
● Handling Fluents

● Representing the Fluent axioms in the KB

● Hybrid Agent for Wumpus World

● Using Propositional Inferencing to make Plan



Logical State Estimation

● Earlier we used combination of KB inferencing and path-search algorithm to 
find a plan

● But we can do everything just using a SAT Solver.
○ Construct a big Propositional sentence that contains the following:

■ All initial axioms
■ All Fluent update rules for time step 1…t
■ HaveGoldt⋀  ClimbedOutt

○ Give this full formula to a SAT Solver
■ If it gives a satisfiable assignment then extract a model out of it.
■ Try max t from 1,2,3… upto some threshold

● Might give spurious solutions if axiom set is not exhaustive
○ Good debugging tool



Logical State Estimation : Advantages

● No need to think about when to use A* when to use inference etc.
○ Generic solution for all situations

● Practical SAT solvers are powerful enough to handle most problems 
arising in the real world

● Does not work in Partially Observable settings

● Exercise :  Find a solution to the Wolf-Cabbage-Sheep problem using SAT 
solvers



Knowledge Explosion

● As the number of steps increase, the knowledge base increases and 
hence time to make new inferences also increases.

● Can we ensure that inference takes time independent of step t?
○ One way is to save all previous inferences, so that we do not have to 

recompute them
○ Example : WumpusAlive1

 ⋀ L1
2,1  ⋀ B2,1  ⋀ ( P3,1 V P2,3) 

● Keeping all previous inferences is costly
○ Typically some conservative under approximation is kept



Representation of the Wumpus World

● Propositional Logic is just ONE way to represent the wumpus world

● Any other natural representation?
○ 4X4 matrix

■ Not declarative, we need to say hardcode how new information 
is derived

■ Not clear how to say “[1,2] has a pit OR [2,1] has a pit”



Beyond Propositional Logic

● Advantages of Propositional Logic:
○ It is declarative : Inference is domain independent
○ Can handle partial information well : Disjunction, If else
○ It is compositional : Meaning of a formula can be derived from looking at 

the structure of the formula.

● Drawbacks of Propositional Logic:
○ B2,1 ⇔ ( P1,1 V  P2,2V  P3,1  )
○ ( Forwardt ) ⇒ ( haveArrowt

 ⇔  haveArrowt+1 )
■ We need to say state such properties for each i, j and for every time step t

○ We cannot say For every time step t  ( Forwardt ) ⇒ ( haveArrowt
 ⇔  haveArrowt+1 )

○ This would give a succinct representation of the Knowledge Base (This is more natural)

● First Order Logic extends Propositional Logic with this natural way of expression of 
properties

○ First Order Logic is more expressive than Propositional Logic



First Order Logic

● Derives its syntax from Natural Language
○ We have Nouns (Objects) : Wumpus, Pit, Square
○ We have Verbs, Adverbs, Adjectives (Relations) : is breezy,   is 

adjacent to,    is in

● Examples:
○ Objects : Person, University, Animal, Vertex, Numbers
○ Relations : Professor , Part of, brother of, is Prime ..

■ Functions (specialized relations) : Father, +,  …
■ Constants (specialized functions) : 

President of India,  Director of IITM …

● Functions and Constants have a special status compared to Relations



First Order Logic

● Pi is an irrational number 
○ Objects : 1,2, 3.141, 4, 2.718 …
○ Relations : Irrational  - unary relation
○ Constant : Pi    (refers to an object)

● India got Independence in 1947
○ Objects : India, 1947, Independence
○ Relations : gotIn  - ternary relation,  IsCountry

● One plus Two equals Three
○ Objects : One, Two, Three  [ One plus Two also refers to an object]
○ Relations : equals
○ Functions : Plus



Ontological and Epistemological Commitments

● Various logics typically differ in their Ontological and Epistemological commitments.
○ Ontological Commitment: What are the basic building blocks of the world?
○ Epistemological Commitment : What does the agent believe about the building 

blocks?

