about such
objects



Syntax of First Order Logic

At the ground level we have Objects, Relations and Functions
Correspondingly in the syntax we have Constant symbols, Predicate
symbols and Function Symbols

Every predicate and function symbol has a appropriate arity

Model gives the interpretation for the Constants, Predicates and function
symbols



Syntax of First Order Logic : Terms

e Terms refer to the domain elements
o Constant Symbols are Terms : PresidentOfindia, DirectorOflITM
o Can be more complex :
Father(PresidentOfindia), Secretary(DirectorOflITM)

o Terms can only point to a single object / Domain :
m Brother(PresidentOflndia) will not make sense if the President has more than
1 brothers
m Father is a function, Brother is a binary relation

o Terms can only use Functions and Constants (Terms cannot have Relations))
e Formally:

o Every constant symbol c is a term
o Iftt, ..t areterms and fis a function with arity n then f(t,t, ...t )is a term



Syntax of First Order Logic : Sentences

e Sentences state Facts
o Brother( Richard, John)
o Married( Father(Richard), Mother(John) )

o IfRis apredicate of arity nand t t,...t are termsthen R (t t, ..t )is an
atomic sentence

e An atomic Sentence is True in the given model if the corresponding
relation holds among the objects referred in the arguments



Syntax of First Order Logic : Sentences

e Complex Sentences are built over the atomic sentences using
connectives:

o — Brother( LeftLeg(Richard), John)
o King(Richard) V King(John)
o Brother(Richard, John) < Brother(John, Richard)

e T[he connectives are the same that we had in Propositional Logic



Syntax of First Order Logic : Quantifiers

Every King is a Person
o VX King(x) =

Here x is a variable. What should x refer to?
o A variable is also a Term
o A term without wvariables is called a Ground Term

Extended Interpretation : Interpretation of Ground terms + Interpretation

of Variable(s)

o Vx P is true in a model if P is true for all possible Extended
Interpretations of x



Syntax of First Order Logic : Quantifiers

e Thereis acrown on John
o dX Crown(x) [] (

e dx P is true in a model if P is true with at least one Extended
Interpretation of X



Syntax of First Order Logic : Nested Quantifiers

e All brothers are siblings
o VX Vy Brother(x,y) = Sibling(x.y)

e Every King has a crown on his head

o Vx King(x) = (3y Crown(y) [  OnHead(y,x) )
—-dx P = Vx =P
—Vx P = dx —-P
Vx P = —-dx —P
dx P = —Vx —-P



Syntax of First Order Logic : Equality

e Father of John Iy
Father(John) = Iy
e Richard has at least two brothers

dx 3y Brother(x,Richard) [ Brother(y,Richard) [1 =~ (x = vy)

e Equality gives more expressive power to the logic



Syntax of First Order Logic

Sentence — AtomicSentence | ComplexSentence
AtomicSentence — Predicate | Predicate(Term,...) | Term = Term

ComplexSentence — (Sentence)

- Sentence

Sentence N Sentence
Sentence \V Sentence
Sentence = Sentence
Sentence <> Sentence

Quantifier Variable, . .. Sentence

Term — Function(Term,...)

| Constant
|  Variable

Quantifier — V| 3

Constant — A| X, | John| ---

Variable — a| x| s| -

Predicate — True | False | After | Loves | Raining| ---

Function — Mother | LeftLeg | ---

OPERATOR PRECEDENCE : —,=,A,V,=,&



Database semantics

Richard has two brothers : John and Joffrey
Brother(John, Richard) [] Brother( Geoffrey, Richard)

John and Joffrey are different persons
Brother(John, Richard) [ Brother( Geoffrey, Richard) [ = (John = Geoffrey)

There are no other brothers
Brother(John, Richard) [] Brother( Joffrey, Richard) [J — (John = Geoffrey) []
V X Brother(x, Richard) = (X . John) V (X - Geoffrey)

Stating it in this detail every time is tedious. We might miss something.
o Unique-names assumption : Every constant Refers to a distinct domain element
o Closed world assumption : Every sentence not known to be true is false
o Domain Closure: All domain elements are named by some constant

With these assumptions, the first property already achieves what we intend to express



Using First Order Logic to populate KB

TELL ( KB, King(John))

TELL ( KB, Person(Richard))

TELL( KB, ¥ x King(x) = Person(x) )
TELL( KB, Crown(C))

TELL( KB,

K( KB, King(John))

K(KB, King(Richard) )

K(KB, Person(John))
(

AS
AS
AS
ASK(KB, 3 X Person(x)




Ask Variables

TELL ( KB, King(John) )

TELL ( KB, Person(Richard))

TELL( KB, ¥V x King(x) = Person(x) )
TELL( KB, Crown(C))

TELL( KB, OnHead(C,John))

e ASKVARS (KB, Person (x))
o Give all possible assignments to X, that makes it True
{ x/John } { x/Richard }

° These are called substitutions
e  More Examples:
o  ASKVARS (KB, OnHead(x,y) )
m  Solution : {x/C, y/John}

o  ASKVARS (KB, 3 x Crown(C) A OnHead(x,y) \ z = leftLeg(y) )
m  Solution: {y/John, z/L2}



Using First Order Logic to populate KB : Family

e Suppose the model has:
o Objects : People in a particular family
o Relations : Male, Female, Parent, Sibling, Brother, Sister, Child,

Daughter, Son, Spouse, Wife, Husband, GrandParent, GrandChild,
Cousin, Aunt, Uncle

o Functions : Father, Mother

e Axioms: Factual information from which useful conclusions can be
derived
o Vx Vy Mother(x) =y < ( Female(y) A\ Parent(y,x) )
o Vx VySibling(x,y) © 3p Parent(p,x) A Parent(p, y) A 7 (x=Y)



Using First Order Logic to populate KB : Family

e Suppose the model has:
o Objects : People in a particular family
o Relations : Male, Female, Parent, Sibling, Brother, Sister, Child,
Daughter, Son, Spouse, Wife, Husband, GrandParent, GrandChild,
Cousin, Aunt, Uncle
o Functions ; Father, Mother

e We can also define new relation: (Special kind of Axioms)
o Vx VyNephew(y,x) @ (Male(x) A (Uncle(y,x) V Aunt(y,x) )



Using First Order Logic to populate KB : Family

® Suppose the model has:
o Objects : People in a particular family
o Relations . Male, Female, Parent, Sibling, Brother, Sister, Child,

Daughter, Son, Spouse, Wife, Husband, GrandParent, GrandChild,
Cousin, Aunt, Uncle

o Functions : Father, Mother

Sentences entailed by Axioms are called Theorems
Formally, KB only contains Axioms since Theorems do not add more information

But practical implementations also add Theorems to KB to make the implementation
more efficient.



Using First Order Logic to populate KB : Numbers

Predicates: NatNum Objects: 0,1, 2, 3, ...
Constants : O O is interpreted as O
Functions : S S(i) -

Peano Axioms :

NatNum(O)

V x NatNum(x) = NatNum( S(x) )

Vx S(x)z O

Vx Vy (x #2y)=(3(() #3(y))

V x NatNum(x) = +(x,0) = x

V x Vy NatNum(x) A NatNum(y) = +(S(x),y) = S( +(x,y) )

o O O O O O

i+1



Using First Order Logic in Wumpus World

e Agent’s Input:
o Percept : Binary predicate [Stench, Breeze, Glitter, Bump, Scream], t
Example : Percept( [Stench, Breeze, None, None, None], b)

e Perception Axioms: One axiom for every presence/absence of percept
o Examples:
m Vib,gw,.c Percept ([Stench, b, g, w, c], t) = Stench(t)
m Vis,gw,.cPercept (s, None, g,w,c],t) = — Breeze(t)
m Vis,bw,,cPercept (s, b, Glitter, w, c], t ) = Glitter(t)
N



Using First Order Logic in Wumpus World

e Agent’s Output:
o TurnLeft, TurnRight, Forward, Grab, Climb, Shoot
o Each of this IS can be a Term

e ASKVARS(KB, BestAction(a,5)) what value of a satisfies
m Reflex behavious can be directly expressed:
e V1t Glitter(t) = BestAction(Grab, t)



Using First Order Logic in Wumpus World

e Environment: Squares can be list terms [i,j]
o Vxyab Adjacent([xy],[ab])e (x=aA(y=b+tIVy=b-1)V
(y=bA(x=atlTVx=a-1)

e Pt can be a Unary predicate Pit(  [xy]l )

e Wumpus can be a constant : Referring to the Wumpus Object



Using First Order Logic in Wumpus World

o At( u, v, w) Object u is in square Vv at time w

o Every object can be in at most one place in a given time
mE Vu Vv Vw Vt (At (u v, t) AN At (u, w,t)) = (v=w)

o  Wumpus is at the same place all the time
m X 3y V't At (Wumpus, [X,¥] : t)



Using First Order Logic in Wumpus World
e Neighbour of a breezy square contains a pit

o V v Breezy(v) = dx ( Adjacent(v,x) A Pit(x) )

e HaveArrow updation:
o V't HaveArrow (t +1) € ( HaveArrow(t) A = Action(Shoot, t))



Knowledge Engineering in First Order Logic

|dentify the Questions
What questions will KB support? What facts will be available in KB?