Logic Ontological 
Commitment

Epistemological 
Commitment

Propositional Logic Facts / Propositions True / False / Unknown

First Order Logic Facts about 
Objects / Relations

True / False / Unknown

Probabilistic Logic Facts / Propositions Degree of belief

Fuzzy Logic Propositions with degrees 
of Truth

An interval of the belief



Models for First Order Logic

● Should tell us what are the underlying Objects, Relations, Functions and 
Constants

● Objects of a Model : Also called as Domain (is always non-empty)

● Example : Scenario with 5 objects:
○ P1 : Richard the Lionheart, King of England from 1189 to 

1199
○ P2 : His younger brother, the evil King John, who ruled 

from 1199 to 1215
○ L1 : The left leg of Richard 
○ L2 : The left leg of John
○ C: Crown.



Models for First Order Logic

● Example : Scenario with 5 objects:
○ P1 : Richard the Lionheart, King of England from 1189 to 

1199
○ P2 : His younger brother, the evil King John, who ruled 

from 1199 to 1215
○ L1 : The left leg of Richard 
○ L2 : The left leg of John
○ C: Crown.

● Relations: Tuples of related objects
○ Brother : { (P1, P2), (P2, P1) }
○ OnHead : { ( C, P2) }
○ Person : { (P1) , (P2) }
○ King : { (P2) }
○ Crown : { (C) }

● Constants
○ Richard :  P1
○ John : P2



Models for First Order Logic

● Functions: LeftLeg
○ LeftLeg(Richard) = L1
○ LeftLeg(John) = L2

● Functions are total
○ Technically every object should have a LeftLeg
○ Solution : Map the remaining things to some 

“invisible” object
○ Safe as long as there are no assertions about such 

objects

● Example : Scenario with 5 objects:
○ P1 : Richard the Lionheart, King of England from 1189 to 

1199
○ P2 : His younger brother, the evil King John, who ruled 

from 1199 to 1215
○ L1 : The left leg of Richard 
○ L2 : The left leg of John
○ C: Crown.

● Relations: Tuples of related objects
○ Brother : { (P1, P2), (P2, P1) }
○ OnHead : { ( C, P2) }
○ Person : { (P1) , (P2) }
○ King : { (P2) }
○ Crown : { (C) }

● Constants
○ Richard :  P1
○ John : P2



Syntax of First Order Logic

● At the ground level we have Objects, Relations and Functions
● Correspondingly in the syntax we have Constant symbols, Predicate 

symbols and Function Symbols

● Every predicate and function symbol has a appropriate arity

● Model gives the interpretation for the Constants, Predicates and function 
symbols



Syntax of First Order Logic : Terms

● Terms refer to the domain elements
○ Constant Symbols are Terms : PresidentOfIndia, DirectorOfIITM
○ Can be more complex : 

Father(PresidentOfIndia),   Secretary(DirectorOfIITM) 

○ Terms can only point to a single object / Domain :
■ Brother(PresidentOfIndia) will not make sense if the President has more than 

1 brothers
■ Father is a function, Brother is a binary relation

○ Terms can only use Functions and Constants  (Terms cannot have Relations )

● Formally:
○ Every constant symbol c is a term
○ If t1 t2 … tn are terms and f is a function with arity n then f(t1 t2 … tn ) is a term



Syntax of First Order Logic : Sentences

● Sentences state Facts
○ Brother( Richard, John)
○ Married( Father(Richard), Mother(John) )
○ If R is a predicate of arity n and t1 t2 …tnare terms then R ( t1 t2 …tn ) is an 

atomic sentence

● An atomic Sentence is True in the given model if the corresponding 
relation holds among the objects referred in the arguments



Syntax of First Order Logic : Sentences

● Complex Sentences are built over the atomic sentences using 
connectives:

○ ¬ Brother( LeftLeg(Richard), John)
○ King(Richard) V King(John)
○ Brother(Richard, John) ⇔ Brother(John, Richard)

● The connectives are the same that we had in Propositional Logic



Syntax of First Order Logic : Quantifiers

● Every King is a Person
○ ∀x  King(x) ⇒ Person(x) 

● Here x is a variable. What should x refer to?
○ A variable is also a Term
○ A term without variables is called a Ground Term

● Extended Interpretation : Interpretation of Ground terms + Interpretation 
of Variable(s)
○ ∀x  P   is true in a model if P is true for all possible Extended 

Interpretations of x



Syntax of First Order Logic : Quantifiers

● There is a crown on John
○ ∃x  Crown(x) ⴷ OnHead(x, John) 

● ∃x  P   is true in a model if P is true with at least one Extended 
Interpretation of x



Syntax of First Order Logic : Nested Quantifiers

● All brothers are siblings
○ ∀x ∀y Brother(x,y) ⇒ Sibling(x,y) 

● Every King has a crown on his head
○ ∀x King(x)  ⇒ (∃y  Crown(y) ⴷ OnHead(y,x) )



Syntax of First Order Logic : Equality

● Father of John is Henry
Father(John) = Henry

● Richard has at least two brothers
∃x ∃y Brother(x,Richard) ⴷ Brother(y,Richard) ⴷ ¬ (x = y)

● Equality gives more expressive power to the logic



Syntax of First Order Logic



Database semantics

● Richard has two brothers : John and Joffrey
   Brother(John, Richard) ⴷ Brother( Geoffrey, Richard) 

● John and Joffrey are different persons
Brother(John, Richard) ⴷ Brother( Geoffrey, Richard) ⴷ ¬ (John = Geoffrey)

● There are no other brothers
Brother(John, Richard) ⴷ Brother( Joffrey, Richard) ⴷ ¬ (John = Geoffrey) ⴷ 
∀x Brother(x, Richard) ⇒ (x = John) V (x = Geoffrey) 

● Stating it in this detail every time is tedious. We might miss something.
○ Unique-names assumption : Every constant Refers to a distinct domain element
○ Closed world assumption : Every sentence not known to be true is false
○ Domain Closure: All domain elements are named by some constant

● With these assumptions, the first property already achieves what we intend to express



Using First Order Logic to populate KB

● TELL ( KB, King(John) )
● TELL ( KB, Person(Richard) )
● TELL( KB, ∀x King(x) ⇒ Person(x) )
● TELL( KB, Crown(C) )
● TELL( KB, OnHead(C,John) )

● ASK( KB, King(John) ) 
● ASK(KB, King(Richard) )
● ASK(KB, Person(John) )
● ASK(KB, ∃x Person(x) )



Ask Variables

● ASKVARS (KB, Person (x) )     
○ Give all possible assignments to x, that makes it True : 

  { x/John }  { x/Richard }

● These are called substitutions   

● More Examples:
○ ASKVARS (KB, OnHead(x,y) )      

■ Solution :  {x/C, y/John}

○ ASKVARS (KB, ∃x Crown(C) Λ OnHead(x,y) Λ z = leftLeg(y) )      
■ Solution :  {y/John, z/L2}

● TELL ( KB, King(John) )
● TELL ( KB, Person(Richard) )
● TELL( KB, ∀x King(x) ⇒ Person(x) )
● TELL( KB, Crown(C) )
● TELL( KB, OnHead(C,John) )



Using First Order Logic to populate KB : Family

● Suppose the model has:
○ Objects : People in a particular family
○ Relations : Male, Female, Parent, Sibling, Brother, Sister, Child, 

Daughter, Son, Spouse, Wife, Husband, GrandParent, GrandChild, 
Cousin, Aunt, Uncle

○ Functions : Father, Mother

● Axioms: Factual information from which useful conclusions can be 
derived
○ ∀x ∀y Mother(x) = y  ⇔ ( Female(y) Λ Parent(y,x)  )
○ ∀x ∀y Sibling(x,y) ⇔  ∃p Parent(p,x) Λ Parent(p, y) Λ ¬ ( x = y)
○ ……..



Using First Order Logic to populate KB : Family

● Suppose the model has:
○ Objects : People in a particular family
○ Relations : Male, Female, Parent, Sibling, Brother, Sister, Child, 

Daughter, Son, Spouse, Wife, Husband, GrandParent, GrandChild, 
Cousin, Aunt, Uncle

○ Functions : Father, Mother

● We can also define new relation: (Special kind of Axioms)
○ ∀x ∀y Nephew(y,x) ⇔  ( Male(x) Λ ( Uncle(y,x) V Aunt(y,x) )



Using First Order Logic to populate KB : Family

● Sentences entailed by Axioms are called Theorems
● Formally, KB only contains Axioms since Theorems do not add more information
● But practical implementations also add Theorems to KB to make the implementation 

more efficient.