Assemble Relevant Knowledge
Understand the scope of the KB
Decide on the vocabulary

ldentify  Objects / Relations / Functions / Constants
Encode general knowledge about the domain and Problem Instance

Test and Debug

Refer 8.4.2 that illustrates all these steps for a particular domain



Entailment, Validity and Satisfiability

First Order Logic Formula a is VALID iff
o for every model M and every extended interpretation ¢ for free
variables of a over the domain of M we have M, ¢ F «

First Order Logic Formula a is SATISFIABLE iff
o there exists some model M and some extended interpretation o for
free variables of «a over the domain of M such that M, ¢  «a

All these notions are analogous to what we had in Propositional Logic

So even in First Order Logic, we have :
o KBFa iff ( KBA ~a)is not satisfiable



Universal Instantiation
e VX ( King(x) ] Greedy(x) ) = Evil(x)
e What all can we infer from this?
o ( King(Richard) [J Greedy(Richard) ) = Evil(Richard)

o ( King(John) ] Greedy(John) ) = Evil(John)
o ( King(Father(John)) L1 Greedy(Father(John)) = Evil(Father(John))

o In general, for any ground term t, ( King(t) [] Greedy(t) ) = Evil(t)



Universal Instantiation

e VX ( King(x) ] Greedy(x) ) = Evil(x)

e [f @ is some substitution then SUBST(O, a ) be the result of applying © on a
o Example: e is { X / John }
o is ( King(x) [ Greedy(x) ) = Evil(x) )
Then SUBST( 6, a ) is ( King(John) [ Greedy(John) ) = Evil(John)

e Universal Instantiation Rule:
VY X o

SUBST({x/t}, o) Where t is a ground term



Existential Instantiation

Existential Instantiation Rule:
SUBST({x/ k}, o)

Where k is a new constant symbol that does not occur anywhere else in the
knowledge base

Here k is called a Skolem Constant.
Similar to what we do in Proofs

o Example : Suppose there exists a vertex in the graph / number such
that the property does not hold. Let v be such a vertex/number.



First Order Inferencing
Replace every formula of the form I x a by its existential instantiation
Replace every formula of the form Vx a by all possible universal instantiations.

Now the KB contains only boolean combinations atomic sentences where the
parameters are ground terms.

o Replace each such atomic statement with a proposition

o Example : King(Father(John)) is replaced with FatherofJohnlsKing

This technique is called Propositionalization.
o Original KB entails o iff the Propositionalized KB entails Propositionalized o
m Needs proof

Done? ( End of discussion on First Order Inferencing? )
o Propositionalization makes the KB infinite (in particular the Universal
Instantiation step)



First Order Inferencing using Propositional Inferencing

Herbrand’s Theorem: A first order KB entails o iff there exists a finite subset of
the Propositionalized KB that entails Propositionalized )

Algorithm :
Try out all possible subsets of the Propositionalized KB and check if it entails Propositionalized o

o Firsttry all possible subsets where terms have depth O terms

o Then try all possible subsets where terms have depth at most 1terms
O

If the input is a YES instance, the algorithm always Returns YES.

If the input is a NO instance then:
o Algorithm gets stuck in an infinite loop

Can we have an Algorithm that Returns NO for the negative instances?
o  No



Entailment problem for First Order Logic

e Entailment problem for First Order Logic is undecidable
o The problem is Recursively enumerable but not Recursive
o Satisfiability problem for First Order Logic is coRE but not Recursive

(If you do not know what Recursively enumerable / Recursive mean, you can safely ignore it)

e For Propositional Logic, we do not know of any fast algorithms for
entailment, but heuristic based algorithms work well in practice

e F[or First Order Logic, we know that there cannot be an algorithm that
terminates on all inputs and gives correct answer
o But we will still try to build some heuristics based algorithms that
(hopefully) work well in practice



Proof of Herbrand’s Theorem on Board