● Suppose the model has:
○ Objects : People in a particular family
○ Relations : Male, Female, Parent, Sibling, Brother, Sister, Child, 

Daughter, Son, Spouse, Wife, Husband, GrandParent, GrandChild, 
Cousin, Aunt, Uncle

○ Functions : Father, Mother



Using First Order Logic to populate KB : Numbers

● Predicates:  NatNum Objects : 0, 1, 2, 3, …
● Constants : 0 0 is interpreted as 0
● Functions : S S(i) = i+1

● Peano Axioms : 
○ NatNum(0)
○ ∀x  NatNum(x) ⇒ NatNum( S(x) )
○ ∀x  S(x) ≠  0 
○ ∀x ∀y  (x  ≠ y ) ⇒ ( S(x)  ≠ S(y) )
○ ∀x  NatNum(x) ⇒ +(x,0) = x
○ ∀x ∀y NatNum(x) Λ NatNum(y)  ⇒  +(S(x),y) = S( +(x,y) )



Using First Order Logic in Wumpus World

● Agent’s Input:
○ Percept : Binary predicate  [Stench, Breeze, Glitter, Bump, Scream], t

Example : Percept( [Stench, Breeze, None, None, None], 5)

● Perception Axioms:  One axiom for every presence/absence of percept
○ Examples:

■ ∀t,b,g,w,c Percept ([Stench, b, g, w, c], t ) ⇒ Stench(t)
■ ∀t,s,g,w,c Percept ([s, None, g, w, c], t ) ⇒  ¬ Breeze(t)
■ ∀t,s,b,w,c Percept ([s, b, Glitter, w, c], t ) ⇒ Glitter(t)
■ ….



Using First Order Logic in Wumpus World

● Agent’s Output:
○ TurnLeft, TurnRight, Forward, Grab, Climb, Shoot
○ Each of this is can be a Term

● ASKVARS(KB, BestAction(a,5) )     what value of a satisfies
■ Reflex behavious can be directly expressed:

● ∀t  Glitter(t) ⇒ BestAction(Grab, t)



Using First Order Logic in Wumpus World

● Environment : Squares can be list terms [i,j]
○ ∀x,y,a,b  Adjacent( [x,y] , [a,b] ) ⇔ ( x = a Λ ( y = b+1 V y = b - 1) ) V

  ( y = b Λ ( x = a+1 V x = a - 1) )

● Pit can be a Unary predicate :  Pit( [x,y] )

● Wumpus can be a constant :   Referring to the Wumpus Object



Using First Order Logic in Wumpus World

● At( u, v, w)   Object u is in square v  at time w   

○ Every object can be in at most one place in a given time
■ ∀u ∀ v ∀w ∀t  ( At (u, v, t) Λ At (u, w, t) )  ⇒  (v = w)

○ Wumpus is at the same place all the time
■ ∃x ∃y ∀t  At (Wumpus, [x,y] , t)



Using First Order Logic in Wumpus World

● Neighbour of a breezy square contains a pit
○ ∀ v   Breezy(v)  ⇒ ∃x ( Adjacent(v,x) Λ Pit(x) )

● HaveArrow updation:
○ ∀t  HaveArrow (t +1) ⇔  ( HaveArrow(t) Λ ¬ Action(Shoot, t) )



Knowledge Engineering in First Order Logic

● Identify the Questions 
What questions will KB support? What facts will be available in KB?

● Assemble Relevant Knowledge
Understand the scope of the KB

● Decide on the vocabulary
Identify Objects / Relations / Functions / Constants

● Encode general knowledge about the domain and Problem Instance

● Test and Debug

Refer 8.4.2 that illustrates all these steps for a particular domain



Entailment, Validity and Satisfiability

● First Order Logic Formula 𝜶 is VALID iff 
○ for every model M and every extended interpretation 𝝈 for free 

variables of  𝜶 over the domain of M we have  M, 𝝈 ⊨ 𝜶

● First Order Logic Formula 𝜶 is SATISFIABLE iff 
○ there exists some model M and some extended interpretation 𝝈 for 

free variables of  𝜶 over the domain of M such that  M, 𝝈 ⊨ 𝜶

● All these notions are analogous to what we had in Propositional Logic

● So even in First Order Logic, we have :     
○ KB ⊨ 𝜶  iff ( KB Λ ¬𝜶 ) is not satisfiable 



Universal Instantiation

● ∀x  ( King(x) ⴷ Greedy(x) ) ⇒ Evil(x)

● What all can we infer from this?
○ ( King(Richard) ⴷ Greedy(Richard) ) ⇒ Evil(Richard)
○ ( King(John) ⴷ Greedy(John) ) ⇒ Evil(John)
○ ( King(Father(John)) ⴷ Greedy(Father(John) ) ⇒ Evil(Father(John))
○ …..

○ In general, for any ground term t,  ( King(t) ⴷ Greedy(t) ) ⇒ Evil(t)



Universal Instantiation

● ∀x  ( King(x) ⴷ Greedy(x) ) ⇒ Evil(x)

● If 𝞡 is some substitution then SUBST(𝞡, 𝛂 ) be the result of  applying 𝞡 on 𝛂
○ Example:   𝞡 is  { x / John }    

     𝛂 is ( King(x) ⴷ Greedy(x) ) ⇒ Evil(x)  )
Then  SUBST( 𝞡, 𝛂 ) is  ( King(John) ⴷ Greedy(John) ) ⇒ Evil(John)  

● Universal Instantiation Rule:  
∀x  𝛂

—--------------------------------
SUBST( {x/t }, 𝛂 ) Where t is a ground term



Existential Instantiation

● Existential Instantiation Rule:  
●

∃x  𝛂
—--------------------------------

SUBST( {x/ k }, 𝛂 )

Where k is a new constant symbol that does not occur anywhere else in the 
knowledge base

● Here k is called a Skolem Constant.

● Similar to what we do in Proofs
○ Example : Suppose there exists a vertex in the graph / number such 

that the property does not hold. Let v be such a vertex/number.



First Order Inferencing

● Replace every formula of the form ∃x  𝛂 by its existential instantiation

● Replace every formula of the form ∀x 𝛂 by all possible universal instantiations.

● Now the KB contains only boolean combinations atomic sentences where the 
parameters are ground terms.
○ Replace each such atomic statement with a proposition
○ Example : King(Father(John))  is replaced with FatherofJohnIsKing

● This technique is called Propositionalization.
○ Original KB entails 𝛅  iff the Propositionalized KB entails Propositionalized 𝛅

■ Needs proof 

● Done? ( End of discussion on First Order Inferencing? )
○ Propositionalization makes the KB infinite (in particular the Universal 

Instantiation step)



First Order Inferencing using Propositional Inferencing

● Herbrand’s Theorem: A first order KB entails  𝛅  iff there exists a finite subset of 
the Propositionalized KB that entails Propositionalized 𝛅

● Algorithm : 
Try out all possible subsets of the Propositionalized KB and check if it entails  Propositionalized 𝛅
○ First try  all possible subsets where terms have depth 0 terms 
○ Then try all possible subsets where terms have depth at most 1 terms 
○ ….

● If the input is a YES instance, the algorithm always Returns YES. 

● If the input is a NO instance then:
○ Algorithm gets stuck in an infinite loop

● Can we have an Algorithm that Returns NO for the negative instances?
○ No :(



Entailment problem for First Order Logic

● Entailment problem for First Order Logic is undecidable
○ The problem is Recursively enumerable but not Recursive
○ Satisfiability problem for First Order Logic is coRE but not Recursive

(If you do not know what Recursively enumerable / Recursive mean, you can safely ignore it)

● For Propositional Logic, we do not know of any fast algorithms for 
entailment, but heuristic based algorithms work well in practice

● For First Order Logic, we know that there cannot be an algorithm that 
terminates on all inputs and gives correct answer
○ But we will still try to build some heuristics based algorithms that 

(hopefully) work well in practice



Proof of Herbrand’s Theorem on Board


